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Abstract

Diffusion tensor imaging (DTI) is a quantitative magnetic resonance imaging (MRI)

method that is used to study the microstructural properties of white matter in the brain.

Tensor-derived quantities, such as the trace and fractional anisotropy (FA), are important

for characterizing the normal, diseased, and developing brain. Consequently, determining

the statistical properties of the diffusion tensor estimator is important to assess whether

the method of estimation is appropriate and to describe how noise in diffusion-weighted

images affects the variability in estimates of the tensor and functions of the tensor estimate.

Here we derive asymptotic properties of the nonlinear least squares estimator (NLSE) of

the diffusion tensor. We show that the NLSE is consistent and asymptotically normal. To

illustrate and validate this framework we derive the asymptotic distributions of trace and

FA. We show, with simulations, experimental designs that have asymptotic distributions

that are very close to the empirical distributions. The methods described in this paper

are applied to estimate the variances of trace and FA in a healthy human volunteer. The

variance of the trace and FA are found to vary significantly throughout the brain. This

renders many popular tests used in group analysis invalid for DTI data. Unequal variances

for statistical tests with tensor-derived quantities is discussed.

1 Introduction

Diffusion tensor imaging (DTI) (Basser et al., 1994a; Basser et al., 1994b) is a quantitative

magnetic resonance imaging (MRI) method that is widely used to study the microstructural

properties of white matter in the brain. The diffusion tensor, which describes the diffusion

properties of the imaged tissue, is known to be proportional to the covariance matrix for Brown-

ian motion of water molecules. Since DTI can provide microstructural information, it can reveal

disease-correlated tissue changes that are not evident on conventional MRI. This sensitivity to

microstructure and tissue organization makes DTI an important tool for studying neurologic

diseases. Several functions of the diffusion tensor (e.g., trace and fractional anisotropy (FA))
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are important for characterizing neurologic diseases (Le Bihan et al., 2001).

Determining the statistical properties of the diffusion tensor estimator is necessary to deter-

mine if the method of estimation is appropriate, and to describe how noise in diffusion-weighted

images leads to variability in estimates of the tensor and functions of the tensor estimate. Esti-

mators of the variance of the tensor estimator and functions of the tensor estimator are needed

for statistical inference, comparing experimental designs, and tractography. Studying the sta-

tistical properties of the nonlinear least squares estimator (NLSE) of the diffusion tensor is

particularly timely since it was recently shown that the NLSE outperforms, in terms of mean

square error, linear tensor estimators (Koay et al., 2006a).

In this paper we derive asymptotic properties of the NLSE of the diffusion tensor. The

asymptotic distributions of the tensor estimator and functions of the tensor estimator are used

to obtain estimators for their variances. We show that the NLSE of the diffusion tensor is a

maximum likelihood estimator (MLE). This connection allows us to directly apply the theory of

maximum likelihood estimation to obtain asymptotic properties. For diffusion tensor estimation,

the asymptotic properties are achieved in the limit as the signal to noise ratio (SNR) and

the number of samples of a set of diffusion directions go to infinity. Asymptotic properties

are commonly used in many statistical procedures and can be very accurate well before the

appropriate quantities approach infinity. We assess the utility of the asymptotic approximations

with a series of simulations.

We show that the NLSE is consistent and asymptotically normal. Consistency is a desirable

property of estimators, which implies that the estimates approach their true, unknown values in

a probabilistic sense. Furthermore, certain functions of the tensor estimator are also consistent

and asymptotically normal. To illustrate and validate the theory we derive the asymptotic distri-

butions of trace and FA and show, with simulations, experimental designs that have asymptotic

distributions that are very close to the empirical distributions. The methods introduced in this

paper are applied to estimate the variance of trace and FA from a DTI data set acquired from

a healthy human volunteer. Finally, we discuss implications of unequal variances for statistical
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tests with tensor-derived quantities.

2 Diffusion Tensor Model

The diffusion tensor model for a signal S := (S1, . . . , Sn)′ from a single voxel with n diffusion

measurements is

S = S0 exp (−Xβ) + ε. [1]

The symbol ′ denotes matrix transposition and exp() denotes the exponential function applied

to each element of an array. The signal with no diffusion weighting is denoted by S0. The

diffusion encoding matrix X is given by

X :=


b1g

2
x1 b1g

2
y1 b1g

2
z1 2b1gx1gy1 2b1gy1gz1 2b1gx1gz1

...
...

