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Abstract

Magnetic resonance imaging (MRI) has revolutionized modern medical practice. MRI

is an essentially noninvasive tool for eliciting information about both the function and

structure of the human body. Investigators who use MRI are faced with many unique

challenges in the design, analysis, and interpretation of their studies. I present novel

statistical methodology for three types of MRI data: functional, phase contrast, and

diffusion tensor.

Functional MRI (fMRI) measures the blood oxygen level dependent signal in tis-

sue. When applied to the brain, the goal is to measure brain function where changes

in blood oxygenation are surrogates for changes in neuronal function. One method

for analyzing fMRI time series involves smoothing the data to induce a known au-

tocorrelation structure. The goal of smoothing is to reduce the bias in estimates of

linear model parameters. I present a method for spline smoothing of fMRI time series

where the amount of smoothing is selected by generalized cross-validation. I show

that this procedure substantially reduces bias.

Phase contrast MRI (PC-MRI) is sensitive to flow of fluids. PC-MRI is often

applied to measure flow of blood. Information about blood flow and shear is par-

ticularly important since these properties are related to formation and progression

of atherosclerotic plaque. I developed a nonparametric method for estimating blood

flow and shear (proportional to the gradient of the velocity function) in a Matern

reproducing kernel Hilbert space.

Diffusion tensor imaging (DTI) is a quantitative magnetic resonance imaging
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method that is widely used to study the microstructural properties of white mat-

ter in the brain. Tensor-derived quantities such as trace and fractional anisotropy

(FA) are important for characterizing the normal, diseased, and developing brain.

I derive asymptotic properties of the nonlinear least squares estimator of the diffu-

sion tensor, trace, and FA. I show, with simulations, experimental designs where the

asymptotic distributions are very close to the empirical distributions. The asymp-

totic methods are applied to estimate variances in a healthy volunteer. Variances

of trace and FA are found to vary significantly throughout the brain. This renders

many popular tests used in group analysis invalid. Unequal variances for tests with

tensor-derived quantities is discussed.



iii

Acknowledgements

I am profoundly thankful for the support and guidance of my advisors, Grace Wahba

and Beth Meyerand. I thank Grace, Beth, and Rick Nordheim for encouraging me to

stay at UW for graduate school. Looking back on the last five years, I can now say

that it was a very wise decision. Grace is a brilliant statistician and an outstanding,

caring mentor. It has been an honor to have her as my preceptor. I am particularly

grateful for her encouragement and always having her door open to listen to my latest

ideas and results. Beth provided me with unprecedented and outstanding support

both as an undergraduate and as a graduate student. Through Beth’s support, I

was able to attend multiple meetings each year and always have whatever resources

I needed to conduct my research. Attending these meetings was critical to identify

and understand important issues in MRI. Beth made sure that I always had the best

possible computer hardware to carryout my research. Currently, I am on my sixth

computer. Both of my advisors gave me tremendous freedom. I could not ask for

better mentors. I am indebted to them.

Several other people contributed to my education and research. I especially thank

Andy Alexander, Konstantinos Arfanakis, Peter Basser, Doug Bates, Sean Fain, Vic

Haughton, Guan Koay, Yi Lin, Michael Newton, Rick Nordheim, and Orhan Unal. I

am particularly grateful to Dave DeMets, Dori Kalish, and Michael Newton for their

support of me with an NIH traineeship through the Department of Biostatistics and

Medical Informatics. Grace’s current and former students have been very helpful

throughout my time at UW. I thank Sang-Hoon Cho, Hector Corrada Bravo, Hyonho



iv

Chun, Fan Lu, Chenlei Leng, Weiliang Shi, Ming Yuan, and Xianhong Xie. I also

thank Beth’s current and former students. Many thanks go to the members of my

defense committee: Andy Alexander, Doug Bates, Sunduz Keles, Beth Meyerand,

Rick Nordheim, and Grace Wahba.

I thank my family, particularly Raymond C. Carew, and friends for their support.

Finally, I express my deepest gratitude to Jack Heil for teaching me how to be a

scientist.



v

List of Figures

1 The hypothesized BOLD response to the photic stimulation in the

fMRI experiment (a). A simulated time series used in the bias compu-

tations (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Histogram of log10(λopt) from the visual stimulus experiment. . . . . . 15

3 Spline smoothing of fMRI time series with the degree of smoothing

selected by generalized cross-validation. The time series in (a) required

approximately the same amount of smoothing as is provided by the

SPM-HRF smoothing kernel. The plot of corresponding GCV score

(c) is well-behaved with a minimum at λ = 6.31. The SPM-HRF

kernel is very similar to the equivalent smoothing spline kernel (e).

The other time series (b) was smoothed more with the spline method

than by the SPM-HRF kernel. The underlying signal is estimated well

at the minimum of the GCV score (d) where λ = 501. The equivalent

smoothing spline kernel (f) has a noticeably greater bandwidth than

the SPM-HRF smoothing kernel. . . . . . . . . . . . . . . . . . . . . 22

4 Images of the t-statistic under the null hypothesis for GCV-Spline

smoothing, SPM-HRF smoothing, and no smoothing. . . . . . . . . . 23

5 Histogram of log10(λopt) from the simulated data set. . . . . . . . . . 24



vi

6 Histograms of bias(v̂ar(cT β̂)) from the simulated data with no smooth-

ing (top), SPM-HRF smoothing (middle), and GCV-Spline smoothing

(bottom). Smoothing with the GCV-Spline method produces v̂ar(cT β̂)

estimates that are, on average, unbiased. . . . . . . . . . . . . . . . . 25

7 Images of bias of the bias of v̂ar(cT β̂) for GCV-Spline (A), SPM-HRF

(B), and no smoothing (C). The bias in each voxel was computed for

simulated time series with autocorrelation structures estimated from

the corresponding voxel. Voxels with positive bias underestimate the

true variance of its regression parameter estimate. The inference in

these regions is anticonservative. The converse is true for voxels with

negative bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Bias of the variance estimator and estimated variance of cT β̂ with

GCV-Spline, SPM-HRF, and no smoothing from the simulated data

set with autocorrelation structures estimated from the 100 most sig-

nificantly task-related time series. . . . . . . . . . . . . . . . . . . . 27



vii

9 Fluid velocity and wall shear stress estimates in a straight glass tube

phantom with a circular cross-section. The raw velocity measurements

are in A. The nonparametric fit with ν = 4 and λ = 300 is in B.

The fitted velocity function appears parabolic, which is predicted by

physical principles. In D are the WSS estimates and 95% Bayesian

confidence intervals. The diagram in C shows how the measurements

are ordered in D. Starting at the point with the largest value along

the x-axis the order of the WSS estimates increase counter clockwise,

indexed by the angle. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Magnitude and detected boundary for the straight glass tube phantom

with non-convex cross-section. . . . . . . . . . . . . . . . . . . . . . 43

11 Fluid velocity and wall shear stress estimates in a straight glass tube

phantom with non-convex cross section. The nonparametric fit uses

ν = 4 and λ = 150. The shear stress estimates are ordered as described

in Figure 9C. The WSS is nearly constant except for the region near the

indentation where the shear stress increases. The increased shear can

be seen through the more closely-spaced contour lines on the velocity

image near the center of the indentation. The horizontal line shows

the expected value of WSS calculated for a vessel with a circular cross-

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

12 Residuals from the fit to the non-convex phantom. The quantile-

quantile plot indicates that the residuals closely follow a normal dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



viii

13 Velocity and WSS in a human carotid bifurcation phantom. The green

line segment that bisects the internal carotid artery in A indicates the

orientation of the imaging plane. The fitted velocity function with

ν = 4 and λ = 100 is in B. The velocity and rate of change of velocity

is much higher along the anterior wall of the vessel than along the pos-

terior wall. The effect of this flow regime is seen in the WSS estimates

in C. The point estimates are ordered as in Figure 9 and the intervals

are 95% Bayesian confidence intervals. . . . . . . . . . . . . . . . . . 47

14 Each plot shows the trace estimates for 50,000 simulated data sets

with Design 1 (six directions at each of four b-values). The trace

estimates are very well-approximated by a normal distribution. De-

partures from normality are in the distant tails of the distribution

(P < 0.001, 0.999 < P ). . . . . . . . . . . . . . . . . . . . . . . . . . 70

15 Each plot shows the FA estimates for 50,000 simulated data sets. De-

partures from normality are minor, with the largest occurring in for

Design 1 (six directions at each of four b-values) with high FA (0.9623).

The discrepancies here occur in the tails of the distribution (P < 0.05,

0.95 < P ). Discrepancies for other designs and FA values occur in the

far tails of the distribution. Also evident from the decreased range of

the FA estimates when moving from Design 1 to Designs 3 and 5 is

that the variance of the estimates decreases. . . . . . . . . . . . . . . 71



ix

16 The variances of trace and FA depend on the values of trace and FA.

These plots show sample variances of trace and FA for tensors various

trace/FA combinations. Each point on the plots is the sample variance

of the respective quantity, computed from 50000 data sets simulated

with Design 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

17 The variances of the trace estimates vary throughout the brain. In

some of the highly anisotropic regions (e.g., corpus callosum), trace

estimates have higher variance than in more isotropic regions. This is

consistent with the simulation results. . . . . . . . . . . . . . . . . . . 73

18 The variance of the FA estimates also vary throughout the brain. Re-

gions where FA is relatively high (e.g., the corpus callosum) have rel-

atively low variance. Within white matter, the FA variances vary by

approximately one order of magnitude. . . . . . . . . . . . . . . . . 74



x

List of Tables

1 Bias for Three Smoothing Strategies (Whole Brain) . . . . . . . . . . 17

2 Bias for Three Smoothing Strategies (100 Significant Voxels) . . . . . 17

3 Matérn Radial Basis Functions Rν of Order ν. . . . . . . . . . . . . . 33

4 Simulation Results When Trace = 2.189 ×10−3 mm2/s (Parenthetical

Quantities are Percent Error) . . . . . . . . . . . . . . . . . . . . . . 68

5 Simulation Results When Trace = 1.0945 ×10−3 mm2/s (Parenthetical

Quantities are Percent Error) . . . . . . . . . . . . . . . . . . . . . . 69



xi

Contents

Abstract i

Acknowledgements iii

1 Spline smoothing of fMRI time series by generalized cross-validation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The General Linear Model . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Smoothing Splines . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Bias of the Variance Estimator for Spline Smoothing . . . . . 7

1.2.4 Relationship to Partial Spline Model . . . . . . . . . . . . . . 8

1.2.5 fMRI Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.6 Bias Computations with Simulated Data . . . . . . . . . . . . 10

1.2.7 Computer Software and Hardware . . . . . . . . . . . . . . . . 14

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 FMRI Experiment . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Nonparametric estimation of fluid velocity and shear in the Matern

reproducing kernel Hilbert space 28



xii

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Theory and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Wall Shear Stress . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Estimating Fluid Velocity in a RKHS . . . . . . . . . . . . . 30

2.2.3 Estimating Shear Stress . . . . . . . . . . . . . . . . . . . . . 32

2.2.4 Model Selection: Choosing ν and λ . . . . . . . . . . . . . . . 34

2.2.5 Bayesian Confidence Intervals for Shear . . . . . . . . . . . . 36

2.2.6 Experimental Evaluation and Data . . . . . . . . . . . . . . . 39

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 The asymptotic behavior of the nonlinear estimators of the diffusion

tensor and tensor-derived quantities 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Diffusion Tensor Model . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Nonlinear Least Squares Tensor Estimator . . . . . . . . . . . . . . . 53

3.4 Asymptotic Properties of the Tensor Estimator . . . . . . . . . . . . 55

3.5 Distribution of a Linear Function of the Tensor . . . . . . . . . . . . 59

3.6 Distribution of a Nonlinear Function of the Tensor . . . . . . . . . . 60

3.7 Validation and Application . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.2 Application to Human DTI Data . . . . . . . . . . . . . . . . 63

3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



xiii

A Construct a tensor with a known FA and trace 79

Bibliography 81



1

Chapter 1

Spline smoothing of fMRI time

series by generalized

cross-validation

1.1 Introduction

Linear parametric regression models of fMRI time series have autocorrelated resid-

ual errors (Friston et al. 1994). Two general approaches to deal with these autocor-

related residuals are temporal smoothing (Friston et al. 1995; Worsley and Friston

1995) and whitening (Bullmore et al. 1996). Data are whitened by first modeling

the intrinsic autocorrelations and then removing them from the data. Provided that

the model of the autocorrelations is correct, whitening yields the minimum variance

estimate among all unbiased estimates of the linear regression model parameters (Bull-

more et al. 1996). Smoothing conditions the autocorrelation structure of an fMRI

time series. Appropriate smoothing can minimize the bias in variance estimators for

a contrast of a linear model parameter and, thus, the difference between the applied

autocorrelation structure and the intrinsic autocorrelations (Friston et al. 2000).

Friston et al. (2000) argue that it is preferable to smooth with the goal of minimizing
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bias rather than whiten data since it is difficult to obtain an accurate estimate of the

intrinsic autocorrelations. Thus, it is prudent to investigate the appropriateness of

various smoothing methods for fMRI time series.

