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Abstract

We propose a new method for the T1-weighted magnetic resonance image (MRI) segmen-

tation. Thin plate splines are fitted to overlapping blocks of an image slice and thresholds

are found. The knots and the smoothing parameters of the splines are chosen by a mod-

ified version of the generalized cross validation criterion. Each block is associated with a

weighting function, which serves to blend the splines together as well as the thresholds in a

smooth fashion. The blended image is then thresholded to get the boundaries between gray

matter, white matter, cerebrospinal fluid, and others. We tested the method on MGH CMA

20 normal data. The results show that our method achieves good segmentation compared

to human segmentation and SPM segmentation. Also our method generates subpixel results

and handles the partial volume effect in the model. The new method has the advantage of

being less dependent on image non-uniformity correction.

1 Introduction

Segmentation of magnetic resonance (MR) images is an important part of brain imaging

research. The segmentation can facilitate the diagnosis of neurological diseases. It can also

be used as a visualization aid for researchers, or as a preprocessing step for other studies.

There are some inherent difficulties associated with image segmentation; among them are

RF coil inhomogeneity, brain tissue susceptibility, and other systematic artifacts. Various

preprocessing steps have been proposed to deal with some or all of these difficulties. After

preprocessing, a segmentation method then can be used to classify the voxels in the whole

brain volume into three different tissue types: grey matter (GM), white matter (WM), and

cerebrospinal fluid (CSF). The segmentation methods we have seen so far can be roughly

grouped into 2 categories: intensity based or surface based.

Regarding intensity-based classifiers, neural network classifier (Morrison and Attikiouzel,

1992; Ozkan et al., 1993; Kollokian, 1996; Wang et al., 1998), the k-nearest neighbor classifier

(Bezdek et al., 1993) or a finite Gaussian mixture modeling (Bezdek et al., 1993; Kapur, 1995)
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can be used for classifying each voxel into 3 different classes. In particular Gaussian mixture

modeling assumes the image intensity values follow the mixture of two or more Gaussians

and the unknown parameters of Gaussian distributions are estimated by maximizing the

likelihood functions possibly via the expectation maximization (EM) algorithm or other

optimization techniques. The widely used SPM’99 brain image analysis package (Wellcome

Department of Cognitive Neurology, London, UK, URL http://www.fil.ion.ucl.ac.uk/spm) is

based on a Bayesian Gaussian mixture modeling with a prior probability image generated by

averaging the image intensity for large number of subjects (Ashburner et al., 1997; Ashburner

and Friston, 2000). Based on a prior probability of each voxel being the specific tissue type,

a Bayesian approach is used to get a better estimate of the posterior probability. This

Bayesian update of the probability is iterated many times until the probability converges.

The resulting probability is interpreted as the probability of each voxel belonging to one of

three tissue types.

Instead of the above intensity-based segmentation techniques, surface-based segmentation

techniques have begun to emerge. The advantage for surface-based segmentation methods

is the possible reduction of the partial volume effect (Tohka et al., 2004), when triangular

meshes are used. Triangular meshes are not constrained to lie on voxel boundaries. Instead

the triangular meshes can cut through a voxel, which can be considered as correcting where

the true boundary ought to be and reducing the partial volume effect. Deformable surface

modeling (Terzopoulos et al., 1988; Davatzikos and Bryan, 1995; Dale and Fischl, 1999;

MacDonald et al., 2000) can be used to segment tissue boundaries by either solving a partial

differential equation or optimizing an objective function.

Recently isosurface modeling, also known as a level set method (Sethian, 1999; Osher

and Paragios, 2003) seems to show promise in tissue boundary segmentation and has been

used in segmenting the sagittal section of the corpus callosum (Hoffmann et al., 2004). A

related approach to the image segmentation problem is the model proposed in Mumford

and Shah (1985), where a piecewise smooth function is fitted to the image data, with the

discontinuities happening only on the boundaries between different tissue types. The solution
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can be obtained by optimizing an objective function iteratively.

In this paper, we propose and validate a new tuned thin plate spline thresholding method

on image slices. In validating segmentation results, most studies compare the performance of

their algorithms against expert manual brain segmentation (Boesen et al., 2004) or synthetic

data sets. We will follow this rule as well.

