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Abstract

This article provides a tour of statistical learning regularization methods that have

found application in a variety of medical data analysis problems. The uniting fea-

ture of these methods is that they involve an optimization problem which balances

fidelity to the data with complexity of the model. The two settings for the optimiza-

tion problems considered here are Reproducing Kernel Hilbert Spaces (a brief tutorial

is included), and ℓ1 penalties, which involve constraints on absolute values of model

coefficients. The tour begins with thin plate splines, smoothing spline ANOVA models,

multicategory penalized likelihood estimates and models for correlated Bernoulli data

for regression, in these two settings. Leaving regression, the tour proceeds to the the

Support Vector Machine, a modern and very popular tool for classification. Then clas-

sification based on dissimilarity information rather than direct attribute information

is considered. All of the learning models discussed require dealing with the so-called

bias-variance tradeoff, which means choosing the right balance between fidelity and

complexity. Tuning methods for choosing the parameters governing this tradeoff are

noted. The chapter ends with remarks relating Empirical Bayes and Gaussian Process

Priors to the regularization methods
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1 Introduction

In this article we will primarily describe regularization methods for statistical learning. In

this class of methods a flexible, or nonparametric, statistical learning model is built as the

solution to an optimization problem which typically has a term (or group of terms) that

measure closeness of the model to the observations, balanced against another term or group

of terms which penalize complexity of the model. This class of methods encompass the so

called ”kernel methods” in the machine learning literature which are associated with Support

Vector Machines (SVMs) — SVMs are of primary importance for nonparametric classification

and learning in biomedical data analysis. The classic penalized likelihood methods are also

regularization/kernel methods methods, and between SVMs, penalized likelihood methods

and other regularization methods, a substantial part of statistical learning methodology is

covered.

The general learning problem may be described as follows: We are given a labeled (or

partly labeled) training set: {yi, x(i), i = 1, . . . , n} where x(i) is an attribute vector of the

ith subject and yi is a response associated with it. We have x ∈ X , y ∈ Y, but we are

deliberately not specifying the nature of either X or Y — they may be very simple or be

highly complex sets. The statistical learning problem is to obtain a map f(x) → y for x ∈ X ,

so that, given a new subject with attribute vector x∗ ∈ X , f(x) generalizes well. That is,

f(x∗) predicts ŷ∗ ∈ Y, such that, if y∗ associated with x∗ were observable, then ŷ∗ would be

a good estimate of it. More generally, one may want to estimate a conditional probability

distribution for y|x. The use to which the model f is put may simply be to classify, but in

many interesting examples, x is initially a large vector, and it is of scientific interest to know

how f or some functionals of f depend on components or groups of components of x — the

sensitivity, interaction, or variable selection problem. A typical problem in demographic

medical studies goes as follows: Sets of {yi, x(i)} are collected in a defined population, where

the attribute vectors are vectors of relevant medical variables such as age, gender, blood

pressure, cholesterol, body mass index, smoking behavior, lifestyle factors, diet, and other

variables of interest. A simple response might be whether or not the person exhibits a

particular disease of interest (y ∈ {yes, no}). A major goal of evidence-based medicine is

to be able to predict the likelihood of the disease for a new subject, based on its attribute

vector. Frequently the nature of f (for example, which variables/patterns of variables most

influence f) is to be used to understand disease processes and suggest directions for further
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biological research.