...
...

...
...

bng
2
xn bng

2
yn bng

2
zn 2bngxngyn 2bngyngzn 2bngxngzn

 ,

where the bj, j = 1, . . . , n, are the diffusion weightings and the gij, i ∈ {x, y, z}, are the

components of the gradient encoding unit vectors, which specify the direction of the diffusion

weighting. The parameter β contains (at most) 6 unique elements of the symmetric, positive-

definite diffusion tensor, namely

β := (Dxx, Dyy, Dzz, Dxy, Dyz, Dxz)
′,

where the diffusion tensor D is

D :=


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 .
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We assume that the errors ε in [1] are independent and normal with constant variance, i.e.,

ε ∼ Nn(0, σ2In), where In is an n× n identity matrix. Noise in magnitude MR images formed

with quadrature detection follows a Rician distribution (Henkelman, 1985; Koay and Basser,

2006). As the SNR goes to infinity, the noise in magnitude images follows a normal distribution

with variance equal to the variance of the normally-distributed noise in the quadrature channels

(Gudbjartsson and Patz, 1995). Yet, surprisingly, when the SNR is greater than three, the noise

in the SE-EPI MR images is well-approximated by a normal distribution (Gudbjartsson and

Patz, 1995). With routine diffusion imaging parameters (e.g., b ≈ 1000 s/mm2 or less and the

SNR is at least 20). Consequently, the normality and constant variance assumptions are quite

sensible, and achieved at low SNR and number of images.

3 Nonlinear Least Squares Tensor Estimator

In this section, we show that the nonlinear least squares estimator (NLSE) of the diffusion tensor

is the same as the maximum likelihood estimator (MLE). We start with the maximum likelihood

estimator. The diffusion measurements S are viewed as a single sample drawn from a multi-

variate normal distribution. Under the distributional assumption ε ∼ Nn(0, σ2In), the signal

is distributed as S ∼ Nn(S0 exp(−Xβ), σ2In). Define the parameter to be θ = (θ1, . . . , θ8)
′ :=

(β, S0, σ
2)′. The likelihood, L(θ|S), is given by

L(θ|S) = (2πσ2)−n/2 exp

{
− 1

2σ2
[S − S0 exp(−Xβ)]′ [S − S0 exp(−Xβ)]

}
.

Taking the logarithm gives the loglikelihood, l(θ|S),

l(θ|S) = −n

2
log(2πσ2)− 1

2σ2
[S − S0 exp(−Xβ)]′ [S − S0 exp(−Xβ)] . [2]

Note that the NLSE for β and S0 do not depend on σ2. In these cases, maximizing [2] with

respect to β and S0 is the same as minimizing the nonlinear least squares objective function,
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h(β, S0), given by

h(β, S0) :=
1

2
[S − S0 exp(−Xβ)]′ [S − S0 exp(−Xβ)] . [3]

Therefore, the minimizers of [3], call them β̂ and Ŝ0, are the maximum likelihood estimators of

the components β of the tensor and S0. To get the MLE for σ2, we substitute β̂ and Ŝ0 for β

and S0, respectively, in equation [2] and find the σ2 that maximizes l(θ|S). It is easy to show

that the MLE for σ2 is

σ̂2
MLE =

1

n

[
S − Ŝ0 exp(−Xβ̂)

]′[
S − Ŝ0 exp(−Xβ̂)

]
=

RSS

n
. [4]

This estimator is the residual sum of squares (RSS) divided by the number of diffusion measure-

ments. The MLE for the error variance σ2 is not the best estimator, particularly for small n.

In the next section we will provide a better estimator that relies on the asymptotic properties

of β̂ and Ŝ0.

4 Asymptotic Properties of the Tensor Estimator

The NLS estimators of β, the components of the tensor, and S0 are the same as the maximum

likelihood estimator under the assumption of independent normal errors with constant variance.

This fact allows us to use the asymptotic properties of the MLE to obtain the asymptotic

properties of the NLS estimators. The two main properties of the MLE are consistency and

asymptotic normality. Consistency, also called convergence in probability, is denoted by θ̂
P→ θ.