2 Review of Thin Plate Splines

A thin plate spline (TPS) is the minimizer of the following optimization problem (Wahba,

1990, pp. 30–31)

1

n

n∑
i=1

(yi − f(x1(i), · · · , xd(i)))
2 + λJd

m(f), (1)

where yi is the i-th data point, (x1(i), · · · , xd(i)) is a d-dimensional vector, n is the total

number of observations, and Jd
m is a smoothness penalty functional involving m derivatives

in d-dimensions.

The smoothing parameter λ will be chosen by some criterion to be described later. The

penalty functional Jd
m(f) for the special case m = 2, d = 2 is defined as

J2
2 (f) =

∫ ∞

−∞

∫ ∞

−∞
(f 2

x1x1
+ 2f 2

x1x2
+ f 2

x2x2
)dx1dx2. (2)

This is the one we will use in the paper. In the m = 2, d = 2 case for a unique minimizer to

(1) exists it is necessary that a least square fit to these data at {ti = (xi(i), x2(i)) : 1≤i≤n} is

unique, a condition obviously satisfied with the regular pixel data in two dimensions. Under

this condition, the unique solution has the representation

fλ(t) = d0 + d1x1 + d2x2 +
n∑

i=1

ciEm(t− ti), (3)

where t = (x1, x2) and Em(τ) = θ‖τ‖2 ln ‖τ‖. The constant θ will be absorbed into the
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smoothing parameter λ. Details for general m and d can be found in Wahba (1990).

The coefficients {dν} and {ci} are linear in the yi’s, so we can write

ŷ
def
= (fλ(t1), · · · , fλ(tn))′ = A(λ)y, (4)

where y = (y1, · · · , yn)′, and A(λ) is called the smoothing matrix.

The smoothing parameter λ in the minimization problem (1) can be chosen by the general-

ized cross validation criterion with possibly a constant factor α which modifies the equivalent

degrees of freedom of the spline (Luo and Wahba, 1997);

αGCV (λ) =
‖(I − A(λ))y‖2/n

[1− αtr(A(λ))/n]2
. (5)

The factor α should be a real number no less than 1. In the present work, where a function

with jumps is being fitted, the conditions for optimality of the usual α = 1 case are violated

(Wahba, 1990). In this work α will be determined empirically once and for all for data from

the present experimental setup.

Thin plate splines can be further approximated by fewer basis than those appearing in

(3). The approximation has the form

f̃λ(t) = d0 + d1x1 + d2x2 +
∑
sl∈Ω

clEm(t− sl), (6)

where Ω is the set of knots (Ω ⊂ R2). Each Ω specifies a knot configuration.

3 Method

TPS Thresholding Algorithm

Our method fits thin plate splines to overlapping blocks of an image slice, and blends the

splines together smoothly. A similar idea was used in Wood et al. (2002). The main dif-

ferences are that we choose the smoothing parameters differently and we use explicit subdi-
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visions. In addition, our method obtains thresholds on every block; and the thresholds are

blended the same way as the splines are blended.

A brief overview of the algorithm goes as follows. First, we divide the slice into over-

lapping blocks. Secondly, we fit thin plate splines to the image intensities at each block

with different number of knots, and select the knot configuration that gives us the smallest

αGCV score on every block. Thirdly, we fit the thin plate splines with the knot configura-

tions found in the last step, and predict on a very fine grid. We also find the local thresholds

with the k-means algorithm. Finally, we blend the predicted block images and the thresholds

with smooth weighting functions. The thresholds are used on the blended image to get the

boundaries between GM, WM, CSF, and other tissue types.

Step 1: Partitioning of Slice Image

With a typical slice of size 256x256 pixels, we first clip some surrounding empty space in

the slice image. Many software programs can do this; and manual clipping is quite easy to

do too. Once the clipping is done, we can divide the slice into blocks of size about 50x50

pixels. The users can determine the sizes of the blocks. A rule of thumb is to have all the

tissue types (i.e. gray matter, white matter, CSF, and others) in every block. The same

idea was used in Kovacevic et al. (2002). Following a similar line of thinking, we allow

some degree of overlapping between adjacent blocks (horizontally, vertically, or diagonally).

The overlapping proportion between each pair of horizontally or vertically adjacent blocks is

about one half of the pixels in either of the blocks (see Figure 1(a)). This results in each pair

of diagonally adjacent blocks having about one fourth of the pixels in the individual blocks

overlapped. The histograms for the image intensities of two adjacent blocks are shown in

Figure 1(b). We can see the bumps in the histograms.