The statistical learning problem may be discussed from different points of view, which

we will call “hard” and “soft” (Wahba 2002). For hard classification, we would like to

definitively assign an object with attribute x∗ to one of two or more classes. For example

given microarray data it is desired to classify leukemia patients into one of four possible

classes (Brown, Grundy, Lin, Cristianini, Sugnet, Furey, Ares & Haussler 2000) (Lee, Lin &

Wahba 2004). In the examples in (Lee et al. 2004) classification can be carried out nearly

perfectly with a multicategory SVM (for other methods, see the references there). The

difficulty comes about when the attribute vector is extremely large, the sample size is small,

and the relationship between x and y is complex. The task is to mine the data for those

important components or functionals of the entire attribute vector which can be used for

the classification. Soft classification as used here is just a synonym for risk factor estimation

where one desires to form an estimate of a probability measure on a set of outcomes —

in typical demographic studies, if the outcome is to be a member of one of several classes,

the classes are generally not separable by attribute vector, since two people with the same

attribute vector may well have different responses. It’s just that the probability distribution

of the responses is sensitive to the attribute vector. The granddaddy of penalized likelihood

estimation for this problem (O’Sullivan, Yandell & Raynor 1986) estimated the 19 year risk

of a heart attack, given blood pressure and cholesterol at the start of the study. Classes of

people who do and do not get heart attacks are generally far from separable on the basis

of their risk factors - people with high blood pressure and high cholesterol can live a long

life, but as a group their life expectancy is less than people without those risk factors. In

both hard and soft classification, frequently one of the major issues is to understand which

attributes are important, and how changes in them affect the risk. For example, the results

can be used by doctors to decide when to persuade patients to lower their cholesterol, or for

epidemiologists to estimate disease rates and design public health strategies in the general

population. In other problems, particularly involving genetic data, it is of particular interest

to determine which components of the genome may be associated with a particular response,

or phenotype.

In Section 2 we review soft classification, where the emphasis is on obtaining a variety of

flexible, nonparametric models for risk factor estimation. Vector-valued observations of var-

ious types are considered. A brief review of Reproducing Kernel Hilbert Spaces (RKHS) is

included here. Section 3 describes recent developments in soft classification where individual
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variable selection and variable pattern selection is important. Section 4 goes on to classifi-

cation with SVMs, including multiple categories and variable selection. Section 5 discusses

data that is given as dissimilarities between pairs of subjects or objects, and Section 6 closes

this article with an overview of some of the tuning methods for the models discussed.

2 Risk factor estimation: penalized likelihood estimates

2.1 Thin plate splines

The Western Electric Health Study followed 1,665 men for 19 years and obtained data

including men who were alive at the end of the followup period and those who had died

from heart disease. Participants dying from other causes were excluded. Penalized likelihood

estimation for members of the exponential family (McCullagh & Nelder 1989), which includes

Bernoulli data (that is, zero-one, alive or dead, etc.) was first proposed in (O’Sullivan

et al. 1986). The authors used a penalized likelihood estimate with a thin plate spline

(tps) penalty to to get a flexible estimate of the 19 year risk of death by heart attack as a

function of diastolic blood pressure and cholesterol. Figure 1 from (O’Sullivan et al. 1986)

gives a parametric (linear) and nonparametric tps fit to the estimated log odds ratio after

transformation back to probability.

It can be seen that the nonparametric fit has a plateau, which cannot be captured by the

parametric fit. We now describe penalized likelihood estimation for Bernoulli data, and how

the tps is used in the estimate in (O’Sullivan et al. 1986). Let x be a vector of attributes,

and y = 1 if a subject with attribute x has the outcome of interest and 0 if they do not.

Let the log odds ratio f(x) = logp(x)/(1 − p(x)) where p(x) is the probability that y = 1

given x. Then p(x) = ef(x)/(1 + ef(x)). f is the so called canonical link for Bernoulli data

(McCullagh & Nelder 1989). Given data {yi, x(i), i = 1, · · · , n}, the likelihood function is
∏n

i=1 p(x(i))yi(1− p(x(i))1−yi, and the negative log likelihood can be expressed as a function

of f :

L(y, f) =
n
∑

i=1

−yif(x(i)) + log(1 + ef(x(i)). (1)

Linear (parametric) logistic regression would assume that f(x) =
∑

ℓ cℓBℓ(x), where the Bℓ

are a small, fixed number of basis functions appropriate to the problem, generally linear or

low degree polynomials in the components of x.
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Figure 1: 19 year risk of a heart attack given serum cholesterol and diastolic blood pressure.