This chapter focuses on the use of spline smoothing in the context of fMRI anal-

ysis as described by Worsley and Friston (1995). Smoothing splines with automatic

optimal smoothing parameter selection via generalized cross-validation (GCV) have a

number of desirable properties (Wahba 1990). GCV provides an objective method to

determine the correct degree of smoothing for optimally separating a smooth function

from white noise. The purpose of this work is to describe and validate spline smooth-

ing of fMRI time series with GCV smoothing parameter selection (GCV-spline).

GCV-spline is validated with respect to the minimum bias criteria proposed by Fris-

ton et al. (2000). They study the properties of a relevant contrast for a regression

model parameter by examining the bias of the variance estimator of this contrast. We

compare the variance and the bias of the variance estimator for a contrast of a regres-

sion model parameter under GCV-spline smoothing to those under the low pass filter

(SPM-HRF) implemented in SPM99 (Wellcome Department of Cognitive Neurology,

London) and no smoothing. This chapter describes smoothing splines combined with

a parametric regression model. This is related to, but different than, the well known

partial spline paradigm for signal detection. The difference will be briefly described.
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1.2 Materials and Methods

1.2.1 The General Linear Model

One popular model of fMRI time series is a general linear model (GLM) (Friston

et al. 1995; Worsley and Friston 1995),

y = Xβ + Kε, (1.1)

where y = (y1, . . . , yn)T is an n×1 matrix of equally-spaced samples of the time series,

X is the model (design) matrix with columns that contain signals of interest and

nuisance signals, β is an unknown parameter, K is an unknown convolution matrix

which characterizes the autocorrelations, and ε ∼ N (0, σ2I). The autocorrelation

matrix is given by V ∝ KKT . Let S be a linear transformation. The matrix S is

applied to the model (1.1) to give

Sy = SXβ + SKε. (1.2)

If K is known, the approach of whitening is to choose S = K−1. This transformation

will allow a minimum variance, unbiased ordinary least squares (OLS) estimate of

β in equation (1.2) given by β̂ = (SX)+Sy where + denotes the pseudoinverse, i.e.,

X+ = (XTX)−1XT . Suppose that S %= K−1. Then the assumed autocorrelation

Va ∝ S−1(S−1)T will differ from the actual autocorrelation V and result in biased

OLS estimates of the variance of a contrast of β. The amount of bias depends on the

accuracy of the approximation of K−1. Friston et al. (2000) found that computing

Va with a low order autoregressive (AR) model or a 1/f model (Zarahn et al. 1997)

results in unacceptable bias for fMRI inference. An alternative approach to whitening
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is to smooth model (1.1) with S such that the assumed autocorrelation Va ∝ SST ≈

SVST , the true autocorrelation under smoothing. Even when V is unknown, bias

can be minimized (Friston et al. 2000). Since the bias as a function of S is difficult

to directly minimize it is more practical to determine if a method for computing S

gives acceptable levels of bias. One method for computing S is spline smoothing.

1.2.2 Smoothing Splines

Smoothing splines model the observed time series yi as

yi = f(ti) + εi, (1.3)

where f is a smooth function, εi ∼ N (0, σ2), and ti for i = 1, . . . , n are equally-

spaced times when fMR images are acquired. Green and Silverman (1994) give an

elementary introduction to smoothing splines. A general reproducing kernel Hilbert

space approach to smoothing splines is found in Wahba (1990).

An estimator of f(ti) is obtained from

ˆf(ti) = arg min
f∈C2[t1,tn]

(
n∑

i=1

(yi − f(ti))
2 + λ

∫ tn

t1

(f ′′(x))2 dx

)
. (1.4)

The unique solution of (1.4) is a natural cubic spline (NCS). A comprehensive intro-

duction to cubic splines can be found in de Boor (1978). The amount of smoothing is

controlled by the parameter λ ≥ 0 through weighting the contribution of the second

derivative to the penalty function in (1.4). When λ = ∞, (1.4) is a linear approxi-

mation. When λ = 0, i.e., no smoothing, (1.4) interpolates the yi with a piecewise

cubic polynomial.

The solution of (1.4) is computed with linear algebra. The objective function in
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equation (1.4), namely

S(f) =
n∑

i=1

(yi − f(ti))
2 + λ

∫ tn

t1

(f ′′(x))2 dx, (1.5)

can be simplified if the NCS f is represented with its value-second derivative form.

The NCS representation from Green and Silverman (1994) is simplified for the case

of equally-spaced time points. Following Green and Silverman (1994) with simplifica-

tions, let Q and R be matrices. Q has size n×(n−2) with entries Qij for i = 1, . . . , n

and j = 2, . . . , n− 1, where

Qj−1,j = Qj+1,j = (∆t)−1 and Qjj = −2(∆t)−1,

with Qij = 0 for |i − j| ≥ 2. Note that the columns are indexed with an unusual

convention starting with j = 2. The (n− 2)× (n− 2) matrix R is given by

Rii =
2∆t

3
, for i = 2, . . . , n− 1,

Ri,i+1 = Ri+1,i =
∆t

6
, for i = 2, . . . , n− 2, and

Ri,j = 0, for |i− j| ≥ 2.

Let f be a 1× n matrix containing the values of f at the ti. The NCS conditions set

the second and third derivatives of f equal to zero at the boundary points t1 and tn.

The following relationship exists on the smoothness penalty term of equation (1.5):

∫ tn

t1

f
′′
(x)2 dx = fTQR−1QT f . (1.6)

Substitution simplifies equation (1.5) to

S(f) = (y − f)T (y − f) + λfTQR−1QT f . (1.7)
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It is now easy to show that the minimum of (1.7) is

f̂ = (I + λQR−1QT )−1y. (1.8)

The estimator in equation (1.8) is valid, but its form is not computationally ef-

ficient. Consider an eigenvector-eigenvalue decomposition of the symmetric, positive

semi-definite n× n matrix QR−1QT , namely

QR−1QT = ΓDΓT , (1.9)

where the orthogonal matrix Γ contains the eigenvectors and

D =





0 · · · 0

0
...

l1
...

. . .

0 · · · ln−2





(1.10)

contains the n− 2 positive eigenvalues. Substituting this factorization for QR−1QT

in equation (1.8) gives

f̂ = (I + λΓDΓT )−1y. (1.11)

Since Γ is orthogonal (i.e., ΓT = Γ−1), equation (1.11) can be simplified to

f̂ = Γ(I + λD)−1ΓTy. (1.12)
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Observing that I + λD is diagonal,

(I + λD)−1 =





1 · · · 0

1
...

1
1+λl1

...
. . .

0 · · · 1
1+λln−2





. (1.13)

Thus, one need only perform the eigenvector-eigenvalue decomposition in equation

(1.9) once for an entire fMRI data set since QR−1QT depends only on the time

between scans (i.e., the sample rate). Then, for each spline fit, only λ need be

changed in equation (1.13). This allows for very fast spline fits for different λ. This

feature is important for GCV since a spline must be fit for many different degrees of

smoothing.

The optimal smoothing parameter λ is determined with GCV (Craven and Wahba

1979). For a given λ, the GCV score is

GCV (λ) =
1

n
·
∑n

i=1(yi − ˆf(ti))2

(1− n−1trA(λ))2
. (1.14)

The matrix A(λ) is the hat matrix for a given λ. By definition, A(λ) = Γ(I+λD)−1ΓT

since it is the linear transformation that maps the data to their fitted values.

1.2.3 Bias of the Variance Estimator for Spline Smoothing

The smoothing spline from (1.4) can be represented in the form of a smoothing

matrix. This allows the spline smoother to be incorporated into the smoothed GLM

in equation (1.2). The representation of the smoothing matrix is given directly from



8

the solution to the penalty function. Moreover, the smoothing matrix is

S = Γ(I + λD)−1ΓT . (1.15)

Given S computed with GCV-spline, the variance of a contrast of β̂ and the bias of

the variance estimator can be computed with equations given in Friston et al. (2000):

var(cT β̂) = σ2cT (SX)+SVST (SX)+Tc (1.16)

and

bias(S,V) =
var(cT β̂)− E[ ̂var(cT β̂)]

var(cT β̂)

= 1− tr[LSVST ]cT (SX)+SVaST (SX)+Tc

tr[LSVaST ]cT (SX)+SVST (SX)+Tc
, (1.17)

where L = I−SX(SX)+ is the residual forming matrix and c is a contrast vector for

hypothesis testing of the components of β̂. An estimate of var(cT β̂) is obtained by

replacing V with its assumed value, Va, and σ2 with its estimate

σ̂2 =
(LSy)TLSy

tr(LVa)
, (1.18)

given in Worsley and Friston (1995).

1.2.4 Relationship to Partial Spline Model

In this paper A(λ), the smoother matrix associated with the minimization problem

of (1.4) is taken as the matrix S in the Worsley and Friston (1995) paradigm. A

different smoothing spline paradigm, which is also designed for signal detection, is

based on the the partial spline model. The partial spline model is:

yi =
p∑

ν=1

φν(ti)βν + f(ti) + εi (1.19)
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where the φν are specified signal functions whose values φν(ti) provide the entries

of X, ε ∼ N (0, σ2I) and f may be considered as a smooth function, as in (1.5),

or, alternatively as a zero mean Gaussian stochastic process with some multiple of

a particular covariance that is related to (QR−1QT )+, (Chiang et al. 1999; Wahba

1983; Wahba 1990, and elsewhere). In the partial spline paradigm, one finds β and f

to minimize

S̃(f, β) =
n∑

i=1

(
yi −

[
p∑

ν=1

φν(ti)βν + f(ti)

])2

+ λ

∫ tn

t1

(f ′′(x))2dx (1.20)

and λ is chosen to minimize the corresponding GCV score which now has
∑n

i=1(yi −

[
∑p

ν=1 φν(ti)βν + f(ti)])2 in the numerator of (14), and ˜A(λ) replacing A(λ) where

Ã(λ) is the matrix satisfying Xβ̂+f̂ = Ã(λ)y. In this paradigm the β̂ which minimizes

(1.20) is β̂ = (XT (I− S)X)−1XT (I− S)y. Estimates for σ2 and hypothesis tests for

β when f is treated as a stochastic process are given in the references. At this time

it is not known how the partial spline paradigm might compare, in practice, with the

Worsley and Friston (1995) paradigm studied here.

1.2.5 fMRI Experiment

One hundred thirty-two brain volumes were acquired from a healthy volunteer

with a 1.5T scanner running a gradient echo EPI pulse sequence for BOLD contrast.

The specific parameters were: 22 coronal slices, 7mm thick, 1mm gap, 642 pixel

matrix with in-plane resolution of 3.75mm2, TR 2000ms, TE 40ms, and flip angle

85◦. During the fMRI experiment, four symmetric blocks of photic stimulation and

darkness were presented to the volunteer. This stimulus was designed to activate the

visual cortex. The raw data were spatially smoothed in the frequency domain with a
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Hamming filter to increase SNR (Lowe and Sorenson 1997). The first four time points

were discarded to prevent known signal instabilities from confounding the analysis.

An intensity mask was applied to the images to exclude voxels located outside of the

brain. Head motion was corrected with the algorithm in SPM99.

The data were analyzed with the GLM in equation (1.2) with S determined by

GCV-spline. The design matrix contained one column with a boxcar function that was

convolved with the SPM99 HRF to model the expected BOLD response to the fMRI

experiment (Figure 1a). Polynomial terms up to order three were also included to

achieve high pass filtering following the motivation of Worsley et al. (2002). Moreover,

the design matrix X = [s 1 t t2 t3], where s is the convolved boxcar, 1 is a n × 1

column of 1s, and t = (t1, t2, · · · , tn)T . An optimal spline smoothing matrix was

computed for each time series with equation (1.12). The optimal λ =: λopt was

determined by a grid search for the minimum of the GCV score over λ ∈ [10−3, 106]

on a log10 scale with steps of size 0.1. The data were also analyzed with S given by

the SPM-HRF and S = I (no smoothing). Images of voxel t-statistics from a test of

the null hypothesis cT β = 0 for the contrast cT = [1 0 0 0 0] were created for each of

the three smoothing strategies with the statistic given by

t =
cT β̂√
̂var(cT β̂)

. (1.21)

1.2.6 Bias Computations with Simulated Data

Bias of the variance estimator can be computed with equation (1.12). However,

this demands knowledge of the true variance. For an observed fMRI time series, the

true variance is unknown. It is possible to generate simulated a time series with a
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known autocorrelation structure to allow direct calculation of bias. To generate a set

of reasonable simulated fMRI time series, autocorrelation structures can be estimated

from real data. The autocorrelation estimates can be used to induce correlations

in pseudo-random numbers independently-sampled from a Gaussian density with a

known variance. Finally, a signal can be added to the correlated Gaussian samples.

Figure 1b shows a simulated time series.