Step 2: Finding Optimal αGCV Scores

After the partitioning is done, we fit thin plate splines to each block. Note that even for

one block (of the size 50x50), there are more than two thousand data points. There can
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Figure 1: Overlapping scheme, αGCV curves and histograms: (a) overlapping scheme of one
slice with 5 by 7 blocks (horizontally and vertically respectively). Each 4 adjacent shaded
rectangles form one block, with different shades representing different numbers of overlapping
(light grey=1, medium gray=2, dark gray=4). The weighting functions at each direction are
given below and to the left of the plot. (b) histograms of intensities for two adjacent blocks
(the centers found by k-means on predicted block images shown as red x’s). (c) αGCV
curves for the pair of adjacent blocks (minimum of αGCV shown with arrows).
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be sharp boundaries between different tissue types within one block. However, the image

should be considered relatively smooth within each tissue type in a block. To fit a thin

plate spline with 2500 data points as knots is not only computationally ineffective, but also

unnecessary. A remedy for this is to use a subset of the 2500 knots as an approximation

to the original spline that uses every data point as knot (Luo and Wahba, 1997). Since the

slice image is measured on a regular grid, a further approximation is to allow the knots to

not fall on the pixel grid, but only require them to be equally spaced, where the knot grid

size is approximately proportional to the pixel grid size. In our αGCV search, we bound

the ratio of the number of the knots to the total number of pixels in every block within

the interval [0.02, 0.45], and find the lowest αGCV score for each given number of knots

with respect to the smoothing parameter λ, we then minimize the scores over the number

of knots. In this work an empirical value of α = 2 was chosen once and for all, for all

of the images. α = 2 will result in a smoother signal and greater noise suppression than

α = 1. Although it may seem counterintuitive in the present context where one is trying to

locate the boundary between two different regimes, each of which is roughly constant, this

apparent oversmoothing reduces or eliminates any Gibbs effect and oversensitivity to noise

and reduces the segmentation problem to a careful choice of threshold. The parameter α

can be fixed at 2, or chosen once and for all for any particular experimental setup.

Step 3: Predicting TPS and Thresholding

Using the optimal knot configuration found in the last step, we fit a thin plate spline to

each block with the given configuration. A fine grid is laid on the block, with every pixel

divided into 8 by 8 subpixels and the thin plate spline predicted on the grid. The use

of the fine grid is to get a smoother image, which will be beneficial for the thresholding

later. Another advantage of the fine grid is that we can get subpixel level segmentation

and smoother boundaries. To calculate the thresholds on every block, we use the k-means

algorithm, which is simple, fast and efficient. The k-means algorithm is used with 4 centers

corresponding to white matter (w), gray matter (g), cerebrospinal fluid (c), and empty space
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(e), in the order of the intensity values of these regions appearing in a T1-weighted MR image

from the highest to the lowest. Two examples of the centers found by k-means are given in

Figure 1(b), which shows that the algorithm is doing a reasonably good job. We tried both 3

centers and 4 centers with k-means; it appears that the 4 center setting gives us better tissue

boundaries. Once the centers have been found, we calculate the thresholds in the following

way (Kovacevic et al., 2002)

tec = (me + mc)/2 (7)

tcg = (mc + mg)/2 (8)

tgw = (mg + mw)/2, (9)

where me, mc, mg, mw are the centers found by the k-means algorithm, and tec, tcg, tgw are

the thresholds to be used in the later step, where tec is the threshold between e and c, and

so forth.

Step 4: Blending Block Images and Thresholds

Having done all the predicting and thresholding, we can now blend the block images together

along with the thresholds using the weighting functions for each subblock, depicted schemat-

ically in Figure 1(a). In both the horizontal and the vertical direction, a pair of functions

1− f(s) and f(s) is used, where

f(s) =


0 , if s ≤ 0

s3(6s2 − 15s + 10) , if 0 < s < 1

1 , if s ≥ 1.

(10)

Note f(s) goes smoothly (second order differentiable) from 0 to 1, and takes only nonnegative

values (it is a 1-d quintic spline). In the case a subblock is covered by only 2 adjacent

blocks, either horizontally or vertically, the weighting pair 1− f(s) and f(s) is used for left

(lower) block and right (upper) block respectively. In the case a subblock is covered by 4
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adjacent blocks, a tensor product weighting scheme is used. The weighting functions become

[1 − f(x)][1 − f(y)], f(x)[1 − f(y)], [1 − f(x)]f(y), and f(x)f(y) for the lower left block,

lower right block, upper left block, and upper right block respectively. For each overlapped

subblock, the pixel coordinates are scaled so that the lower left endpoint of the subblock is

mapped to (0, 0), and the upper right endpoint of the subblock is mapped to (1, 1).