Left: linear model in the log odds ratio. Right: tps estimate. c©JASA
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The penalized likelihood estimate of f is a solution to an optimization problem of the

form: find f in H to minimize

L(y, f) + λJ(f). (2)

Here H is a special kind of RKHS (Gu & Wahba 1993a). For the Western Electric study, J(f)

was chosen so that f is a tps. See (Duchon 1977) (Meinguet 1979) (O’Sullivan et al. 1986)

(Wahba 1990) (Wahba & Wendelberger 1980) for technical details concerning the tps. For

the Western Electric study, the attribute vector x = (x1, x2) = (cholesterol, diastolic blood

pressure) was of dimension d = 2, and the two dimensional tps penalty functional of order 2

(involving second derivatives) is

J(f) = J2,2(f) =
∫ ∞

−∞

∫ ∞

−∞
f2

x1x1
+ 2f2

x1x2
+ f2

x2x2
dx1dx2, (3)

where the subscript (2, 2) stands for (dimension, order). In this case f is known to have a

representation

f(x) = d0 + d1x1 + d2x2 +
n
∑

i=1

ciE(x, x(i)) (4)

where

E(x, x(i)) = ‖x − x(i)‖2log‖x − x(i)‖, (5)

where ‖ · ‖ is the Euclidean norm. There is no penalty on linear functions of the components

(x1, x2) of the attribute vector (the “null space” of J2,2). It is known that the ci for the

solution satisfy
∑n

i=1 ci = 0,
∑n

i=1 cix1(i) = 0 and
∑n

i=1 cix2(i) = 0, and furthermore,

J(f) =
∑

i,j=1,···,n

cicjE(x(i), x(j)). (6)

Numerically, the problem is to minimize (2) under the stated conditions and using (6) to

obtain d0, d1, d2, c = (c1, · · · , cn).

We have described the penalty functional for the thin plate spline and something about

what it looks like for the d = 2,m = 2 case in (3). However, the tps is available for general

d and for any m with 2m − d > 0. The general tps penalty functional in d dimensions and

m derivatives is

Jd,m =
∑

α1+···+αd=m

m!

α1! · · ·αd!

∫ ∞

−∞
· · ·

∫ ∞

−∞

(

∂mf

∂xα1

1 · · · ∂xαd

d

)2
∏

j

dxj . (7)

See (Wahba 1990). Note that there is no penalty on polynomials of degree less than m,

so that the tps with d greater than 3 or 4 is rarely attempted because of the very high

dimensional null space of Jd,m.
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The choice of the tuning parameter λ here governs the tradeoff between the goodness of

fit to the data, as measured by the likelihood, and the complexity, or wiggliness of the fit.

Note that second derivative penalty functions limit curvature, and tend to agree with human

perceptions of smoothness, or lack of wiggliness. When the data are Gaussian (as in (Wahba

& Wendelberger 1980)) rather than Bernoulli, the tuning (smoothing) parameter λ can be

chosen by the GCV (Generalized Cross Validation) method; a related alternative method

is GML (Generalized Maximum Likelihood), also known as REML (Restricted Maximum

Likelihood). The order m of the tps may be chosen by minimizing with respect to λ for each

value of m and then choosing m with the smallest minimum. See (Craven & Wahba 1979)

(Golub, Heath & Wahba 1979) (Gu & Wahba 1991). As λ tends to infinity, the solution

tends to its best fit in the unpenalized space, and as λ tends to 0, the solution attempts to

interpolate the data. In the case of biomedical data it is sometimes the case that a simple

parametric model (low degree polynomials, for example) is adequate to describe the data.

The experimenter can design such a model to be in the null space of the penalty functional,

and then a sufficiently large λ will produce the parametric model. Detailed discussion of

tuning parameters for Bernoulli data is in Section 6.