This means that for all a > 0, limN,SNR→∞ P (|θ̂ − θ| > a) = 0 , where N is the number of

samples of the diffusion directions. In words, this means that for large enough N and SNR, the

probability that the tensor estimator is more than an arbitrarily small distance away from the

true value goes to zero. By theorem 5.1 on page 463 of Lehmann and Casella (1998), we have

the following asymptotic properties:
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1. θ̂
P→ θ, and

2. θ̂
d→ N8(θ, I−1(θ)).

The first property states that as the number of samples of the diffusion directions and

the SNR increase, the NLSE of the tensor components converges in probability to the true

tensor components. The second property implies the asymptotic normality of the NLSE, i.e., θ̂

converges in distribution to a multivariate normal. Convergence in distribution, denoted by
d→,

means that as N and SNR go to infinity, the distribution of the tensor estimator (at all continuity

points of its distribution) is normal with mean equal to θ. Both of the asymptotic properties

of the MLE hold under certain regularity conditions. Under our normality assumption, these

regularity conditions are satisfied.

Note that I−1(θ), the covariance matrix of the asymptotic distribution, is the inverse of the

Fisher information matrix, which is proportional to the Hessian of the expected loglikelihood.

Specifically, from equation 6.11 on page 125 of Lehmann and Casella (1998),

Iij(θ) := −E

[
∂2

∂θi∂θj

l(θ|S)

]
, [5]

where E[·] denotes the expectation operator, i.e., for random variable X, E[X] :=
∫

X dP , where

P is a probability measure. In the case of equation [5], the expectation is taken with respect to

the multivariate normal distribution that is parameterized by θ.
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Since we are primarily interested in the properties of the components of the tensor, we can

apply a simple transformation C to θ̂ to get the asymptotic distribution of β. Let

C :=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


.

Then, Cθ̂ = β̂ and

β̂
d→ N6(β,CI−1(θ)C′). [6]

From equation [6], we see that β̂ is asymptotically normal with mean β and covariance matrix

CI−1(θ)C′.

We will derive the Fisher information matrix for each component, first considering the deriva-

tives with respect to the components of β. It follows from the Hessian of [3], which was derived

by Koay et al.(2006b), that

∇2
βl(θ|S) = − 1

σ2
∇2

βh(β, S0)

= − 1

σ2
X′(2S̃2 − SS̃)X,

where

S :=



S1 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 Sn


, and S̃ := S0



exp(−X1β) 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 exp(−Xnβ)


,
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with Xi denoting the ith row of the diffusion gradient matrix. The notation ∇2
βh denotes a

6× 6 matrix with ijth element equal to ∂2h/∂βi∂βj. Thus, the upper left 6× 6 block of I(θ) is

1

σ2
E[X′(2S̃2 − SS̃)X] =

1

σ2
X′S̃2X.

In the left hand side of the previous equation, the only random quantity is S. Since S ∼

Nn(S0 exp(−Xβ), σ2In) and E[S] = S̃, the right hand side follows. For the terms involving S0

and σ2, the following can be shown:

−E

[
∂2

∂S2
0

l(θ|S)

]
=

1

σ2
exp(−Xβ)′ exp(−Xβ)

−E

[
∂2

∂(σ2)2
l(θ|S)

]
=

n

2(σ2)2

−E

[
∂2

∂σ2∂S0

l(θ|S)

]
= 0

−E

[
∂2

∂σ2∂βi

l(θ|S)

]
= 0

−E

[
∂2

∂βi∂S0

l(θ|S)

]
=

S0

σ2

n∑
j=1

Xji[exp(−Xjβ)]2.

From the last equation, we see that estimates of S0 are correlated with estimates of β. From

a practical standpoint, this means that experimental designs that yield poor estimates of S0

will adversely affect estimates of β. For this reason, experimental designs that include only one

image with no diffusion weighting should be avoided.

The MLE for the error variance in equation [4] has a large bias for small n. This causes

under estimation of the variance. The consistency and asymptotic normality of the NLSE for

S0 and β allow us to get a better estimator. In particular,

RSS

σ2

d→ χ2
n−7,
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where χ2
n−7 denotes a χ2 distribution with n − 7 degrees of freedom. This suggests that the

appropriate estimator of the error variance is

σ̂2 :=
RSS

n− 7
[7]

rather than the MLE given in [4].