Autocorrelation structures were estimated from the residuals of the fit of the time

series from the fMRI experiment with the smoothing matrix S = I (i.e., no smoothing)

with an AR(8) model. The residuals for a single time series y are

r = Ly. (1.22)

The AR(8) model of the i-th residual is

ri = b1ri−1 + · · ·+ b8ri−8 + ζi, (1.23)

where b1, · · · , b8 are the AR coefficients and ζi ∼ N (0, σ2
r). The more convenient

matrix representation of equation (1.23) is, following Friston et al. (2000),

r = (I−B)−1ζ, (1.24)

where B is a matrix of AR model coefficients and ζ ∼ N (0, σ2
rI). The AR coefficients
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were estimated with the least squares procedure (Chatfield 1996) and organized into

B̂ =





0 0 0 0 · · · 0

b̂1 0 0 0 · · · 0

b̂2 b̂1 0 0 · · · 0

b̂3 b̂2 b̂1 0 · · · 0

...
...

...
...

...

b̂8 b̂7 b̂6 b̂5 · · · 0

0 b̂8 b̂7 b̂6 · · · 0

...
...

...
...

...

0 0 0 0 · · · 0





, (1.25)

where b̂1, · · · , b̂8 are the estimated AR coefficients. Then, the estimated convolution

matrix is

K̃ = (I− B̂)−1. (1.26)

A simulated time series ỹ is constructed by

ỹ = 0.15 · s + K̃e, (1.27)

where s is the signal in Figure 1(a) and e is a sample from N (0, I). The coefficient

of the signal, namely 0.15, and the unit variance error term e were selected to match

the simulated data parameters used by Lang et al. (1999).

For each voxel in the masked data set, a separate K̃ was estimated and a separate

e was generated with the randn() function in MATLAB (Mathworks, Nattick, MA)

to produce a simulated time series with equation (1.27). The simulated time series

were assigned to the spatial location where the K̃ was estimated. This preserves the
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Figure 1: The hypothesized BOLD response to the photic stimulation in the fMRI
experiment (a). A simulated time series used in the bias computations (b).

spatial variability of autocorrelation structures in the simulated data. A subset of the

simulated data was selected based on 100 voxels with the largest t-statistics of a test

of the null hypothesis cT β = 0 for the contrast cT = [1 0 0 0 0] in the real data under

S = I. This subset contained simulated time series with autocorrelation structures

from regions that were presumably related to the stimulus in the fMRI experiment.

The variance and bias of the variance estimator were calculated for each time

series in the entire simulated data set with three different smoothing matrices: S = I,

S equal to the SPM-HRF filter matrix, and the spline smoothing matrix S = (I +

λQR−1QT )−1. The SPM-HRF smoothing matrix is generated with the spm make filter

function with the option for no high pass filtering and “hrf” for the low pass filter.

This function is part of the SPM99 package. For the spline smoothing, the optimal

λ was determined with the same parameters as used with the real data, i.e., for each
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time series a GCV search over λ ∈ [10−3, 106] on a log10 scale with steps of size 0.1.

The variance of cT β with cT = [1 0 0 0 0] and the bias of the variance estimator were

computed for each of the time series under each smoothing method with equations

(1.16) and (1.17), respectively. The known variance-covariance matrix V = K̃K̃
T

and

the assumed variance-covariance matrix Va = SST with S given by the particular

smoothing matrix under investigation.

1.2.7 Computer Software and Hardware

The algorithms were written and carried out in the MATLAB technical computing

package. Some of the plots were created with the R statistical environment (www.r-

project.org). The t-statistic images and bias images were co-registered with anatomic

images with AFNI (Cox 1996). A linux workstation with dual 1.2 GHz AMD Athlon

MP processors was used for the computations in this study. The algorithms were not

designed to utilize both processors simultaneously.

1.3 Results

1.3.1 FMRI Experiment

The results of the fMRI experiment and motion correction were technically ade-

quate for further analysis. After the intensity mask was applied, approximately 12,000

voxels were included in the analysis. The computational time for GCV-spline analysis

of the entire brain volume was four hours and fifteen minutes. Generalized cross-

validation performed well on the fMRI time series; sensible amounts of smoothing
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Figure 2: Histogram of log10(λopt) from the visual stimulus experiment.

were determined. High frequency fluctuations of the observed BOLD signal received

more smoothing than lower frequency fluctuations. The GCV score was numerically

well-behaved over the region of the parameter search. The amount of optimal smooth-

ing with the GCV-spline method is illustrated in Figure 2. The distribution of the

optimal λ is skewed toward the smaller values with only a few time series that re-

quired large amounts of smoothing (λ̄ = 4.790 × 104 and median(λ) = 50.01). An

example of a time series that required little smoothing and one that required more

smoothing are included in Figure 3 (a) and (b). The corresponding plots of the GCV

score demonstrate the numerical stability of GCV for these two time series (Figure 3

(c) and (d)). These plots are similar in the relative amount of curvature to the GCV

scores from the other time series. The GCV-spline method performs, on average,

more smoothing than the SPM-HRF smoothing kernel. Figure 3 (e) and (f) shows
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the equivalent smoothing spline kernels and the SPM-HRF kernel for the time series

in Figure 3 (a) and (b), respectively. For log10(λ) ≈ 0.78, both methods provide the

same amount of smoothing (Figure 3(e)).

Inference from the model fits with GCV-spline, SPM-HRF, and no smoothing give

qualitatively similar results. Images of t-statistics from a test of the null hypothesis

cT β = 0 for the contrast cT = [1 0 0 0 0] are given for a coronal slice through

the primary visual cortex (V1) in Figure 4. The clusters of activation are centered

at approximately the same location for each of the models. The spatial extent of

the clusters and the level of significance was different with each method. When

no smoothing is performed (i.e., no accounting for residual autocorrelations), the t-

statistics are highest and the spatial extent of the clusters is greatest. Conversely, with

GCV-spline smoothing, the level of significance was lowest and the activated clusters

are the smallest. Smoothing with the SPM-HRF gave t-maps that were somewhere

in between the other two methods.

1.3.2 Simulated Data

The amount of bias in the variance estimates for the simulated data differed

between the three smoothing strategies. The computational time for GCV-spline

fitting of the simulated time series was the same as with the real fMRI data set. The

distribution of the optimal λ was skewed towards the lower values (Figure 5). On

average, the simulated time series required more smoothing (λ̄ = 8.154 × 104 and

median(λ) = 398.1) than the real fMRI data. The mean and median bias with the

simulated data for the three methods are shown in Table 1. The mean and median
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Table 1: Bias for Three Smoothing Strategies (Whole Brain)
GCV-Spline SPM-HRF No Smoothing

Mean Bias 0.0200 0.0701 0.4019
Median Bias 0.0037 0.1608 0.5399

Table 2: Bias for Three Smoothing Strategies (100 Significant Voxels)
GCV-Spline SPM-HRF No Smoothing

Mean Bias -1.800×10−5 0.1801 0.5964
Median Bias -0.0332 0.2312 0.6627

bias were positive for all methods. GCV-spline smoothing had bias that was closest

to zero, whereas the bias was greatest for no smoothing. Histograms of the bias show

that, on average, GCV-spline is unbiased and that SPM-HRF and no smoothing are

biased (Figure 6). Images of bias are included in Figure 7. These images show how the

bias of each method varies over different regions of the brain. There are slightly more

voxels with positive bias in the grey matter regions and more voxels with negative

bias in the ventricles and white matter regions with GCV-spline smoothing (Figure

7A). With SPM-HRF smoothing (Figure 7B) and no smoothing (Figure 7C), bias is

nearly systematically positive in the grey matter regions. The 100 voxel subset of

the simulated data show similar trends in the bias that are summarized in Table 2.

Boxplots of the bias and variance for the three methods show that the reduction in

bias comes at the cost of only a small increase in variance (Figure 8).
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1.4 Discussion

The novel contribution of this paper is to show that spline smoothing with general-

ized cross-validation provides a method to determine the optimal amount of smooth-

ing for an fMRI time series. This method not only conditions the autocorrelation

structure on the data, but it does so in a way to optimally separate the underlying

signal from noise. By selecting the λ that minimizes the GCV score, the smoothing

spline estimator for the signal will minimize the predictive mean-square error (Craven

and Wahba 1979). The empirical results from the spline smoothing of the fMRI data

show that GCV is a sufficient method to automatically choose the appropriate amount

of smoothing. On average, the spline method determined that a greater amount of

smoothing was necessary than the amount provided by the SPM-HRF kernel. This

suggests that if one chooses to use a single smoother for all time series the underlying

signal might, on average, be better estimated if a smoothing kernel with a greater

bandwidth than the SPM-HRF kernel is used. However, if computational time is not

a major issue it is preferable to find the optimal degree of smoothing for each time

series. It must be emphasized that the premise for using a fixed smoothing kernel

such as the SPM-HRF was a computational constraint (Friston et al. 2000).

The results from the comparison of GCV-spline smoothing with the SPM-HRF

and no smoothing of the simulated data show that optimal spline smoothing of each

time series is, on average, significantly less biased than smoothing all time series with

an identical SPM-HRF kernel or ignoring residual autocorrelations. The mean bias

reported in Table 1 for the SPM-HRF is deceptive in the context of fMRI studies

since the majority of voxels with negative bias are located in regions other than grey
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matter. These negative bias voxels shift the mean bias closer to zero. A more complete

study where grey matter voxels are segmented from the rest of the brain would likely

show that the mean bias for SPM-HRF smoothing is higher. This is also true for

GCV-spline smoothing. However, the effect of studying only gray matter voxels on

the bias is expected to be lower since the distribution of bias is more symmetric about

zero for GCV-spline smoothing (Figure 6).

The bias improvement is attributed to the ability of the spline method to select

appropriate smoothing for each time series. The gain in bias reduction comes at

the cost of a slight increase in variance (e.g., Figure 8). This increase in variance

simply reflects a bias-variance tradeoff in the variance estimator that is controlled by

the amount of smoothing. A large reduction in statistical efficiency is not expected

from the greater amount of smoothing with the GCV-spline than the SPM-HRF since

var(cT β̂) was not orders of magnitude greater with GCV-spline smoothing. The t-

maps in Figure 4 also reflect how greater smoothing causes greater variances which

lead to lower values of the t-statistic.

One limitation of the GCV-spline method is the additional computational expense.

Fitting a GLM with SPM-HRF smoothing is on the order of minutes compared to a

few hours for the GCV-spline method. The algorithms used in this study for the GCV-

spline method were not numerically optimal. A simple grid search for the minimum

of the GCV score is inefficient. A fixed step size of log10(λ) = 0.1 is a particularly

poor choice since the GCV score is very well-behaved for fMRI time series (Figure

3c,d). Both improved algorithms and better optimization could dramatically reduce

the amount of computer time needed for spline smoothing and generalized cross-

validation. Interpreted languages such as MATLAB are often slower than compiled
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code. FORTRAN routines for minimizing the GCV score are available in RKPACK

(Gu 1989) which is freely available on www.netlib.org/gcv. To find optimal smoothers

with RKPACK for 12,000 time series takes about six minutes on computer harware

comparable to that used in this study. Thus, the use of RKPACK or other compiled

code is encouraged for researchers adopting the methods of this paper.

Generalization of the bias analysis of simulated data to real data depends on

how realistic the assumptions made when the simulated time series were constructed.

The first assumption is that the signal s has a given amplitude and is generated

by the convolution of the hemodynamic response function with a boxcar function.

The second assumption is that the noise is additive and specified by Kε. The third

assumption is that the AR(8) model provides an accurate estimate to construct an

estimate of K, namely, K̃. The first assumption is not critical in the context of this

study since s is modeled exactly in the design matrix. The structure and additivity

of the noise model is generally accepted with strong evidence to suggest its validity

from the null data studies of Woolrich et al. (2001). Finally, the assumption that

the AR(8) model is sufficient is the critical assumption to establish the validity of the

simulated time series. An examination of the necessary AR order from six null data

sets by (Woolrich et al. 2001) concluded that AR(6) was sufficient for their data.

Thus, the AR(8) is conservative with enough freedom to accommodate even more

complex AR processes than expected.

This study did not consider the performance or applicability of spline smoothing to

a random event design fMRI experiment. A Tukey taper applied to a spectral density

estimate and nonlinear spatial smoothing can be used to estimate the autocorrelation

for the purposes of prewhitening that yields acceptable levels of bias (Woolrich et al.
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2001). This is likely to be a more efficient method for handling autocorrelations in

random event data than spline smoothing. However, there is likely to be no gain in

efficiency with this method over spline smoothing since smoothing and prewhitening

have similar efficiencies for block design experiments (Friston et al. 2000; Woolrich

et al. 2001; Worsley and Friston 1995).

1.5 Conclusion

Spline smoothing with the optimal degree of smoothing selected with generalized

cross-validation is a method for smoothing fMRI time series that may be used to

separate a smooth signal from white noise. In this study, we use the implied spline

smoother to select an appropriate smoothing matrix for a GLM of an fMRI time series.

For fMRI experiments with block designs, there is a significant reduction in bias over

smoothing with the SPM-HRF kernel or simply ignoring residual autocorrelations.