A number of commercial as well as public codes exist for computing the thin plate

spline, with the GCV or GML method of choosing the tuning parameters. Public codes in R

(http://cran.r-project.org/ include assist, fields, gss, mgcv. The original fortran

tps code is found in netlib (www.netlib.org/gcv). Further details on the thin plate spline

can be found in the historical papers (Duchon 1977) (Meinguet 1979) (Wahba 1990) (Wahba

& Wendelberger 1980), in the documentation for the fields code in R, and elsewhere. Thin

plate splines are used in the “morphing” of medical images (Bookstein 1997), and have

been used to fit smooth surfaces to data that has been aggregated over irregular geometrical

shapes such as counties (Wahba 1981).

2.2 Positive definite functions and Reproducing Kernel Hilbert

Spaces

We will give a brief introduction to positive definite functions and RKHSs here, because

all of the so-called “kernel methods” which we will be discussing have their foundation as

optimization problems in these spaces. The reader who wishes to avoid this technicality may

skip this subsection. Let T be some domain, emphasizing the generality of the domain. For
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concreteness you may think of T as Euclidean d-space. K(·, ·) is said to be positive definite

if, for every n and any t(1), · · · , t(n) ∈ T and c1, · · · , cn

n
∑

i,j=1

cicjK(t(i), t(j)) ≥ 0. (8)

In this article we denote the inner product in an RKHS by < ·, · >. To every positive definite

function K(·, ·) there is associated an RKHS HK (Aronszajn 1950) (Wahba 1990) which can

be constructed as a collection of all functions of the form

fa
L(t) =

L
∑

ℓ=1

aℓK(t, t(ℓ)) (9)

with the inner product

< fa
L, f b

M >=
∑

ℓ,m

aℓbmK(t(ℓ), t(m)) (10)

and all functions that can be constructed as the limits of all Cauchy sequences in the norm

induced by this inner product; these sequences can be shown to converge pointwise. What

makes these spaces so useful is that in an RKHS HK we can always write for any f ∈ HK

f(t∗) =< Kt∗ , f > (11)

where Kt∗(·) is the function of t given by K(t∗, t) with t∗ considered fixed. A trivial example

is T is the integers 1, · · · , n. There K is an n × n matrix, the elements of HK are n-

vectors, and the inner product is < f, g >= f ′K−1g. Kernels with penalty functionals that

involve derivatives are popular in applications. A simple example of a kernel whose square

norm involves derivatives is the kernel K associated with the space of periodic functions

on [0, 1] which integrate to 0 and which have square integrable second derivative. It is

K(s, t) = B2(s)B2(t)/(2!)2 − B4(|s − t|)/4!, where s, t ∈ [0, 1], and Bm is the mth Bernoulli

polynomial, see (Wahba 1990). The square norm is known to be
∫ 1
0 (f ′′(s))2ds. The periodic

and integration constraints are removed by adding linear functions to the space and the

fitted functions can be shown to be cubic polynomial splines. For more on polynomial

splines see (Craven & Wahba 1979) (deBoor 1978) (Wahba 1990). Another popular kernel

is the Gaussian kernel, K(s, t) = exp (− 1
σ2‖s − t‖2) defined for s, t in Euclidean d space,

Ed, where the norm in the exponent is the Euclidean norm. Elements of this space are

generated from functions of s ∈ Ed of the form Kt∗(s) = exp (− 1
σ2‖s − t∗‖2), for t∗ ∈ Ed.

Kernels on Ed that depend only on the Euclidean distance between their two arguments are
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known as radial basis functions (rbf’s). Another popular class of rbf’s is the Matern class,

see (Stein 1999). Matern kernels have been used to model arterial blood velocity in (Carew,

Dalal, Wahba & Fain 2004), after fitting the velocity measurements, estimates of the wall

shear stress are obtained by differentiating the fitted velocity model.