5 Distribution of a Linear Function of the Tensor

The distribution of a linear function of the tensor (e.g., trace) is asymptotically normal. This fol-

lows from the well-know property that linear functions of normal random variables are normally-

distributed. To obtain the asymptotic distribution of the trace of the tensor estimator, let

c := [1 1 1 0 0 0]. Then, t̂rD = cβ̂, where tr denotes the trace of a matrix. From equation [6]

it follows that

t̂rD
d→ N1(trD, cCI−1(θ)C′c′). [8]

The general form of the normal distribution for the trace of the diffusion tensor was previously

given in Basser and Pajevic (2003). The difference in our paper is that we prove asymptotic

normality and show how the variance of the asymptotic distribution comes from the Fisher

information matrix.

To estimate Var(t̂rD), we use the variance in [8] evaluated at θ = θ̂, with σ2 estimated

according to [7], i.e.,

V̂ar(t̂rD) = cCI−1(θ̂)C′c′. [9]

The consistency of the estimator for the variance of trace follows directly from the consistency

of the estimator for θ. The variance of the mean apparent diffusion coefficient (ADC), which is

defined as 1/3 trD, is the variance of the trace of the tensor scaled by 1/9.

10



6 Distribution of a Nonlinear Function of the Tensor

In this section the multivariate delta method is used to show that a nonlinear function of the

tensor estimate is asymptotically normal. In particular, we are interested in scalar functions of

the tensor such as the fractional anisotropy. It is also possible that a vector-valued function of

the tensor is of interest, e.g., the primary eigenvector of the tensor. To include this possibility,

let

f(β̂) := (f1(β̂), . . . , fr(β̂))

denote an r-dimensional vector-valued function of the tensor estimate. The multivariate delta

method (Theorem 8.22, page 61 (Lehmann and Casella, 1998)) yields

[
(f1(β̂)− f1(β)), . . . , (fr(β̂)− fr(β))

]
d→ Nr(0,BCI−1(θ)C′B′), [10]

where Bij = ∂fi/∂βj. The matrix B of partial derivatives must be nonsingular in a neighborhood

ω of β. For scalar-valued f , the derivatives cannot be zero at β. We also require that f1, . . . , fr

are continuously differentiable in ω.

To compute the asymptotic distribution of FA, which is a normalized standard deviation of

the eigenvalues of the diffusion tensor, we need to compute the partial derivatives of FA with

respect to each of the six components of β. FA takes values between 0 and 1, where 0 indicates

isotropic diffusion and 1 indicates completely anisotropic diffusion. FA is written in terms of

the eigenvalues λ1, λ2, and λ3 of the diffusion tensor D, as follows

FA(λ1, λ2, λ3) :=

[
3[(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2]

2(λ2
1 + λ2

2 + λ2
3)

] 1
2

,

where λ̄ := (1/3)(λ1 + λ2 + λ3). We can express FA directly in terms of β, which is more

convenient for computing partial derivatives with respect to the components of β. In this form
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FA is given by

FA(β) =

[
3

2

(
1− (trD)2

3 tr(D2)

)] 1
2

. [11]

Differentiating [11] gives the following:

∂FA

∂Di

= − 1

2FA

[
trD tr(D2)− (trD)2Di

(tr(D2))2

]
, i ∈ {xx, yy, zz}

∂FA

∂Dj

=
(trD)2Dj

FA(tr(D2))2
, j ∈ {xy, yz, xz}.

Let

B :=

(
∂FA

∂Dxx

,
∂FA

∂Dyy

,
∂FA

∂Dzz

,
∂FA

∂Dxy

,
∂FA

∂Dyz

,
∂FA

∂Dxz

)

and apply [10] to get the asymptotic distribution of FA. To use this result to estimate the

variance of an FA estimate, evaluate the Fisher information at the value of θ̂, with σ2 estimated

according to [7], to get

V̂ar(FA(β̂)) = BCI−1(θ̂)C′B′. [12]

It is important to note that when FA is zero (completely isotropic diffusion), the asymptotic

variance estimator in equation [12] is singular. This is due to the dependence of the derivatives

of FA on the value of FA. When FA goes to zero, the factor 1/FA in the expressions for the

derivatives goes to infinity.