For the blending of each of the three thresholds, we use the same scheme. The difference

between the blending of the thresholds and the blending of the block images is that we have

constant matrices in the place of block images.

When all the blending is done, we can display the segmentation result by drawing contours

at level = 0 on the difference images between the blended image and the blended thresholds.

Many software programs are available for this purpose.

Subjects and Image Acquisition

The 20 normal magnetic resonance brain data sets and their manual segmentations that we

examine here were provided by the Center for Morphometric Analysis at the Massachusetts

General Hospital and are available at the URL http://www.cma.mgh.harvard.edu/ibsr/. The

coronal three-dimensional T1-weighted SPGR MRI scans were performed on two different

imaging systems. Ten FLASH scans on four males and six females were performed on a 1.5

tesla Siemens Magnetom MR System (Iselin, NJ) with the following parameters: TR/TE

40/8 ms, flip angle 50, 30cm field of view, 3.1mm slice thickness, 256x256 matrix. Ten 3D-

CAPRY scans on six males and four females were performed on a 1.5 tesla General Electric

Signa MR System (Milwaukee, WI), with the following parameters: TR/TE 50/9 ms, flip

angle 50, 24cm field of view, 3.0mm slice thickness, 256x256 matrix. Each image volume has

about 60–65 slices. The data sets were used in Shan et al. (2002) and elsewhere.
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4 Evaluation of TPS Thresholding Method

We used 5 subjects from the 20 normal data provided by MGH CMA. The selection scheme

was as follows: we sorted the subjects based on their id’s (1 24, 2 4, 4 8, · · · ), and selected

the 2nd, 6th, 10th, 14th, 18th subjects. We applied our TPS segmentation method to one

coronal slice near the middle of the brain for each subject. We then applied the SPM brain

image analysis package, which works on the entire image of the subject, and extracted the

corresponding slice for comparison. Note that we have the manual segmentation for the

MGH data, so we have 3 segmentations in total. To compare each pair of segmentations,

we used two measure of similarity. One is the correlation coefficient. The other one is the

kappa index defined as

κ(S1, S2) =
2|S1 ∩ S2|
|S1|+ |S2|

, (11)

where S1, S2 are the sets of pixels classified as one tissue type by two given segmentation

methods, and | · | the number of elements in the set in question. This measure has been

used in Shan et al. (2002), Kovacevic et al. (2002), and Zijdenbos et al. (1994). It has the

nice property that two equally sized regions that overlap each other with half of their areas

result in an index 1
2
. Also, the index is sensitive to both differences in sizes and locations

of Si’s. A slight variation of the kappa index is the Jaccard index (Shan et al., 2002) which

differs from the kappa index only in the constant and the denominator. These two criteria

actually gave us the same conclusions, we will stick with the kappa index which seems to be

the more popular criterion.

Since the TPS segmentation gives us subpixel level results, we need to convert them to

the pixel level to be easily compared to the manual and SPM segmentations. The way we

did it was to calculate the proportion of the number of subpixels in every pixel that belongs

to each class (Figure 6(c)). Thus, we obtained a 4-tuple at every pixel, which sums to 1.

The pixel level proportions were then used to calculate the correlation coefficients between

the TPS and the other two methods. To get the kappa index, we thresholded both the
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TPS proportion outputs and the SPM probability outputs by some given constant (0.5 for

both GM and WM) to get the classification, then equation (11) was used. For example, the

formula for calculating the kappa index for TPS vs SPM is

κ(PT , PS) =
2|(PT > 0.5) ∩ (PS > 0.5)|
|PT > 0.5|+ |PS > 0.5|

, (12)

where PT and PS are the proportion output from TPS and the probability output from SPM

respectively. We are only interested in the gray matter and the white matter proportions.

So we computed the above mentioned indices for each pair of the segmentations on gray

matter and white matter only.