Since the appropriate degree of smoothing is selected for each time series, spline

smoothing (with compiled code such as RKPACK) is slightly computationally more

expensive than applying a single smoothing kernel to all time series. Nonetheless,

the bias advantage of the GCV-spline smoothing suggests that it is an appropriate

smoothing method for regression analysis of fMRI time series.
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Figure 3: Spline smoothing of fMRI time series with the degree of smoothing selected
by generalized cross-validation. The time series in (a) required approximately the
same amount of smoothing as is provided by the SPM-HRF smoothing kernel. The
plot of corresponding GCV score (c) is well-behaved with a minimum at λ = 6.31.
The SPM-HRF kernel is very similar to the equivalent smoothing spline kernel (e).
The other time series (b) was smoothed more with the spline method than by the
SPM-HRF kernel. The underlying signal is estimated well at the minimum of the
GCV score (d) where λ = 501. The equivalent smoothing spline kernel (f) has a
noticeably greater bandwidth than the SPM-HRF smoothing kernel.



23

GCV-Spline SPM-HRF No Smoothing

t >
16

14

12

10

8

5

Figure 4: Images of the t-statistic under the null hypothesis for GCV-Spline smooth-
ing, SPM-HRF smoothing, and no smoothing.
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Figure 6: Histograms of bias(v̂ar(cT β̂)) from the simulated data with no smooth-
ing (top), SPM-HRF smoothing (middle), and GCV-Spline smoothing (bottom).
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Figure 7: Images of bias of the bias of v̂ar(cT β̂) for GCV-Spline (A), SPM-HRF (B),
and no smoothing (C). The bias in each voxel was computed for simulated time series
with autocorrelation structures estimated from the corresponding voxel. Voxels with
positive bias underestimate the true variance of its regression parameter estimate.
The inference in these regions is anticonservative. The converse is true for voxels
with negative bias.
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Spline, SPM-HRF, and no smoothing from the simulated data set with autocorrelation
structures estimated from the 100 most significantly task-related time series.
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Chapter 2

Nonparametric estimation of fluid

velocity and shear in the Matern

reproducing kernel Hilbert space

2.1 Introduction

The level of cardiovascular plaque formations is related to the risk of stroke and

heart disease. Atherosclerosis preferentially forms in areas of reduced wall shear

stress (WSS) (Friedman et al. 1987; Ku et al. 1985; Zarins et al. 1983). Thus,

arterial WSS measurements may provide a diagnostic indicator for atherosclerosis.

Most of the evidence supporting this connection is from studies of arteries that were

dissected from cadavers. In vivo methods are beneficial for studying the formation and

progression of the disease. One method for noninvasively estimating WSS is through

post-processing of phase contrast magnetic resonance images (PC-MRI). PC-MRI is

capable of measuring blood velocity along the direction of arterial blood flow. The

WSS is proportional to the component normal to the wall of the gradient of the

blood velocity at the arterial wall. The post-processing step involves fitting a surface

to the PC-MRI velocity images over the cross-section of the artery and computing
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the derivatives at the boundary. It is difficult to find a parametric surface that fits

the velocity data well. In fact, only for the simplest vessel geometries are there

closed-form analytical descriptions of fluid flow (Barna 1969). The general flow of

fluid is governed by solutions to the Navier-Stokes partial differential equations. A

“sectored” method which fits several parabolic surfaces to overlapping parts of the

image has been used to estimate WSS (Oyre et al. 1998). This method is limited to

straight vessels with circular cross-sections. The Oyre method cannot handle complex

flow near vessel bifurcations and cannot model bidirectional flow, which can occur at

vessel bifurcations. A more direct approach is to fit a nonparametric function to the

velocity data.

In this chapter, we describe flexible, nonparametric estimators for fluid velocity

and shear. The estimation is based on penalized least squares over a reproducing

kernel Hilbert space (RKHS). A Bayesian confidence interval is derived for the shear

estimator. Our methods are applied to three PC-MRI data sets that were acquired

from vascular “phantoms.” The phantoms are idealized models of human arteries.
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2.2 Theory and Methods

2.2.1 Wall Shear Stress

When a fluid flows along one axis, WSS1 at a point t := (x, y)′ ∈ R2 along the wall

with unit normal vector n(t) := (nx, ny)′ is

W (t) := µ∇f(t) · n(t) (2.1)

= µ

(
∂f(t)

∂x
nx +

∂f(t)

∂y
ny

)
. (2.2)

The function f(t) is the spatially dependent fluid velocity where {t} lie in a plane

that is perpendicular to the axis of fluid flow. The constant µ is the dynamic viscosity

of the fluid. We can estimate W (t) by first estimating f(t) and then differentiate

f̂(t). Substituting derivatives of f̂(t) for the derivatives of the velocity function in

equation (2.2) gives an estimator for W (t) that is

Ŵ (t) = µ

(
∂f̂(t)

∂x
nx +

∂f̂(t)

∂y
ny

)
. (2.3)

2.2.2 Estimating Fluid Velocity in a RKHS

The objective is to estimate a function from a set of fluid velocity observations that are

contaminated by noise. Consider data {(ti, zi)}, i = 1, . . . , n, where ti = (xi, yi)′ ∈ R2

is the point where velocity zi is observed2. In our particular application, the ti are

pixel locations in a PC-MR image, and the zi are the corresponding pixel intensities,

1Shear can be calculated at any point within the vessel and not only at the wall. It is because of
the connection to plaque formation that we are particularly interested in shear at the wall.

2The methods that follow extend to data from higher dimensional spaces, e.g., 3D images, con-
tiguous 2D images, and sequences of 2D or 3D images acquired over time.
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which represent fluid velocity. The data are modeled as

zi = f(ti) + εi, (2.4)

where f is assumed to be a smooth function and the errors εi ∼iid N (0, σ2).

Model (2.4) is fit from data by selecting an appropriate f in a RKHS. Let HR be

a RKHS with reproducing kernel R. The reproducing kernel (RK) is a symmetric,

positive definite function R(s, t) such that R : R2 × R2 → R+. Any such R defines a

unique RKHS (Aronszajn 1950). An estimator for f ∈ HR is given from the solution

to the variational problem

f̂(t) := arg min
f∈HR

(
n∑

i=1

(zi − f(ti))
2 + λ||f ||2HR

)
. (2.5)

The regularization parameter λ ≥ 0 in equation (2.5) controls the smoothness of f̂(t)

through weighting the penalty ||f ||2HR
, where || · ||HR is the norm in HR. The solution

to (2.5) is a special case of a solution to a more general variational problem that was

discovered by Kimeldorf and Wahba (1971). The solution is

f̂(t) =
n∑

i=1

ciR(t, ti), (2.6)

where,

c := (Σ + λI)−1(z1, · · · , zn)′ (2.7)

Σ := [R(ti, tj)]ij, i, j = 1, · · · , n. (2.8)

The important thing to note about equation (2.6) is that the solution to (2.5) at any

point t in the domain is simply a linear combination of the RK evaluated at t and

the ti, with coefficients depending on the ti, zi, and λ. As the notation suggests,
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the symmetric, positive definite matrix Σ can be thought of as the covariance of the

f(ti).

An explicit solution to (2.5) has been given. However, two related issues remain:

what are appropriate choices for R and λ? These choices are best made with con-

sideration given to the characteristics of the specific problem and to the data. First,

consider selection of the RK R. Since R specifies the RKHS, an R that gives rise to

a sufficiently rich RKHS such that it contains the true, unknown function (that is to

be estimated) is required. Thus, consider selecting a RK from a family of functions

such as the Matérn family of radial basis functions (RBF) (Matérn 1986; Stein 1999).

Let τ := ||s− t|| be the Euclidean distance between points s, t ∈ Rd. Then, the ν-th

order3 Matérn function is:

Rν(τ) := e−τπν(τ), ν = 0, 1, 2, . . . , (2.9)

where πν(·) is a ν-th order polynomial of a particular form. See Table 3 for R1, . . . , R7

and a recursion formula for higher orders. It should be noted that the Matérn RBFs

are defined for general, positive orders. However, the general form of the Matérn RBF

involves a modified Bessel function for which there is no closed form for orders not

defined here. Moreover, Rν(τ) can be thought of as an isotropic covariance, which

gives rotational invariance of the solution. This is important for imaging applications.

2.2.3 Estimating Shear Stress

The estimator for WSS is obtained by differentiating the velocity estimator. Let

z := (z1, . . . , zn)′ and A be the influence matrix, which maps to data to the fitted

3What is referred to here as a ν-th order Matérn RBF is sometimes called order m = ν + 1/2.
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Table 3: Matérn Radial Basis Functions Rν of Order ν.

ν Rν(τ), τ := ||s− t||
0 e−τ

1 e−τ (1 + τ)
2 e−τ (3 + 3τ + τ 2)
3 e−τ (15 + 15τ + 6τ 2 + τ 3)
4 e−τ (105 + 105τ + 45τ 2 + 10τ 3 + τ 4)
5 e−τ (945 + 945τ + 420τ 2 + 105τ 3 + 15τ 4 + τ 5)
6 e−τ (12285 + 12285τ + 5565τ 2 + 1470τ 3 + 240τ 4 + 23τ 5 + τ 6)
7 e−τ (184275 + 184275τ + 71345τ 2 + 23205τ 3 + 4110τ 4 + 470τ 5 + 32τ 6 + τ 7)
...

...
m + 1 e−τ

∑m+1
i=0 am+1,iτ i, where

am+1,0 = (2m + 1)am,0,
am+1,i = (2m + 1− i)am,i + am,i−1, i = 1, · · · , m, and
am+1,m+1 = 1

values. Let A(t) be the influence vector for a generic point t. Note that if t is a

particular ti then A(t) is the ith row of the influence matrix. Using this notation we

can express the estimator of f at point t in matrix form for simplicity

f̂(t) = A(t) z (2.10)

= r′(Σ + λI)−1z, (2.11)

where r := (R(t, t1), . . . , R(t, tn))′. Differentiating f̂ with respect to x and y provides

the necessary derivatives to estimate WSS. Estimator f̂(t) depends on x and y only

through r, which depends on R. Thus,

∂f̂(t)

∂x
= r′x(Σ + λI)−1z (2.12)

∂f̂(t)

∂y
= r′y(Σ + λI)−1z, (2.13)
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where

rx :=

(
∂Rν(t, t1)

∂x
, . . . ,

∂Rν(t, tn)

∂x

)′

(2.14)

ry :=

(
∂Rν(t, t1)

∂y
, . . . ,

∂Rν(t, tn)

∂y

)′

. (2.15)

Substitution gives

Ŵ (t) = µ
(
nx r′x(Σ + λI)−1z + ny r′y(Σ + λI)−1z

)
(2.16)

= µ
(
nx r′x + ny r′y

)
(Σ + λI)−1z. (2.17)

From equation (2.17), we see that to estimate WSS, we need only differentiate the

reproducing kernel. In general, to estimate any bounded linear functional we apply

the functional to the reproducing kernel in (2.6).

2.2.4 Model Selection: Choosing ν and λ

Generalized cross-validation (GCV) (Craven and Wahba 1979) is one objective method

for automatically selecting both the order of the RK Rν and the smoothing parameter

λ. Let f̂ν,λ := (f̂ν(t1, λ), . . . , f̂ν(tn, λ))′ be the n× 1 matrix of fitted values under Rν

and λ. Also, let Σν be defined as in (2.8) where ν denotes the use of Rν(s, t). Since

Σν is symmetric, positive definite, it has an eigenvalue-eigenvector decomposition

Σν = ΓDΓ′, where Γ is an orthogonal matrix of eigenvectors and D is a diagonal
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matrix of the corresponding eigenvalues. Then, it follows from (2.6) that

f̂ν,λ = Σ′
νc (2.18)

= Σ′
ν(Σν + λI)−1z (2.19)

= Γ′DΓ(ΓDΓ′ + λI)−1z (2.20)

= ΓD(D + λI)−1Γ′z. (2.21)

Let Aν,λ := ΓD(D + λI)−1Γ′. Then,

f̂ν,λ = Aν,λz. (2.22)

The GCV score for ν and λ is

V (ν, λ) :=
z′(I−Aν,λ)′(I−Aν,λ)z

(1− n−1tr(Aν,λ))2
. (2.23)

The numerator of (2.23) is the residual sum of squares. To recognize the denominator,

first note that the degrees of freedom for the signal is dfsig = tr(Aν,λ) = n − dfres,

where dfres is the residual degrees of freedom. Thus, the denominator of (2.23)

is (dfres/n)2. The GCV estimates of ν and λ, denoted ν̂ and λ̂, respectively, are

the values that minimize (2.23). In practice, Aν,λ is computed for several values

of λ, typically on a log scale, and for several orders of the Matérn RBFs. For,

say, ν = 1, . . . , 7, ν̂ := arg minν

{
V (ν = 1, λ̂1), . . . , V (ν = 7, λ̂7)

}
, where λ̂i is the

minimizer of V (ν = i, λ). The GCV estimates have a number of desirable properties

that are discussed in Craven and Wahba (1979), Wahba (1990), and the references

therein. One such property is that GCV is consistent for estimating the true, unknown

function. This means that as the number of observations increases, f̂ν̂,λ̂ approaches

the true f , where ν̂, λ̂ minimize V (ν, λ).
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2.2.5 Bayesian Confidence Intervals for Shear

In this section we consider inference for WSS. One disadvantage of our nonpara-

metric estimator for W is that it is biased due to the penalty on the norm of f .