7 Validation and Application

7.1 Simulation Study

To validate the range of utility of the asymptotic distributions of trace and FA for finite SNR

and N , we simulated diffusion measurements for three cylindrically symmetric tensors with

FA= 0.3578, 0.7840, and 0.9623. The trace of each simulated tensor was held constant to

2.189×10−3 mm2/s. The trace and FA values are representative of brain white matter (Pierpaoli
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et al., 1996). The SNR, defined as S0/σ was set to 20 and S0 = 1000. Three acquisition

designs with different numbers of directions and diffusion weightings were selected to examine

the performance of the asymptotic approximations for typical experimental designs. The designs

are as follows.

1. Six directions at each b = 0, 300, 650, 1000 s/mm2 (24 total measurements).

2. 16 directions at each b = 0, 300, 650, 1000 s/mm2 (64 total measurements).

3. 46 directions at each b = 0, 300, 650, 1000 s/mm2 (184 total measurements).

The six and 46 directions sets are icosahedral directions and the 16 direction set is constructed

with the six icosahedral directions plus the dodecahedral directions (Hasan et al., 2001). The

three designs were applied to each of the three tensors for a total of 9 simulation combinations.

These 9 simulations were then repeated with a trace of 1.0945×10−3 mm2/s to mimic conditions

of acute ischemia, where trace can be reduced by as much as 50% relative to healthy white

matter (Moseley et al., 1990). For each of the 18 simulations, there were 50000 simulated data

sets. Data were simulated with Rician noise according to the method described by Pierpaoli

and Basser (1996). The NLSE estimates of the simulated tensors were computed with Newton’s

method (Koay et al., 2006b). Trace and FA estimates were computed for each data set from

the tensor estimate. The empirical distributions of the trace and FA estimates were graphically

compared to a normal distribution. Sample means of the trace and FA estimates were computed

and compared to their true values to check consistency. The sample variances of the estimated

trace and FA were compared to the variances of their asymptotic distributions.

To investigate the dependence of the variance of trace and FA on the values of trace and FA,

we simulated data sets according to Design 2. For each point on a 15×15 grid, 50000 simulated

data sets were generated for equally-spaced trace and FA values. The trace values ranged from

1.0945×10−3 mm2/s to 3.2835×10−3 mm2/s and the FA values ranged from 0.30 to 0.95. All

other simulation parameters are as previously specified. For each trace/FA combination, the

sample variances of trace and FA were computed. These variances were then plotted as a

function of trace and FA.
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7.2 Application to Human DTI Data

The methods for estimating the variance of FA were applied to a healthy human male volunteer,

age 27, who provided informed consent in accordance with the guidelines of our Institutional

Review Board for human subject studies. The images were acquired on a 3 Tesla scanner with

a spin echo diffusion weighted imaging (DWI) pulse sequence. The following scan parameters

were used: 10 axial slices, 3 mm thick, 5 mm gap, FOV: 240×240 mm, matrix size: 120×120

zero-padded to 256×256 pixels, 16 diffusion directions, TE: 72.3 ms, diffusion weightings b =

0, 300, 650, 1000 s/mm2. The diffusion weightings and gradient direction set are identical to

Design 2 of the simulation studies. The scans were cardiac gated using a pulse oximeter attached

to the right index finger. The effective TR was 5 heart beats (approximately 4600 ms). No image

averaging was performed, i.e., one image per gradient direction per b-value was obtained. The

total scan time was 10 min 40 s. The images were first masked to eliminate pixels outside of the

brain. The NLSEs of the tensors were computed at each pixel using Newton’s method (Koay

et al., 2006b). Images of FA and the trace of the tensor estimates were generated. For FA, a

second mask based on the trace of the estimated tensors was applied to eliminate pixels that

contain isotropic cerebrospinal fluid (CSF). After masking, the variances of the trace and FA

estimates were estimated according to [9] and [12], respectively. Images of log10{V̂ar(t̂rD)} and

log10{V̂ar(FA(β̂))} were generated.