We are now ready to write a (special case of) a general theorem about optimization

problems in RKHS.

The Representer Theorem (special case)(Kimeldorf & Wahba 1971): Given observations

{yi, t(i), i = 1, 2, · · · , n}, where yi is a real number and t(i) ∈ T , and given K and (possibly)

some particular functions {φ1, · · ·φM} on T , find f of the form f(s) =
∑M

ν=1 dνφν(s) + h(s)

where h ∈ HK to minimize

Iλ{y, f} =
1

n

n
∑

i=1

C(yi, f(t(i))) + λ‖h‖2
HK

(12)

where C is a convex function of f . It is assumed that the minimizer of
∑n

i=1 C(yi, f(t(i)))

in the span of the φν is unique. Then the minimizer of Iλ{y, f} has a representation of the

form:

f(s) =
M
∑

ν=1

dνφν(s) +
n
∑

i=1

ciK(t(i), s). (13)

The coefficient vectors d = (d1, · · · dM )′ and c = (c1, · · · , cn)′ are found by substituting (13)

into the first term in (12), and using the fact that ‖∑n
i=1 ciKt(i)(·)‖2

HK
= c′Knc where Kn is

the n× n matrix with i, jth entry K(t(i), t(j)). The name “reproducing kernel” comes from

the fact that < Kt∗ ,Ks∗ >= K(t∗, s∗).

The minimization of (12) generally has to be done numerically by an iterative descent

method, except in the case that C is quadratic in f , in which case a linear system has to

be solved. When K(·, ·) is a smooth function of its arguments and n is large, it has been

found that excellent approximations to the minimizer of (12) for various C can be found with

functions of the form:

f(s) =
M
∑

ν=1

dνφν(s) +
L
∑

j=1

cijK(t((ij), s), (14)

where the t(i1), · · · t(iL) are a relatively small subset of t(1), · · · , t(n), thus reducing the

computational load. The t(i1), · · · , t(iL) may be chosen in various ways, as a random subset,

by clustering the {t(i)} and selecting from each cluster (Xiang & Wahba 1997), or by a

greedy algorithm, as for example in (Luo & Wahba 1997), depending on the problem.
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2.3 Smoothing spline ANOVA models

Thin plate spline estimates and fits based on the Gaussian kernel and other radial basis

functions are (in their standard form) rotation invariant in the sense that rotating the coor-

dinate system, fitting the model, and rotating back do not change anything. Thus they are

not appropriate for additive models or for modeling interactions of different orders.

Smoothing spline ANOVA (SS-ANOVA) models provide fits to data of the form f(t) =

C +
∑

α fα(tα) +
∑

α<β fαβ(tα, tβ) + · · ·. Here fα is in some RKHS Hα, fαβ ∈ Hα ⊗ Hβ

and so forth. The components of the decomposition satisfy side conditions which generalize

the usual side conditions for parametric ANOVA which make the solutions unique. The fα

integrate to zero, the fαβ integrate to zero over both arguments, and so forth. f is obtained

as the minimizer, in an appropriate function space, of

Iλ{y, f} = L(y, f) +
∑

α

λαJα(fα) +
∑

α<β

λαβJαβ(fαβ) + · · · , (15)

where L(y, f) is the negative log likelihood of y = (y1, · · · , yn) given f , the Jα, Jαβ, · · · are

quadratic penalty functionals in RKHS, the ANOVA decomposition is terminated in some

manner, and the λ’s are to be chosen. The “spline” in SS-ANOVA models is somewhat of a

misnomer, since SS-ANOVA models do not have to consist of splines. The attribute vector

t = (t1, · · · , td), where tα ∈ T (α), is in T = T (1)⊗T (2)⊗· · ·⊗T (d) where the T (α) may be quite

general. The ingredients of the model are: For each α, there exist a probability measure µ(α)

on T (α), and an RKHS of functions Hα defined on T (α) such that the constant function is in