5 Results

We display the segmentation results for the manual method, the TPS method, and the SPM

method applied to one image slice in Figures 3, 4, and 5 respectively. The gray level image of

the original slice is shown in Figures 2. Note that the manual segmentation gives the discrete

classification (GM, WM, CSF, and other); the TPS method generates a predicted image with

3 thresholding fields; while the SPM method produces one probability image for each tissue

class. These are reflected in the contour plots. With the subpixel property built in the

algorithm, the TPS segmentation shows smoother boundaries than the other methods. Even

at local levels (Figure 6(a) and 6(b)), the TPS method still traces the boundary between

GM and WM well without being too wiggly. The similarity measurements (with mean and

standard deviation summary) between the three methods on all 5 subjects are given in Table

1. We can see that the numbers are close, with the mean coefficients for the TPS against

manual and those for the SPM against manual all within one standard deviation of each

other. If we count the number of times TPS is doing better than SPM in terms of each

index, and vice versa, we can find that there is no definite winner. Note that for one of the

subjects (subject 4), both the TPS and the SPM failed on the segmentation. But TPS did a

better job than did the SPM. Our method seems to be less sensitive to image non-uniformity.
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Figure 2: Original slice image in the gray scale
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Figure 3: Overlay of the manual segmentation on the original slice
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Figure 4: Overlay of the TPS segmentation on the original slice
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Figure 5: Overlay of the SPM segmentation on the original slice. Both the gray and the
white probability outputs by SPM were thresholded at level=0.5 to get the red and the blue
contour lines respectively.
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Figure 6: Zoomed plots of the TPS segmentation: (a) TPS result zoomed (b) TPS result
zoomed to a smaller region (c) dot plot with the centers of the subpixels shown as small
dots, from the square region outlined in heavy black in (a).
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Table 1: Comparison of Three Segmentation Methods with Mean and SD Summary

subject corr. coef. kappa index
no. GM WM GM WM
1 0.660 0.827 0.835 0.872
2 0.702 0.757 0.841 0.828

TPS vs Manual 3 0.654 0.787 0.814 0.852
4 0.410 0.678 0.724 0.770
5 0.612 0.791 0.776 0.840

mean (sd) 0.608(0.115) 0.768(0.056) 0.798(0.049) 0.832(0.038)
1 0.675 0.846 0.866 0.862
2 0.686 0.839 0.875 0.855

SPM vs Manual 3 0.637 0.810 0.831 0.838
4 0.091 0.672 0.598 0.652
5 0.450 0.803 0.771 0.824

mean (sd) 0.518(0.250) 0.794(0.071) 0.788(0.114) 0.806(0.087)
1 0.806 0.883 0.875 0.869
2 0.626 0.759 0.803 0.764

TPS vs SPM 3 0.734 0.822 0.831 0.837
4 0.426 0.767 0.687 0.710
5 0.645 0.800 0.778 0.805

mean (sd) 0.647(0.143) 0.806(0.050) 0.795(0.070) 0.797(0.062)

6 Conclusions

Our method is an intensity based method and it does simple thresholding. Thin plate splines

are used to smooth the image. Our results show that the new method is doing a reasonably

good job in terms of segmentation. The TPS method has the advantage of generating

subpixel level results and smoother boundaries. The partial volume effect is addressed by

the subpixel segmentation. This property further shows that the TPS method has the

potential for more accurately segmenting magnetic resonance images, including curvatures

of the boundaries, and potentially surfaces. Our method tackles the image non-uniformity

through the local thresholding and the blending. It provides a good alternative to the other

known segmentation methods.
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7 Future Work

The results we have shown so far are for 2-dimensional slices only. More work is under

way to study the 3-dimensional segmentation. The idea described above can be applied

to the 3-d case without much change. But the 3-dimensional work will prove to be more

computationally challenging and also more interesting.

To give a preview of what would happen in the 3-d TPS segmentation, we list some of

the challenges. For a typical brain volume we are segmenting, the dimension is 181x217x181.

To use the overlapping idea and not to stretch the computer too much on its memory and

the computing time, we can only apply the 3-d TPS to a cube of about the size 20x20x20.

With half of voxels in the adjacent cubes overlapped, the number of overlapping cubes could

go up to 17×21×17 = 6069. This poses two difficulties. First, the computing time will be

enormous. But with the using of Condor (a batch processing system for clusters of machines,

URL http://www.cs.wisc.edu/condor/), this problem can be greatly reduced. Secondly,

because the cube size is not big enough to contain all the tissue types, the thresholding

algorithm might have to deal with different numbers of classes in different cubes. A way to

get around this is to combine adjacent cubes to big ones and then apply the thresholding.

Based on our experiments, the combined cube of about the size 60x60x60 is big enough for

thresholding.

Although the 3-d volume segmentation will certainly be much more difficult than the

2-d slice segmentation, we expect that we can get good segmentations with clever ways of

modifying our algorithm.
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