This complicates inference for estimates of shear. By interpreting our estimators as

Bayes estimators with respect to a (conjugate) normal prior on f , we can construct a

Bayesian confidence interval. The original Bayesian confidence interval (Wahba 1983)

was constructed for the smoothing spline. Here, we extend Wahba’s interval to WSS.

A Bayesian confidence interval for W (t) is constructed from the mean squared

error (MSE) of its estimator Ŵ (t). Recall that

MSE[Ŵ (t)] = Var[Ŵ (t)] + Bias2[Ŵ (t)]. (2.24)

A (1− α)100% approximate confidence interval has the form

Ŵ (t)± Z1−α/2

√
MSE[Ŵ (t)], (2.25)

where Z1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution. To

estimate the MSE, we need to estimate both the variance and the bias. We first

consider the variance.

The variance of the estimator is a routine calculation. To simplify the expressions,

define

h =
(
nx r′x + ny r′y

)
(Σ + λI)−1 (2.26)

so that

Ŵ (t) = µhz. (2.27)
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The variance of the WSS estimator is

Var[Ŵ (t)] = Var[µhz] (2.28)

= µ2hVar[z]h′ (2.29)

= µ2hσ2Ih′ (2.30)

= µ2σ2hh′. (2.31)

The error variance, σ2, is estimated from the residuals to the fit of the velocity function

f . The appropriate degrees of freedom is n− tr(Aν,λ).

The squared bias is more difficult since we do not know the true velocity function f .

It is possible to compute the expected bias from assuming that f is well-approximated

in the RKHS and from a Bayesian argument. The true velocity can be represented

by its minimum norm interpolant plus error ρ(t), i.e.,

f(t) = r′Σ−1f + ρ(t), (2.32)

where

f := (f(t1), . . . , f(tn))′. (2.33)

Notice that r′Σ−1f is f̂ when λ = 0 and the data z are replaced with the values of

the velocity function at the ti. Assume that f is well-approximated by its minimum

norm interpolant at all points. This means that ρ(t) is negligible and we let ρ(t) = 0.

The minimum norm interpolant of WSS is obtained from the minimum norm

interpolant of the velocity function by similar calculations to obtain Ŵ (t) from f̂(t).

A minimum norm interpolant of WSS is (ignoring approximation errors)

W (t) = µ
(
nx r′x + ny r′y

)
Σ−1f . (2.34)
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Equation (2.34) lets us express the bias of Ŵ (t) as

Bias[Ŵ (t)] = E[Ŵ (t)]−W (t) (2.35)

= E[µhz]− µ
(
nx r′x + ny r′y

)
Σ−1f (2.36)

= µ
(
hE[z]−

(
nx r′x + ny r′y

)
Σ−1f

)
(2.37)

= µ
(
nx r′x + ny r′y

) (
(Σ + λI)−1 −Σ−1

)
f . (2.38)

The only unknown in (2.38) is f . By placing a prior distribution on f , it is possible

to compute the expected square bias.

To estimate the bias, a Bayesian argument that places a prior distribution on

f yields an estimate of the expected square bias. The conjugate prior distribution

placed on f is f ∼ N (0, σ2/λΣ). This prior corresponds to a posterior estimate of

f̂(t) = r′(Σ + λI)−1z. The expected square bias is

E
[
Bias2[Ŵ (t)]

]
= E

[
µ

(
nx r′x + ny r′y

) (
Σ + λI)−1 −Σ−1

)
f
]

·
(
µ

(
nx r′x + ny r′y

) (
Σ + λI)−1 −Σ−1

)
f
)′

= µ2
(
nx r′x + ny r′y

) (
Σ + λI)−1 −Σ−1

)
Var[f ]

·
(
Σ + λI)−1 −Σ−1

)′ (
nx r′x + ny r′y

)′

=
µ2σ2

λ

[
hΣh′ − 2h

(
nx r′x + ny r′y

)′

+
(
nx r′x + ny r′y

)
Σ−1

(
nx r′x + ny r′y

)′
]
.

(2.39)

Collecting the expressions for the variance and the expected square bias, we com-

pute the MSE (or more appropriately named the expected MSE due to the prior)

MSE[Ŵ (t)] = µ2σ2hh′ +
µ2σ2

λ

[
hΣh′ − 2h

(
nx r′x + ny r′y

)′

+
(
nx r′x + ny r′y

)
Σ−1

(
nx r′x + ny r′y

)′
]
.

(2.40)
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Equation (2.40) can be simplified by substituting the an eigenvalue-eigenvector de-

composition for Σ and factoring the eigenvalues (somewhat tedious) to get

MSE[Ŵ (t)] = µ2σ2a′(Σ + λI)−1Σ−1a (2.41)

where

a = nx r′x + ny r′y. (2.42)

By replacing σ2 in (2.41) with an estimate, we can have a Bayesian estimator for

MSE that can be used to construct confidence intervals for WSS.

2.2.6 Experimental Evaluation and Data

The methods of this paper were applied to three phantom data sets. The goal of the

phantom studies was to determine if our method is capable of estimating velocity and

shear in situations where we have an approximate knowledge of the truth. With this

goal in mind we selected λ and ν to match the expected WSS.

The data consist of PC-MR images of constant flow of a blood substitute, which

was matched to the viscosity of human blood. The flow rate was set to 6.9 ml/s

for the first two data sets and 6.5 ml/s for the third data set. These are typical

flow rates during diastole in humans. With each PC-MR image comes a perfectly

co-registered “magnitude image” which has good contrast for resolving the walls of

the phantom vessels. The magnitude images were used to identify the vessel wall

pixels and segment the interior pixels in the PC-MR images. Vessel wall pixels were

identified by the Canny edge detection algorithm (Canny 1986), which is part of the

Matlab (Mathworks, Inc.) image processing toolbox. A periodic cubic smoothing

spline was fit to each set of wall pixel locations to compute unit normal vectors along
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the wall of each of the phantom vessels (Carew et al. 2003). The detected vessel

wall was eroded by a distance of one pixel to eliminate observations from partially-

volumed pixels. The partially-volumed pixels intersect both the vessel wall and the

interior of the vessel. The software and algorithms used to carry out this analysis

were developed for the R statistical environment (www.r-project.org). Some of the

3D plots and images were produced with Matlab.

The first data set is from a straight glass tube phantom that has a circular cross-

section with a 3.9mm inner diameter radius. For a straight vessel with a circular

cross-section, the flow can be expressed analytically as a paraboloid (Barna 1969).

This allows us to compute that the theoretically-expected WSS is approximately

0.13 N/m2. The image field of view was 100mm×100mm and the image matrix was

512×512 pixels. The pixel intensities outside of the tube were set to zero and the

PC-MR images were reduced to a rectangular region of approximately 50×50 pixels

that covered the entire glass tube. The boundary points (i.e., points in the image at

the tube wall) were automatically identified.

The second data set is from a modified version of the straight glass tube phantom

where the tube was laterally indented on one side to yield a non-convex cross section.

For this vessel geometry there is no closed-form parametric model describing fluid

flow. The indentation is not so extreme that we expect the WSS to be on the order

of 0.13 N/m2, particularly on the side opposite the indentation where the wall is

circular. The image size and pre-processing were identical to that of the first data

set.

A replica of a human carotid bifurcation (Shelley Medical, Toronto) was selected

as the third phantom. Estimating WSS in the internal carotid artery (ICA) near the
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bifurcation is of great interest since in many patients stroke is caused by stenosis or

obstruction of the ICA. The image matrix was 256×256 pixels with a 0.39 mm pixel

size. The image plane was selected to intersect the ICA approximately 1 cm superior

to the bifurcation and oriented to be perpendicular to the anterior wall of the vessel.

The perpendicularity ensures that nearly all flow is into or out of the image plane.

2.3 Results

The nonparametric model fits the segmented PC-MR velocity images well for each of

the three phantom data sets. We first consider the straight glass tube phantom with

a circular cross-section. A plot of the raw velocity measurements after segmentation

is in Figure 9A. The measurements appear slightly more variable in the interior of

the glass tube than near the edges. A fit with ν = 4 and λ = 300 is in Figure 9B.

As expected, the nonparametric fit appears parabolic. The parameters were tuned

to best match the expected WSS (0.13 N/m2). Figure 9C is a diagram of how the

WSS estimates (Figure 9D) are ordered. Starting at the wall point that is at the

largest value along the x-axis, we move counter clockwise. The shear stress estimates

in Figure 9D are accompanied by 95% Bayesian confidence intervals. The solid hor-

izontal line denotes the expected value of WSS. Based on the circular symmetry of

the vessel, we expect WSS to be constant at all wall points. On average the estimates

of WSS are very close to the expected value. The estimates of WSS appear to have

correlated errors. Of the 35 equally-spaced points along the vessel wall where WSS

was estimated, 5 of the intervals do not cover the expected value. This gives roughly

86% coverage of the theoretically expected value.
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Figure 9: Fluid velocity and wall shear stress estimates in a straight glass tube
phantom with a circular cross-section. The raw velocity measurements are in A. The
nonparametric fit with ν = 4 and λ = 300 is in B. The fitted velocity function appears
parabolic, which is predicted by physical principles. In D are the WSS estimates and
95% Bayesian confidence intervals. The diagram in C shows how the measurements
are ordered in D. Starting at the point with the largest value along the x-axis the
order of the WSS estimates increase counter clockwise, indexed by the angle.
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Figure 10: Magnitude and detected boundary for the straight glass tube phantom
with non-convex cross-section.

The straight glass tube phantom with a non-convex cross section presents a case

where there is no parametric form describing fluid velocity. Figure 10 shows the

magnitude image and the vessel wall detected by the Canny method. The magnitude

image has excellent contrast for detecting the vessel wall. Figure 11 shows an image of

the nonparametric fit with ν = 4 and λ = 150 and WSS estimates with 95% Bayesian

confidence intervals. The shear estimates are ordered as in Figure 9. WSS is roughly

constant around the vessel wall except for the region of the indentation where it

sharply increases. The horizontal line in Figure 11 denotes WSS=0.13 N/m2, which

is the expected shear stress for a cylindrical glass tube of 3.9 mm radius. Since there is

no closed-form description of velocity, this line serves as an approximate reference. In

the regions of the vessel wall away from the indentation, the WSS estimates are very

close, on average, to 0.13 N/m2. Figure 12 plots the sample quantiles of the residuals

versus the quantiles of a standard normal distribution. That the points lie closely on

a 45 degree line indicates that the residuals closely follow a normal distribution.

The data from the carotid bifurcation demonstrate that the nonparametric method

can model complex flow and shear in a situation that is of direct clinical interest.
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Figure 11: Fluid velocity and wall shear stress estimates in a straight glass tube
phantom with non-convex cross section. The nonparametric fit uses ν = 4 and
λ = 150. The shear stress estimates are ordered as described in Figure 9C. The WSS
is nearly constant except for the region near the indentation where the shear stress
increases. The increased shear can be seen through the more closely-spaced contour
lines on the velocity image near the center of the indentation. The horizontal line
shows the expected value of WSS calculated for a vessel with a circular cross-section.
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Figure 12: Residuals from the fit to the non-convex phantom. The quantile-quantile
plot indicates that the residuals closely follow a normal distribution.

Figure 13A shows the geometry of the bifurcation phantom as well as the orientation

of the image slice (green). The slice goes through the internal carotid artery, which

is a major source of blood to the brain. The common carotid artery is located just

inferior to the bifurcation. The other branching artery is the external carotid artery,

which supplies blood to non-brain tissues in the head. The image in Figure 13B shows

the nonparametric fit with ν = 4 and λ = 100. The parameters were selected by visual

inspection of the fit and residuals for several values of ν and λ. The boundary of the

vessel in Figure 13B shows less circular symmetry than in the other two phantoms.

This is partly due to the smaller diameter of the vessel (approximately 5 mm) and

the lower spatial resolution of the image (256×256 pixels versus 512×512 pixels).

Figure 13B shows that the velocity and rate of change of velocity are much higher

along the anterior wall of the vessel than on the posterior wall. This suggests that the

shear stress is higher against the anterior wall than against the posterior wall. This
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is confirmed in the plot of the WSS estimates in Figure 13C. The point estimates are

accompanied by 95% Bayesian confidence intervals and are ordered as described in

Figure 9.

2.4 Discussion

The preliminary results from this study demonstrate the feasibility of our nonpara-

metric estimator of fluid velocity and shear from phase-contrast MR images, which

measure fluid velocity. The nonparametric estimator is based on penalized least

squares in a reproducing kernel Hilbert space generated by the Matérn family of ra-

dial basis functions. The main strength of our method is that it does not require

restrictive assumptions about vessel geometry (e.g., convex) or flow (e.g., parabolic).

Unlike the Oyre et al. (1998) method, our method is not constrained to arterial

cross-sections and velocity data that can be modeled by parabolic sectors. Another

advantage of the nonparametric method is that it can be easily extended to higher di-

mensions for 3D images, 2D images acquired at regularly (or even irregularly) spaced

intervals, and multiple images acquired over time. This is important for estimating

shear stress over a cardiac cycle since the force driving the blood is not constant.