8 Results

The results from the simulation studies show that approximate normality is achieved for as

few as six directions with four b-values for each gradient direction. Normal probability plots

of trace and FA are given in Figures 1 and 2, respectively. These probability plots assess how

well the empirical distributions of the trace and FA estimates follow normal distributions. If

the empirical distribution perfectly followed a normal distribution, the estimates would fall on

the red diagonal line. The plots of trace (Figure 1) show that the empirical distribution of the
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trace estimates is very well-approximated by a normal distribution for Design 1 and each of

the FA values. Departures from normality are minor and occur only in the distant tails of the

distribution (probability < 0.001 and > 0.999). Trace estimates for the other designs, which use

more images, are at least as well-approximated by a normal distribution and are, consequently,

omitted. Figure 2 shows normal probability plots for each of the three FA values for Designs 1, 2,

and 3. The plots show that the empirical distribution of the FA estimates is well-approximated

by a normal distribution. Convergence to normality is slower for very high FA (0.9623). The

largest departures from normality are seen in Design 1 with FA=0.9623. These departures occur

in the tails of the distribution (probability < 0.05 and > 0.95). In this case, we see slightly

slower convergence to normality than in other designs and lower values of FA. Moving to Design

2, the discrepancies for FA=0.9623 are in the distant tails. For FA at 0.3578 and 0.7840, the

departures from normality are in the distant tails for all designs. The reduced range of the FA

estimates when moving from Design 1 to other designs indicates the reduced variability that

comes from acquiring more directions.

The asymptotic variances of trace and FA are very accurate. Table 1 summarizes the sim-

ulation results when the trace mimics that of healthy white matter. The sample means of the

trace FA estimates are very close to the true value in all of the 18 simulations. The sample

means of the trace estimates are all very close to the true value (2.189×10−3 mm2/s) with dis-

crepancies only in the third significant digit. The largest difference between the true FA and

the sample means is found in Design 1 with low FA (6.7% over-estimation). Other differences

are significantly lower. The closeness of the sample means to the true values of trace and FA are

expected from the consistency of the NLSE. The sample variance of the trace and FA estimates,

which are good estimates of the true variances, shows that the asymptotic variances are excel-

lent approximations. In all 18 designs, the sample variance of trace differs from the asymptotic

variance by 1.61% or less. For low FA (0.3578) the asymptotic variance tends to over-estimate

the true FA variance. This bias is highest for Design 1 with FA = 0.3578 where the asymptotic

variance is 23.8% higher. Moving to Design 2, the over-estimation is reduced to 5.66%. The
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over-estimation is not considerable and will not lead to increased type I error rates. For very

high FA (0.9623) there is a slight tendency for the asymptotic variance to under-estimate the

true variance. This effect is minor with the largest under-estimation at less than 2.36%.

Also seen in Table 1 is that the variances of trace and FA depend of the value of FA. Variance

in estimates of trace from tensors with low FA have lower variance than estimates from tensors

with higher FA. We found that trace estimates from higher FA tensors are 30% or less variable

than trace estimates from lower FA tensors. In the variance of estimates of FA, the opposite

effect is seen and is much more dramatic. Estimates of FA from tensors with relatively high FA

have lower variance than estimates from tensors with lower FA. In our simulation studies, the

variances of FA estimates from tensors with a true FA of 0.3578 are approximately one order of

magnitude higher than tensors with a true FA of 0.9623.

The simulation studies for the case of acute ischemia reveal similar behavior as in the case

for healthy white matter (Table 2). For the variance of trace, the asymptotic variance is, on

average, slightly more accurate than where trace is higher. All of the asymptotic variances have

an error of less than 1.36%. For FA, the asymptotic variances are less accurate. Within the

same design, tensors with the lowest FA (0.3578) have the highest errors, with the largest error

at 39.7% for Design 1. This overestimation is reduced to 13.2% and 4.32% for Designs 2 and 3,

respectively.

Plots of the variance of trace and FA as a function of trace and FA (Figure 3) show graphically

how the variance of these tensor-derived quantities depends on their values. These plots reiterate

the findings from the simulation studies with three values of FA and two values of trace.

The results from the human data illustrate the anatomical dependence of the variances of

trace and FA estimates. The SNR in the diffusion weighted images is approximately 22. The

trace and FA maps for four slices are in Figures 4 and 5, respectively. The corresponding variance

maps are displayed using a log10 scale since they vary over more than one order of magnitude.