Hα and the averaging operator Eαf =
∫

fα(tα)dµα is well defined for any fα ∈ Hα. Then f

is in (a subspace of) H = H1 ⊗H2 · · · Hd. The ANOVA decomposition generalizes the usual

ANOVA taught in elementary statistics courses via the expansion

I =
∏

α

(Eα+(I−Eα)) =
∏

α

Eα+
∑

α

(I−Eα)
∏

β 6=α

Eβ+
∑

α<β

(I−Eα)(I−Eβ)
∏

γ 6=α,β

Eγ+· · ·+
∏

α

(I−Eα).

(16)

The components of this decomposition generate the ANOVA decomposition of f by

C = (
∏

α

Eα)f, fα = ((I − Eα)
∏

β 6=α

Eβ)f, fαβ = ((I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγ)f, · · · (17)

and so forth. The spaces Hα are decomposed into the one dimensional spaces of constant

functions, and H(α), whose elements satisfy Eαf = 0. The H(α) may be further decomposed

into low dimensional unpenalized subspaces plus smooth subspaces that will be penalized.
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Figure 2: Four year probability of progression of diabetic retinopathy as a function of du-

ration of diabetes at baseline and body mass index, with glycosylated hemoglobin set at its

median. c©Ann. Statist.

All this allows the exploitation of the geometry of RKHS to obtain the minimizer of Iλ{y, f}
of (15) in a convenient manner. Reproducing kernels (RKs) for the various subspaces are

constructed from Kronecker products of the RKs for functions of one variable. SS-ANOVA

models are studied in detain in (Gu 2002). Other references include (Davidson 2006) (Gao,

Wahba, Klein & Klein 2001) (Gu & Wahba 1993b) (Lin 2000) (Wahba 1990) (Wahba, Wang,

Gu, Klein & Klein 1995) (Wang 1998) (Wang, Ke & Brown 2003).

Figure 2 from (Wahba et al. 1995) plots the four year probability of progression of di-

abetic retinopathy based on three predictor variables, dur = duration of diabetes, gly =

glycosylated hemoglobin, and bmi = body mass index. An SS-ANOVA model based on cubic

splines was fitted with the result

f(t) = C + f1(dur) + agly + f3(bmi) + f13(dur, bmi). (18)

In the cubic spline fit, there is no penalty on linear functions. For the gly term, the estimated

smoothing parameter was sufficiently large so that the fit in gly was indistinguishable from

linear so that f2(gly) became agly. For the plot, gly has been set equal to its median.

Software for SS-ANOVA models can be found in the R codes gss, which is keyed to (Gu 2002),

and assist. Software for main effects models is found in the R code gam, based on (Hastie

& Tibshirani 1986).

12



2.4 Multicategory penalized likelihood estimates

Multicategory penalized likelihood methods were first proposed in (Lin 1998), see also

(Wahba 2002). In this setup, the endpoint is one of several categories; in the works cited,

the categories were “alive” or “deceased” by cause of death. Considering K + 1 possible

outcomes, with K > 1, let pj(x), j = 0, 1, · · · ,K be the probability that a subject with

attribute vector x is in category j,
∑K

j=0 pj(x) = 1. The following approach was proposed in

(Lin 1998): Let fj(x) = log[pj(x)/p0(x)], j = 1, · · · ,K, where p0 is assigned to a base class.

Then

pj(x) =
efj(x)

1 +
∑K

j=1 efj(x)
, j = 1, · · · ,K

p0(x) =
1

1 +
∑K

j=1 efj(x)
. (19)

The class label for the ith subject is coded as yi = (yi1, · · · , yiK) where yij = 1 if the ith

subject is in class j and 0 otherwise. Letting f = (f1, · · · , fK), the negative log likelihood

can be written as

L(y, f) =
n
∑

i=1

{
K
∑

j=1

−yijfj(x(i)) + log(1 +
K
∑

j=1

efj(x(i)))} (20)

and an SS-ANOVA model was fitted as a special (main effects) case of (15) with cubic spline

kernels.