This causes the WSS to vary over the cardiac cycle.

The results from the phantom models show promise for the clinical utility of our

method. The straight glass tube phantom demonstrates that, for very simple vessel

geometries, the nonparametric method produces results that are quite consistent with

the parabolic model of flow. This is not to suggest that the nonparametric model

is better than a parametric model for these simple situations. The power of the



47

Figure 13: Velocity and WSS in a human carotid bifurcation phantom. The green
line segment that bisects the internal carotid artery in A indicates the orientation of
the imaging plane. The fitted velocity function with ν = 4 and λ = 100 is in B. The
velocity and rate of change of velocity is much higher along the anterior wall of the
vessel than along the posterior wall. The effect of this flow regime is seen in the WSS
estimates in C. The point estimates are ordered as in Figure 9 and the intervals are
95% Bayesian confidence intervals.
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nonparametric method is best seen in the fits to the indented tube phantom data and

the carotid bifurcation model. The indented tube phantom provided an example of a

simple flow regime where parametric methods would typically fail. The estimated flow

patterns in the bifurcation phantom (Figure 13B) are consistent with the bifurcation

model studies of Motomiya and Karino (1984). The low shear stress on the posterior

wall of the ICA is consistent with several findings (Friedman et al. 1987; Ku et al.

1985; Zarins et al. 1983) which link low shear stress to formation of plaque on the

posterior wall.

Our method has a number of limitations. We require the velocity to be a smooth

function. Our method may not work well in very turbulant flow. An accurate defi-

nition of the glass tube boundary or arterial wall is needed. It is not clear that the

magnitude images would provide as good wall contrast in vivo as in the phantoms.

It may be necessary to acquire e.g., a black-blood image to achieve better contrast.

If this is the case, then registration between the wall image and the phase image may

become an issue. The Oyre et al. (1998) method has the benefit of estimating the

boundary points from the data. However, this depends on the model fitting the data

well, which does not appear to be the case for vessels with noncircular cross-sections

and nonparabolic flow. We have not yet addressed automatic selection of ν and λ.

We propose model selection with GCV. This needs further study. If our method is

to be used in a clinical setting, automatic selection will become necessary. In the

three phantom data sets considered here, ν = 4 seems to work quite well. It may

not be necessary to tune this parameter for each data set; ν may depend more on

the class of data than on the specific set of data. The smoothing parameter λ took

values 300, 150, and 100 on our phantom data sets. Less smoothing was required
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for the carotid phantom data set. This can partly be explained by the larger pixel

sizes in the image. The larger pixel sizes give a higher signal to noise ratio in the

measurements. Overall, we did not find the estimates to be sensitive to λ for the

same order of magnitude. Less smoothing generally means wider Bayesian confidence

intervals for the estimates.

More investigation is needed to study the frequentist properties of the Bayesian

confidence intervals. For the straight glass tube phantom with circular cross-section

we have an approximate expectation of shear stress based on a parabolic model. The

95% Bayesian confidence interval covered this value by roughly 86% (Figure 9D). In

an experiment, there is no guarantee that the theoretically predicted value was the

true value. Experimental variation may partly explain why the coverage is less than

95%. That this Bayesian interval does not explicitly control the coverage probability

may also partly explain the 86% coverage. We propose to simulate data by taking the

nonparametric fits to the three phantom data sets as the ground truth. Simulated

data sets will be generated by adding independent normal errors. The simulated data

sets will be fit and the coverage probability of the Bayesian confidence intervals will

be estimated by counting the fraction of intervals that cover the ground truth.
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Chapter 3

The asymptotic behavior of the

nonlinear estimators of the

diffusion tensor and tensor-derived

quantities

3.1 Introduction

Diffusion tensor imaging (DTI) (Basser et al. 1994b; Basser et al. 1994a) is a quan-

titative magnetic resonance imaging (MRI) method that is widely used to study the

microstructural properties of white matter in the brain. The diffusion tensor, which

describes the diffusion properties of the imaged tissue, is known to be proportional

to the covariance matrix for Brownian motion of water molecules. Since DTI can

provide microstructural information, it can reveal disease-correlated tissue changes

that are not evident on conventional MRI. This sensitivity to microstructure and

tissue organization makes DTI an important tool for studying neurologic diseases.

Several functions of the diffusion tensor (e.g., trace and fractional anisotropy (FA))

are important for characterizing neurologic diseases (Lebihan et al. 2001).
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Determining the statistical properties of the diffusion tensor estimator is neces-

sary to determine if the method of estimation is appropriate, and to describe how

noise in diffusion-weighted images leads to variability in estimates of the tensor and

functions of the tensor estimate. Estimators of the variance of the tensor estimator

and functions of the tensor estimator are needed for statistical inference, comparing

experimental designs, and tractography. Studying the statistical properties of the

nonlinear least squares estimator (NLSE) of the diffusion tensor is particularly timely

since it was recently shown that the NLSE outperforms, in terms of mean square error,

linear tensor estimators (Koay, Carew, Alexander, Basser, and Meyerand 2006).

In this chapter, we derive asymptotic properties of the NLSE of the diffusion

tensor. The asymptotic distributions of the tensor estimator and functions of the

tensor estimator are used to obtain estimators for their variances. We show that

the NLSE of the diffusion tensor is a maximum likelihood estimator (MLE). This

connection allows us to directly apply the theory of maximum likelihood estimation

to obtain asymptotic properties. For diffusion tensor estimation, the asymptotic

properties are achieved in the limit as the signal to noise ratio (SNR) and the number

of samples of a set of diffusion directions go to infinity. Asymptotic properties are

commonly used in many statistical procedures and can be very accurate well before

the appropriate quantities approach infinity. We assess the utility of the asymptotic

approximations with a series of simulations.

We show that the NLSE is consistent and asymptotically normal. Consistency is

a desirable property of estimators, which implies that the estimates approach their

true, unknown values in a probabilistic sense. Furthermore, certain functions of the

tensor estimator are also consistent and asymptotically normal. To illustrate and
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validate the theory we derive the asymptotic distributions of trace and FA and show,

with simulations, experimental designs that have asymptotic distributions that are

very close to the empirical distributions. The methods introduced in this chapter are

applied to estimate the variance of trace and FA from a DTI data set acquired from

a healthy human volunteer. Finally, we discuss implications of unequal variances for

statistical tests with tensor-derived quantities.

3.2 Diffusion Tensor Model

The diffusion tensor model for a signal S := (S1, . . . , Sn)′ from a single voxel with n

diffusion measurements is

S = S0 exp (−Xβ) + ε. (3.1)

The symbol ′ denotes matrix transposition and exp() denotes the exponential function

applied to each element of an array. The signal with no diffusion weighting is denoted

by S0. The diffusion encoding matrix X is given by

X :=





b1g2
x1 b1g2

y1 b1g2
z1 2b1gx1gy1 2b1gy1gz1 2b1gx1gz1

...
...

...
...

...
...

bng2
xn bng2

yn bng2
zn 2bngxngyn 2bngyngzn 2bngxngzn




,

where the bj, j = 1, . . . , n, are the diffusion weightings and the gij, i ∈ {x, y, z}, are

the components of the gradient encoding unit vectors, which specify the direction of

the diffusion weighting. The parameter β contains (at most) 6 unique elements of

the symmetric, positive-definite diffusion tensor, namely

β := (Dxx, Dyy, Dzz, Dxy, Dyz, Dxz)
′,
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where the diffusion tensor D is

D :=





Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz




.

We assume that the errors ε in (3.1) are independent and normal with constant

variance, i.e., ε ∼ Nn(0, σ2In), where In is an n × n identity matrix. Noise in mag-

nitude MR images formed with quadrature detection follows a Rician distribution

(Henkelman 1985; Koay and Basser 2006). As the SNR goes to infinity, the noise in

magnitude images follows a normal distribution with variance equal to the variance

of the normally-distributed noise in the quadrature channels (Gudbjartsson and Patz

1995). Yet, surprisingly, when the SNR is greater than three, the noise in the SE-

EPI MR images is well-approximated by a normal distribution (Gudbjartsson and

Patz 1995). With routine diffusion imaging parameters (e.g., b ≈ 1000 s/mm2 or

less and the SNR is at least 20). Consequently, the normality and constant variance

assumptions are quite sensible, and achieved at low SNR and number of images.

3.3 Nonlinear Least Squares Tensor Estimator

In this section, we show that the nonlinear least squares estimator (NLSE) of the dif-

fusion tensor is the same as the maximum likelihood estimator (MLE). We start with

the maximum likelihood estimator. The diffusion measurements S are viewed as a sin-

gle sample drawn from a multivariate normal distribution. Under the distributional

assumption ε ∼ Nn(0, σ2In), the signal is distributed as S ∼ Nn(S0 exp(−Xβ), σ2In).

Define the parameter to be θ = (θ1, . . . , θ8)′ := (β, S0, σ2)′. The likelihood, L(θ|S),
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is given by

L(θ|S) = (2πσ2)−n/2 exp

{
− 1

2σ2
[S − S0 exp(−Xβ)]′ [S − S0 exp(−Xβ)]

}
.

Taking the logarithm gives the loglikelihood, l(θ|S),

l(θ|S) = −n

2
log(2πσ2)− 1

2σ2
[S − S0 exp(−Xβ)]′ [S − S0 exp(−Xβ)] . (3.2)

Note that the NLSE for β and S0 do not depend on σ2. In these cases, maximizing

(3.2) with respect to β and S0 is the same as minimizing the nonlinear least squares

objective function, h(β, S0), given by

h(β, S0) :=
1

2
[S − S0 exp(−Xβ)]′ [S − S0 exp(−Xβ)] . (3.3)

Therefore, the minimizers of (3.3), call them β̂ and Ŝ0, are the maximum likelihood

estimators of the components β of the tensor and S0. To get the MLE for σ2, we

substitute β̂ and Ŝ0 for β and S0, respectively, in equation (3.2) and find the σ2 that

maximizes l(θ|S). It is easy to show that the MLE for σ2 is

σ̂2
MLE =

1

n

[
S − Ŝ0 exp(−Xβ̂)

]′[
S − Ŝ0 exp(−Xβ̂)

]
=

RSS

n
. (3.4)

This estimator is the residual sum of squares (RSS) divided by the number of dif-

fusion measurements. The MLE for the error variance σ2 is not the best estimator,

particularly for small n. In the next section we will provide a better estimator that

relies on the asymptotic properties of β̂ and Ŝ0.
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3.4 Asymptotic Properties of the Tensor Estima-

tor

The NLS estimators of β, the components of the tensor, and S0 are the same as the

maximum likelihood estimator under the assumption of independent normal errors

with constant variance. This fact allows us to use the asymptotic properties of the

MLE to obtain the asymptotic properties of the NLS estimators. The two main

properties of the MLE are consistency and asymptotic normality. Consistency, also

called convergence in probability, is denoted by θ̂
P→ θ. This means that for all a > 0,

limN,SNR→∞ P (|θ̂ − θ| > a) = 0 , where N is the number of samples of the diffusion

directions. In words, this means that for large enough N and SNR, the probability

that the tensor estimator is more than an arbitrarily small distance away from the

true value goes to zero. By theorem 5.1 on page 463 of Lehmann and Casella (1998),

we have the following asymptotic properties:

1. θ̂
P→ θ, and

2. θ̂
d→ N8(θ, I−1(θ)).

The first property states that as the number of samples of the diffusion directions

and the SNR increase, the NLSE of the tensor components converges in probability to

the true tensor components. The second property implies the asymptotic normality of

the NLSE, i.e., θ̂ converges in distribution to a multivariate normal. Convergence in

distribution, denoted by
d→, means that as N and SNR go to infinity, the distribution

of the tensor estimator (at all continuity points of its distribution) is normal with

mean equal to θ. Both of the asymptotic properties of the MLE hold under certain
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regularity conditions. Under our normality assumption, these regularity conditions

are satisfied.

Note that I−1(θ), the covariance matrix of the asymptotic distribution, is the

inverse of the Fisher information matrix, which is proportional to the Hessian of the

expected loglikelihood. Specifically, from equation 6.11 on page 125 of Lehmann and

Casella (1998),

Iij(θ) := −E

[
∂2

∂θi∂θj
l(θ|S)

]
, (3.5)

where E[·] denotes the expectation operator, i.e., for random variable X, E[X] :=
∫

X dP , where P is a probability measure. In the case of equation (3.5), the expecta-

tion is taken with respect to the multivariate normal distribution that is parameterized

by θ.

Since we are primarily interested in the properties of the components of the tensor,

we can apply a simple transformation C to θ̂ to get the asymptotic distribution of

β. Let

C :=





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0





.