The variance of trace estimates depends on the tissue type. Comparing the FA map in Figure

5 to the trace variance image in Figure 4, we see that a region of high FA is where the variance
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Figure 1: Each plot shows the trace estimates for 50,000 simulated data sets with Design 1 (six
directions at each of four b-values). The trace estimates are very well-approximated by a normal
distribution. Departures from normality are in the distant tails of the distribution (P < 0.001,
0.999 < P ).

of trace is also relatively high. The variability of FA estimates is not uniform over the whole

brain and, like trace, depends on the tissue type. Lowest variances are seen in regions of high

anisotropy (e.g., corpus callosum, internal capsule). The opposite effect is seen with trace and

is consistent with the simulation studies.

9 Discussion

One important result of this study is that the NLSE of the diffusion tensor and tensor-derived

quantities are consistent and asymptotically normal. The asymptotic distributions are reached

as the SNR and number of DWIs increases. We described consistent estimators for the variances

of trace and FA. The simulation results show that the asymptotic approximations for trace and

FA are accurate. This suggests the utility of the asymptotic variance as the measure of variability

in tensor estimates. The asymptotic approximations for trace, which is a linear function of the

tensor, perform slightly better than the approximations for FA. This is expected since the use

of the delta method for FA adds one additional layer of approximation. The reduction in the

variance of trace and FA as the number of unique gradient encoding directions increases has

been studied by Jones (2004) with Monte Carlo simulations. Our results on consistency of the
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Figure 2: Each plot shows the FA estimates for 50,000 simulated data sets. Departures from
normality are minor, with the largest occurring in for Design 1 (six directions at each of four
b-values) with high FA (0.9623). The discrepancies here occur in the tails of the distribution
(P < 0.05, 0.95 < P ). Discrepancies for other designs and FA values occur in the far tails of
the distribution. Also evident from the decreased range of the FA estimates when moving from
Design 1 to Designs 3 and 5 is that the variance of the estimates decreases.
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Figure 3: The variances of trace and FA depend on the values of trace and FA. These plots
show sample variances of trace and FA for tensors various trace/FA combinations. Each point
on the plots is the sample variance of the respective quantity, computed from 50000 data sets
simulated with Design 2.

estimators provide a theoretical explanation for his findings.

Unlike bootstrap approaches (Pajevic and Basser, 2003) that are used to obtain estimates of

the variance of FA estimates, our method does not require additional diffusion weighted images

or intense computation. Since the asymptotic approximations to the variances of NLSEs of trace

and FA are accurate, use of the bootstrap may be unnecessary for data collected under routine

scan parameters, provided that the systematic artifacts in the DWIs can be shown to be small.

However, it is best to first simulate data under a particular design to evaluate the usefulness of

the asymptotic approximations.

It is important to note that while the noise in DWIs may be relatively constant throughout

the brain, the noise in estimates of the tensor and tensor-derived quantities is not. Our simula-

tion studies show that regions with high FA have less variable FA estimates than regions with

low FA. The opposite effect is seen with the trace. When FA is high, the estimates of trace have

relatively higher variance. These results are consistent with the findings of Pierpaoli and Basser

(1996). The dependence of the tensor-derived quantities on their respective quantities is best
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Figure 4: The variances of the trace estimates vary throughout the brain. In some of the highly
anisotropic regions (e.g., corpus callosum), trace estimates have higher variance than in more
isotropic regions. This is consistent with the simulation results.
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the FA variances vary by approximately one order of magnitude.
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illustrated in Figure 3.

The dependence of the variances of trace and FA on the values of trace and FA has important

implications for testing for differences in the means of these tensor-derived quantities. The

assumption of equal variance that is common to many standard statistical tests used in group

analyses could be potentially violated. Suppose that one uses a t-test to test the null hypothesis

that the mean of FA in one group is the same as the mean FA in another group. This test

is commonly used for both voxel-based morphometry (VBM) and ROI-based group analyses.

Jones et al. (2005) cites several VBM studies of tensor-derived quantities in the context of

examining the effect of the filter size. When the null hypothesis is true, the variances in each

group are equal. When the alternative hypothesis, that the means are unequal, is true, then

the variances of the FA measurements will differ in the two groups. This aspect of trace and

FA makes estimating the null distribution, which is necessary for comparing the test statistic,

impossible. The effect of the variance heterogeneity under the alternative hypothesis may be

substantial. Variances of trace and FA differ considerably over white matter. For example, the

variance of FA varies by roughly one order of magnitude (Figure 5). More work is needed to

evaluate the impact of unequal variances on the inferences that are made with simple testing

procedures.

Combining estimates of the variances of trace or FA measurements with a weighted lin-

ear model may provide one solution to the problem of unequal variances. Take, for example,

testing the mean of FA between two groups. We have a set of n1 estimates from group 1,

FA11, . . . , FA1n1 , and a set of n2 estimates from group 2, FA21, . . . , FA2n2 . Corresponding to these

FA measurements are estimates of their variances, denoted ξ11, . . . , ξ1n1 , ξ21, . . . , ξ2n2 . These vari-

ance estimates can be computed with our estimator in equation [12] or other methods such as

the bootstrap. Then choose the weights w1, . . . , wn1+n2 as 1/ξ11, . . . , 1/ξ1n1 , 1/ξ21, . . . , 1/ξ2n2 ,

respectively. Define α = (α0, α1)
′ as the model parameter, where α0 is the mean FA in group 1
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and α1 is the difference in the means between groups 1 and 2. The parameter α is estimated as

α̂ := arg min
α

n1+n2∑
i=1

wi(FAi − α0 − yiα1)
2,

where yi has a value of 1 when the ith observation is from group 2 and otherwise has a value of

0. Then, testing the null hypothesis that the mean FA of group 1 is equal to the mean FA of

group 2 is equivalent to testing that α1 = 0. Provided that the variance estimates are good, the

residuals from the linear model fit should have zero mean and approximately constant variance.

This allows valid testing of the null hypothesis, that α1 = 0, with a t-test. This type of weighted

least squares estimation and testing can be performed in many standard statistical packages.

More general linear models of FA or other tensor-derived quantities that are fit with weighted

least squares are possible. These models may include other factors or covariates.

One limitation of our method is that it assumes the errors in the diffusion weighted images

are independent, normal, and have constant variance. The independence assumption is satisfied

by the independent acquisition of the DWIs themselves. Ideally, for high SNR, the normality

and constant variance assumptions are satisfied. At high values of b (� 1000 s/mm2), which

cause lower SNR, these assumptions can break down. For most routine DTI scans, the SNR

is at least 20 and, consequently, normality is a good assumption. Head motion, eddy current

distortion, susceptibility effects, and other systematic artifacts, as well as subtle physiologic

noise may also cause violations in these assumptions.

Rician noise has the unique property that the variance of noise in magnitude MR images

depends on the mean of the signal even when the noise in the quadrature channels is constant.

This is a source of non-constant variance in diffusion-weighted images since directions along

the major axis of axons will have lower mean signal than from directions perpendicular to the

major axis. The effect of non-constant variance is only substantial for very low SNR (Koay and

Basser, 2006) and is not a significant issue for the imaging parameters considered in our study.

Nevertheless, our methods can be easily extended to situations where non-constant variance is
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an issue. The noise covariance matrix, σ2In, needs to be replaced with a matrix of the form

σ2wIn, where w is a vector of weights, which depend on the SNR of each measurement. Koay

and Basser (2006) derived an analytical expression for the weights. The tensor is then estimated

iteratively by weighted nonlinear least squares.

Our method can be extended to other functions of the diffusion tensor and to study design

of DTI experiments. Other functions of the tensor that are commonly used include the direction

of the primary eigenvector of the tensor and relative anisotropy. Methods for testing for group

differences in the direction of the primary eigenvector have been described (Schwartzman et al.,

2005). The issue of the affect of experimental design on the variance of tensor-derived quantities

has been studied with Monte Carlo methods (Papadakis et al., 1999; Skare et al., 2000; Jones,

2004). The asymptotic variances can also be used as a benchmark for comparing designs of DTI

experiments.

Finally, Salvador et al. (2005) proposed an estimator for the variance of mean ADC based on

the linearized tensor model. They did not consider an estimator for the variance of FA. However,

by applying the delta method, an estimator for the variance of FA can also be obtained from

the linearized tensor model. By substituting the inverse of the Fisher information matrix in

equation [12] with the estimator for the variance of the tensor from Salvador et al. (2005), one

obtains an estimator for the variance of FA from the linearized tensor model. It is unknown

how the performance of such an estimator compares to our estimator in equation [12]. Since the

NLSE outperforms the linearized tensor estimator (Koay et al., 2006), we suspect that the FA

variance estimator from the NLSE will outperform the FA variance estimator for the linearized

model. This requires closer examination.
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