Then, Cθ̂ = β̂ and

β̂
d→ N6(β,CI−1(θ)C′). (3.6)

From equation (3.6), we see that β̂ is asymptotically normal with mean β and co-

variance matrix CI−1(θ)C′.
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We will derive the Fisher information matrix for each component, first considering

the derivatives with respect to the components of β. It follows from the Hessian of

(3.3), which was derived by Koay, Chang, Carew, Pierpaoli, and Basser (2006), that

∇2
βl(θ|S) = − 1

σ2
∇2

βh(β, S0)

= − 1

σ2
X′(2S̃2 − SS̃)X,

where

S :=





S1 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 Sn





, and S̃ := S0





exp(−X1β) 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 exp(−Xnβ)





,

with Xi denoting the ith row of the diffusion gradient matrix. The notation ∇2
βh

denotes a 6× 6 matrix with ijth element equal to ∂2h/∂βi∂βj. Thus, the upper left

6× 6 block of I(θ) is

1

σ2
E[X′(2S̃2 − SS̃)X] =

1

σ2
X′S̃2X.

In the left hand side of the previous equation, the only random quantity is S. Since

S ∼ Nn(S0 exp(−Xβ), σ2In) and E[S] = S̃, the right hand side follows. For the terms
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involving S0 and σ2, the following can be shown:

−E

[
∂2

∂S2
0

l(θ|S)

]
=

1

σ2
exp(−Xβ)′ exp(−Xβ)

−E

[
∂2

∂(σ2)2
l(θ|S)

]
=

n

2(σ2)2

−E

[
∂2

∂σ2∂S0
l(θ|S)

]
= 0

−E

[
∂2

∂σ2∂βi
l(θ|S)

]
= 0

−E

[
∂2

∂βi∂S0
l(θ|S)

]
=

S0

σ2

n∑

j=1

Xji[exp(−Xjβ)]2.

From the last equation, we see that estimates of S0 are correlated with estimates of

β. From a practical standpoint, this means that experimental designs that yield poor

estimates of S0 will adversely affect estimates of β. For this reason, experimental

designs that include only one image with no diffusion weighting should be avoided.

The MLE for the error variance in equation (3.4) has a large bias for small n. This

causes under estimation of the variance. The consistency and asymptotic normality

of the NLSE for S0 and β allow us to get a better estimator. In particular,

RSS

σ2

d→ χ2
n−7,

where χ2
n−7 denotes a χ2 distribution with n − 7 degrees of freedom. This suggests

that the appropriate estimator of the error variance is

σ̂2 :=
RSS

n− 7
(3.7)

rather than the MLE given in (3.4).
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3.5 Distribution of a Linear Function of the Tensor

The distribution of a linear function of the tensor (e.g., trace) is asymptotically nor-

mal. This follows from the well-know property that linear functions of normal random

variables are normally-distributed. To obtain the asymptotic distribution of the trace

of the tensor estimator, let c := [1 1 1 0 0 0]. Then, t̂rD = cβ̂, where tr denotes the

trace of a matrix. From equation [3.6] it follows that

t̂rD
d→ N1(trD, cCI−1(θ)C′c′). (3.8)

The general form of the normal distribution for the trace of the diffusion tensor was

previously given in Basser and Pajevic (2003). The difference in our paper is that we

prove asymptotic normality and show how the variance of the asymptotic distribution

comes from the Fisher information matrix.

To estimate Var(t̂rD), we use the variance in (3.8) evaluated at θ = θ̂, with σ2

estimated according to (3.7), i.e.,

V̂ar(t̂rD) = cCI−1(θ̂)C′c′. (3.9)

The consistency of the estimator for the variance of trace follows directly from the

consistency of the estimator for θ. The variance of the mean apparent diffusion

coefficient (ADC), which is defined as 1/3 trD, is the variance of the trace of the

tensor scaled by 1/9.
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3.6 Distribution of a Nonlinear Function of the

Tensor

In this section the multivariate delta method is used to show that a nonlinear function

of the tensor estimate is asymptotically normal. In particular, we are interested in

scalar functions of the tensor such as the fractional anisotropy. It is also possible that

a vector-valued function of the tensor is of interest, e.g., the primary eigenvector of

the tensor. To include this possibility, let

f(β̂) := (f1(β̂), . . . , fr(β̂))

denote an r-dimensional vector-valued function of the tensor estimate. The multi-

variate delta method (Theorem 8.22, page 61 (Lehmann and Casella 1998)) yields

[
(f1(β̂)− f1(β)), . . . , (fr(β̂)− fr(β))

]
d→ Nr(0,BCI−1(θ)C′B′), (3.10)

where Bij = ∂fi/∂βj. The matrix B of partial derivatives must be nonsingular in a

neighborhood ω of β. For scalar-valued f , the derivatives cannot be zero at β. We

also require that f1, . . . , fr are continuously differentiable in ω.

To compute the asymptotic distribution of FA, which is a normalized standard

deviation of the eigenvalues of the diffusion tensor, we need to compute the partial

derivatives of FA with respect to each of the six components of β. FA takes values

between 0 and 1, where 0 indicates isotropic diffusion and 1 indicates completely

anisotropic diffusion. FA is written in terms of the eigenvalues λ1, λ2, and λ3 of the

diffusion tensor D, as follows

FA(λ1, λ2, λ3) :=

[
3[(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2]

2(λ2
1 + λ2

2 + λ2
3)

] 1
2

,
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where λ̄ := (1/3)(λ1 + λ2 + λ3). We can express FA directly in terms of β, which is

more convenient for computing partial derivatives with respect to the components of

β. In this form FA is given by

FA(β) =

[
3

2

(
1− (trD)2

3 tr(D2)

)] 1
2

. (3.11)

Differentiating [3.11] gives the following:

∂FA

∂Di
= − 1

2FA

[
trD tr(D2)− (trD)2Di

(tr(D2))2

]
, i ∈ {xx, yy, zz}

∂FA

∂Dj
=

(trD)2Dj

FA(tr(D2))2
, j ∈ {xy, yz, xz}.

Let

B :=

(
∂FA

∂Dxx
,

∂FA

∂Dyy
,

∂FA

∂Dzz
,

∂FA

∂Dxy
,

∂FA

∂Dyz
,

∂FA

∂Dxz

)

and apply (3.10) to get the asymptotic distribution of FA. To use this result to

estimate the variance of an FA estimate, evaluate the Fisher information at the value

of θ̂, with σ2 estimated according to (3.7), to get

V̂ar(FA(β̂)) = BCI−1(θ̂)C′B′. (3.12)

It is important to note that when FA is zero (completely isotropic diffusion), the

asymptotic variance estimator in equation (3.12) is singular. This is due to the

dependence of the derivatives of FA on the value of FA. When FA goes to zero, the

factor 1/FA in the expressions for the derivatives goes to infinity.
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3.7 Validation and Application

3.7.1 Simulation Study

To validate the range of utility of the asymptotic distributions of trace and FA for

finite SNR and N , we simulated diffusion measurements for three cylindrically sym-

metric tensors with FA= 0.3578, 0.7840, and 0.9623. The trace of each simulated

tensor was held constant to 2.189 × 10−3 mm2/s. The trace and FA values are rep-

resentative of brain white matter (Pierpaoli et al. 1996). The SNR, defined as S0/σ

was set to 20 and S0 = 1000. Three acquisition designs with different numbers of

directions and diffusion weightings were selected to examine the performance of the

asymptotic approximations for typical experimental designs. The designs are as fol-

lows.

1. Six directions at each b = 0, 300, 650, 1000 s/mm2 (24 total measurements).

2. 16 directions at each b = 0, 300, 650, 1000 s/mm2 (64 total measurements).

3. 46 directions at each b = 0, 300, 650, 1000 s/mm2 (184 total measurements).

The six and 46 directions sets are icosahedral directions and the 16 direction set

is constructed with the six icosahedral directions plus the dodecahedral directions

(Hasan et al. 2001). The three designs were applied to each of the three tensors for

a total of 9 simulation combinations. These 9 simulations were then repeated with a

trace of 1.0945×10−3 mm2/s to mimic conditions of acute ischemia, where trace can be

reduced by as much as 50% relative to healthy white matter (Moseley et al. 1990). For

each of the 18 simulations, there were 50000 simulated data sets. Data were simulated

with Rician noise according to the method described by Pierpaoli and Basser (1996).
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The NLSE estimates of the simulated tensors were computed with Newton’s method

(Koay, Chang, Carew, Pierpaoli, and Basser 2006). Trace and FA estimates were

computed for each data set from the tensor estimate. The empirical distributions

of the trace and FA estimates were graphically compared to a normal distribution.

Sample means of the trace and FA estimates were computed and compared to their

true values to check consistency. The sample variances of the estimated trace and FA

were compared to the variances of their asymptotic distributions.

To investigate the dependence of the variance of trace and FA on the values of trace

and FA, we simulated data sets according to Design 2. For each point on a 15×15

grid, 50000 simulated data sets were generated for equally-spaced trace and FA values.

See Appendix A for a description of how to generate tensors from pre-specified trace

and FA. The trace values ranged from 1.0945×10−3 mm2/s to 3.2835×10−3 mm2/s

and the FA values ranged from 0.30 to 0.95. All other simulation parameters are as

previously specified. For each trace/FA combination, the sample variances of trace

and FA were computed. These variances were then plotted as a function of trace and

FA.

3.7.2 Application to Human DTI Data

The methods for estimating the variance of FA were applied to a healthy human male

volunteer, age 27, who provided informed consent in accordance with the guidelines

of our Institutional Review Board for human subject studies. The images were ac-

quired on a 3 Tesla scanner with a spin echo diffusion weighted imaging (DWI) pulse

sequence. The following scan parameters were used: 10 axial slices, 3 mm thick, 5
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mm gap, FOV: 240×240 mm, matrix size: 120×120 zero-padded to 256×256 pixels,

16 diffusion directions, TE: 72.3 ms, diffusion weightings b = 0, 300, 650, 1000 s/mm2.

The diffusion weightings and gradient direction set are identical to Design 2 of the

simulation studies. The scans were cardiac gated using a pulse oximeter attached to

the right index finger. The effective TR was 5 heart beats (approximately 4600 ms).

No image averaging was performed, i.e., one image per gradient direction per b-value

was obtained. The total scan time was 10 min 40 s. The images were first masked

to eliminate pixels outside of the brain. The NLSEs of the tensors were computed at

each pixel using Newton’s method (Koay, Chang, Carew, Pierpaoli, and Basser 2006).

Images of FA and the trace of the tensor estimates were generated. For FA, a second

mask based on the trace of the estimated tensors was applied to eliminate pixels that

contain isotropic cerebrospinal fluid (CSF). After masking, the variances of the trace

and FA estimates were estimated according to (3.9) and (3.12), respectively. Images

of log10{V̂ar(t̂rD)} and log10{V̂ar(FA(β̂))} were generated.

3.8 Results

The results from the simulation studies show that approximate normality is achieved

for as few as six directions with four b-values for each gradient direction. Normal

probability plots of trace and FA are given in Figures 14 and 15, respectively. These

probability plots assess how well the empirical distributions of the trace and FA

estimates follow normal distributions. If the empirical distribution perfectly followed

a normal distribution, the estimates would fall on the red diagonal line. The plots

of trace (Figure 14) show that the empirical distribution of the trace estimates is
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very well-approximated by a normal distribution for Design 1 and each of the FA

values. Departures from normality are minor and occur only in the distant tails of the

distribution (probability < 0.001 and > 0.999). Trace estimates for the other designs,

which use more images, are at least as well-approximated by a normal distribution and

are, consequently, omitted. Figure 15 shows normal probability plots for each of the

three FA values for Designs 1, 2, and 3. The plots show that the empirical distribution

of the FA estimates is well-approximated by a normal distribution. Convergence to

normality is slower for very high FA (0.9623). The largest departures from normality

are seen in Design 1 with FA=0.9623. These departures occur in the tails of the

distribution (probability < 0.05 and > 0.95). In this case, we see slightly slower

convergence to normality than in other designs and lower values of FA. Moving to

Design 2, the discrepancies for FA=0.9623 are in the distant tails. For FA at 0.3578

and 0.7840, the departures from normality are in the distant tails for all designs.

The reduced range of the FA estimates when moving from Design 1 to other designs

indicates the reduced variability that comes from acquiring more directions.

The asymptotic variances of trace and FA are very accurate. Table 4 summarizes

the simulation results when the trace mimics that of healthy white matter. The

sample means of the trace FA estimates are very close to the true value in all of the

18 simulations. The sample means of the trace estimates are all very close to the

true value (2.189×10−3 mm2/s) with discrepancies only in the third significant digit.

The largest difference between the true FA and the sample means is found in Design

1 with low FA (6.7% over-estimation). Other differences are significantly lower. The

closeness of the sample means to the true values of trace and FA are expected from

the consistency of the NLSE. The sample variance of the trace and FA estimates,
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which are good estimates of the true variances, shows that the asymptotic variances

are excellent approximations. In all 18 designs, the sample variance of trace differs

from the asymptotic variance by 1.61% or less. For low FA (0.3578) the asymptotic

variance tends to over-estimate the true FA variance. This bias is highest for Design

1 with FA = 0.3578 where the asymptotic variance is 23.8% higher. Moving to Design

2, the over-estimation is reduced to 5.66%. The over-estimation is not considerable

and will not lead to increased type I error rates. For very high FA (0.9623) there is a

slight tendency for the asymptotic variance to under-estimate the true variance. This

effect is minor with the largest under-estimation at less than 2.36%.

Also seen in Table 4 is that the variances of trace and FA depend of the value of

FA. Variance in estimates of trace from tensors with low FA have lower variance than

estimates from tensors with higher FA. We found that trace estimates from higher

FA tensors are 30% or less variable than trace estimates from lower FA tensors.

In the variance of estimates of FA, the opposite effect is seen and is much more

dramatic. Estimates of FA from tensors with relatively high FA have lower variance

than estimates from tensors with lower FA. In our simulation studies, the variances

of FA estimates from tensors with a true FA of 0.3578 are approximately one order

of magnitude higher than tensors with a true FA of 0.9623.

The simulation studies for the case of acute ischemia reveal similar behavior as in

the case for healthy white matter (Table 5). For the variance of trace, the asymptotic

variance is, on average, slightly more accurate than where trace is higher. All of

the asymptotic variances have an error of less than 1.36%. For FA, the asymptotic

variances are less accurate. Within the same design, tensors with the lowest FA

(0.3578) have the highest errors, with the largest error at 39.7% for Design 1. This
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overestimation is reduced to 13.2% and 4.32% for Designs 2 and 3, respectively.

Plots of the variance of trace and FA as a function of trace and FA (Figure 16)

show graphically how the variance of these tensor-derived quantities depends on their

values. These plots reiterate the findings from the simulation studies with three values

of FA and two values of trace.

The results from the human data illustrate the anatomical dependence of the

variances of trace and FA estimates. The SNR in the diffusion weighted images is

approximately 22. The trace and FA maps for four slices are in Figures 17 and 18,

respectively. The corresponding variance maps are displayed using a log10 scale since

they vary over more than one order of magnitude. The variance of trace estimates

depends on the tissue type. Comparing the FA map in Figure 18 to the trace variance

image in Figure 17, we see that a region of high FA is where the variance of trace

is also relatively high. The variability of FA estimates is not uniform over the whole

brain and, like trace, depends on the tissue type. Lowest variances are seen in regions

of high anisotropy (e.g., corpus callosum, internal capsule). The opposite effect is

seen with trace and is consistent with the simulation studies.

3.9 Discussion

One important result of this study is that the NLSE of the diffusion tensor and

tensor-derived quantities are consistent and asymptotically normal. The asymptotic

distributions are reached as the SNR and number of DWIs increases. We described

consistent estimators for the variances of trace and FA. The simulation results show

that the asymptotic approximations for trace and FA are accurate. This suggests the
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Figure 14: Each plot shows the trace estimates for 50,000 simulated data sets with
Design 1 (six directions at each of four b-values). The trace estimates are very well-
approximated by a normal distribution. Departures from normality are in the distant
tails of the distribution (P < 0.001, 0.999 < P ).

utility of the asymptotic variance as the measure of variability in tensor estimates.

The asymptotic approximations for trace, which is a linear function of the tensor,

perform slightly better than the approximations for FA. This is expected since the

use of the delta method for FA adds one additional layer of approximation. The

reduction in the variance of trace and FA as the number of unique gradient encoding

directions increases has been studied by Jones (2004) with Monte Carlo simulations.

Our results on consistency of the estimators provide a theoretical explanation for his

findings.

Unlike bootstrap approaches (Pajevic and Basser 2003) that are used to obtain

estimates of the variance of FA estimates, our method does not require additional dif-

fusion weighted images or intense computation. Since the asymptotic approximations

to the variances of NLSEs of trace and FA are accurate, use of the bootstrap may

be unnecessary for data collected under routine scan parameters, provided that the

systematic artifacts in the DWIs can be shown to be small. However, it is best to first
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Figure 15: Each plot shows the FA estimates for 50,000 simulated data sets. De-
partures from normality are minor, with the largest occurring in for Design 1 (six
directions at each of four b-values) with high FA (0.9623). The discrepancies here
occur in the tails of the distribution (P < 0.05, 0.95 < P ). Discrepancies for other
designs and FA values occur in the far tails of the distribution. Also evident from the
decreased range of the FA estimates when moving from Design 1 to Designs 3 and 5
is that the variance of the estimates decreases.
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Figure 16: The variances of trace and FA depend on the values of trace and FA.
These plots show sample variances of trace and FA for tensors various trace/FA com-
binations. Each point on the plots is the sample variance of the respective quantity,
computed from 50000 data sets simulated with Design 2.
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Trace log10Variance of Trace

Figure 17: The variances of the trace estimates vary throughout the brain. In some
of the highly anisotropic regions (e.g., corpus callosum), trace estimates have higher
variance than in more isotropic regions. This is consistent with the simulation results.
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Fractional Anisotropy (FA) log10Variance of FA

Figure 18: The variance of the FA estimates also vary throughout the brain. Regions
where FA is relatively high (e.g., the corpus callosum) have relatively low variance.
Within white matter, the FA variances vary by approximately one order of magnitude.
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simulate data under a particular design to evaluate the usefulness of the asymptotic

approximations.

It is important to note that while the noise in DWIs may be relatively constant

throughout the brain, the noise in estimates of the tensor and tensor-derived quanti-

ties is not. Our simulation studies show that regions with high FA have less variable

FA estimates than regions with low FA. The opposite effect is seen with the trace.

When FA is high, the estimates of trace have relatively higher variance. These results

are consistent with the findings of Pierpaoli and Basser (1996). The dependence of

the tensor-derived quantities on their respective quantities is best illustrated in Figure

16.

The dependence of the variances of trace and FA on the values of trace and FA has

important implications for testing for differences in the means of these tensor-derived

quantities. The assumption of equal variance that is common to many standard

statistical tests used in group analyses could be potentially violated. Suppose that

one uses a t-test to test the null hypothesis that the mean of FA in one group is

the same as the mean FA in another group. This test is commonly used for both

voxel-based morphometry (VBM) and ROI-based group analyses. Jones et al. (2005)

cites several VBM studies of tensor-derived quantities in the context of examining

the effect of the filter size. When the null hypothesis is true, the variances in each

group are equal. When the alternative hypothesis, that the means are unequal, is

true, then the variances of the FA measurements will differ in the two groups. This

aspect of trace and FA makes estimating the null distribution, which is necessary

for comparing the test statistic, impossible. The effect of the variance heterogeneity

under the alternative hypothesis may be substantial. Variances of trace and FA differ
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considerably over white matter. For example, the variance of FA varies by roughly

one order of magnitude (Figure 18). More work is needed to evaluate the impact of

unequal variances on the inferences that are made with simple testing procedures.

Combining estimates of the variances of trace or FA measurements with a weighted

linear model may provide one solution to the problem of unequal variances. Take,

for example, testing the mean of FA between two groups. We have a set of n1

estimates from group 1, FA11, . . . , FA1n1 , and a set of n2 estimates from group 2,

FA21, . . . , FA2n2 . Corresponding to these FA measurements are estimates of their

variances, denoted ξ11, . . . , ξ1n1 , ξ21, . . . , ξ2n2 . These variance estimates can be com-

puted with our estimator in equation (3.12) or other methods such as the bootstrap.

Then choose the weights w1, . . . , wn1+n2 as 1/ξ11, . . . , 1/ξ1n1 , 1/ξ21, . . . , 1/ξ2n2 , respec-

tively. Define α = (α0, α1)′ as the model parameter, where α0 is the mean FA in

group 1 and α1 is the difference in the means between groups 1 and 2. The parameter

α is estimated as

α̂ := arg min
α

n1+n2∑

i=1

wi(FAi − α0 − yiα1)
2,

where yi has a value of 1 when the ith observation is from group 2 and otherwise

has a value of 0. Then, testing the null hypothesis that the mean FA of group 1 is

equal to the mean FA of group 2 is equivalent to testing that α1 = 0. Provided that

the variance estimates are good, the residuals from the linear model fit should have

zero mean and approximately constant variance. This allows valid testing of the null

hypothesis, that α1 = 0, with a t-test. This type of weighted least squares estimation

and testing can be performed in many standard statistical packages. More general

linear models of FA or other tensor-derived quantities that are fit with weighted least

squares are possible. These models may include other factors or covariates.
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One limitation of our method is that it assumes the errors in the diffusion weighted

images are independent, normal, and have constant variance. The independence as-

sumption is satisfied by the independent acquisition of the DWIs themselves. Ideally,

for high SNR, the normality and constant variance assumptions are satisfied. At

high values of b (- 1000 s/mm2), which cause lower SNR, these assumptions can

break down. For most routine DTI scans, the SNR is at least 20 and, consequently,

normality is a good assumption. Head motion, eddy current distortion, susceptibility

effects, and other systematic artifacts, as well as subtle physiologic noise may also

cause violations in these assumptions.

Rician noise has the unique property that the variance of noise in magnitude MR

images depends on the mean of the signal even when the noise in the quadrature

channels is constant. This is a source of non-constant variance in diffusion-weighted

images since directions along the major axis of axons will have lower mean signal than

from directions perpendicular to the major axis. The effect of non-constant variance

is only substantial for very low SNR (Koay and Basser 2006) and is not a significant

issue for the imaging parameters considered in our study. Nevertheless, our methods

can be easily extended to situations where non-constant variance is an issue. The

noise covariance matrix, σ2In, needs to be replaced with a matrix of the form σ2wIn,

where w is a vector of weights, which depend on the SNR of each measurement. Koay

and Basser (2006) derived an analytical expression for the weights. The tensor is then

estimated iteratively by weighted nonlinear least squares.

Our method can be extended to other functions of the diffusion tensor and to study

design of DTI experiments. Other functions of the tensor that are commonly used

include the direction of the primary eigenvector of the tensor and relative anisotropy.
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Methods for testing for group differences in the direction of the primary eigenvector

have been described (Schwartzman et al. 2005). The issue of the affect of experimental

design on the variance of tensor-derived quantities has been studied with Monte Carlo

methods (Jones 2004; Papadakis et al. 1999; Skare et al. 2000). The asymptotic

variances can also be used as a benchmark for comparing designs of DTI experiments.

Finally, Salvador et al. (2005) proposed an estimator for the variance of mean

ADC based on the linearized tensor model. They did not consider an estimator

for the variance of FA. However, by applying the delta method, an estimator for the

variance of FA can also be obtained from the linearized tensor model. By substituting

the inverse of the Fisher information matrix in equation (3.12) with the estimator for

the variance of the tensor from Salvador et al. (2005), one obtains an estimator for the

variance of FA from the linearized tensor model. It is unknown how the performance

of such an estimator compares to our estimator in equation (3.12). Since the NLSE

outperforms the linearized tensor estimator (Koay, Carew, Alexander, Basser, and

Meyerand 2006), we suspect that the FA variance estimator from the NLSE will

outperform the FA variance estimator for the linearized model. This requires closer

examination.
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Appendix A

Construct a tensor with a known

FA and trace

In this appendix, we consider the problem of how to construct a cylindrically sym-

metric tensor that has a pre-specified FA and trace. This is useful for simulation

studies where one wants to generate tensors. Trace and FA alone do not uniquely

specify a cylindrically symmetric tensor. Additional information about the orienta-

tion is needed. Since it is possible to apply a rotation to the tensor to obtain any

desired orientation, we will assume that the major axis of the tensor coincides with

the x-axis. Denote the three eigenvalues of the tensor in descending order with λ1, λ2,

and λ3. Under cylindrical symmetry, λ2 = λ3. When the major axis of the tensor D

is coincident with the x-axis, the (at most) six unique elements of the diffusion tensor

are written as (Dxx, Dyy, Dzz, Dxy, Dyz, Dxz) = (λ1, λ2, λ2, 0, 0, 0). Thus, specifying

the cylindrically symmetric tensor oriented along the x-axis from trace and FA is

equivalent to specifying λ1 and λ2. For the remainder of this appendix, when we refer

to the tensor, we are referring to a cylindrically symmetric tensor that is oriented

along the x-axis.

We now consider the mathematical relationship between λ1, λ2 and trace, FA. By
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cylindrical symmetry,

trD = λ1 + 2λ2. (A.1)

Using the previous equation, we can express FA as follows,

2

3
FA2 =

(λ1 − (1/3)trD)2 + 2[(1/2)(trD− λ1)− (1/3)trD]2

λ2
1 + (1/2)(trD− λ1)2

. (A.2)

From the previous two equations, we see that we have a system of two equations and

two unknowns, namely λ1 and λ2. We can solve the quadratic equation (A.2) for λ1.

Writing (A.2) in the form aλ2
1 + bλ1 + c = 0, we see that

a = FA2 − 3/2,

b = trD[1− (2/3)FA2], and

c = (trD)2[(1/3)FA2 − 1/6].

Solving for λ1 gives two roots. One solution is greater than the other. The larger

of the two solutions gives a prolate tensor and satisfies the ordering λ1 ≥ λ2 ≥ λ3.

The other solution results in an oblate tensor. Since diffusion of non-crossing axons

is represented by a prolate tensor, we select the larger solution for λ1. To get the

value of λ2, substitute the solution for λ1 in equation (A.1) and solve for λ2.
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