Figure 3 from (Lin 1998) gives ten year risk of mortality by cause as a function of age. The

model included two other risk factors, glycosylated hemoglobin and systolic blood pressure

at baseline, and they have been set equal at their medians for the plot. The differences

between adjacent curves (from bottom to top) are probabilities for alive, diabetes, heart

attack, and other causes. The data are plotted as triangles (alive, on the bottom), crosses

(diabetes) diamonds (heart attack) and circles (other).

See also (Zhu & Hastie 2003), who proposed a version of the multicategory penalized likelihood

estimate for Bernoulli data that did not have a special base class. The model is

pj(x) =
efj(x)

∑K
j=1 efj(x)

, j = 1, · · · , K.

(21)

This model is overparametrized, but that can be handled by adding a sum-to-zero constraint
∑K

j=1 fj(x) = 0, as was done in multicategory support vector machine (Lee et al. 2004) discussed

later. The authors show that this constraint is automatically satisfied in the optimization problem

they propose.
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2.5 Correlated Bernoulli data: The two eye problem, the multiple

sibs problem

In (Gao et al. 2001), a general model including the following is considered: There are n units, each

unit has K members, and there is a Bernoulli outcome that is 0 or 1, for each member. There

may be member-specific risk factors and unit-specific risk factors. Thus, the responses are vectors

yi = (yi1, · · · , yiK) where yij ∈ {0, 1} is the response of the jth member of the ith unit. Allowing

only first order correlations, a general form of the negative log likelihood is

L(y, f) =
n
∑

i=1

{
K
∑

j=1

−yijfj(x(i)) −
∑

j 6=k

αjkyijyik + b(f, α)} (22)

where (suppressing the dependence of the fj on x(i)), we have

b(f, α) = log



1 +
K
∑

j=1

efj +
∑

j 6=k

efj+fk+αjk +
∑

j 6=k 6=l

efj+fk+fl+αjk+αjl+αkl + · · · + e
(
∑K

j=1
fj+
∑

j 6=k
αjk)





(23)

The αjk are the log odds ratios (logOR) and are a measure of the correlation of the jth and kth

outcome when the other outcomes are 0:

αjk = logOR(j, k) =
Pr(yj = 1, yk = 1) Pr(yj = 0, yk = 0)

Pr(yj = 1, yk = 0) Pr(yj = 0, yk = 1)
|yr = 0, r 6= j, k. (24)

The two eye problem was considered in detail in (Gao et al. 2001) where the unit is a person and the

members are the right eye and the left eye. The outcomes are pigmentary abnormality in each eye.

There only person-specific predictor variables were considered, so that K is 2, f1(x) = f2(x) = f(x)

where x(i) is the ith vector of person-specific risk factors, and there is a single α12 = α. In that

work α was assumed to be a constant, f is an SS-ANOVA model, and Iλ(y, f) of the form (15) is

minimized with L(y, f) of the form (22). The cross product ratio a12 = logOR(1, 2) is a measure

of the correlation between the two eyes, taking into account the person-specific risk factors. It may

be used to estimate whether, e. g. the second eye is likely to have a bad outcome, given that the

first eye already has. The case where the unit is a family and the members are a sibling pair within

the family with person-specific attributes, is considered in (Chun 2006), where the dependence on

person-specific attributes has the same functional form for each sib. Then K = 2 and fj(x(i))

becomes f(xj(i)), where xj((i) is the attribute vector of the jth sibling, j = 1, 2 in the ith family.

Again, an optimization problem of the form (15) is solved. If α is large, this indicates correlation

within the family, taking account of person-specific risk factors, and may suggest looking for genetic

components.
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Figure 4: Absolute value penalties lead to solutions at the extreme points of the diamond,

which means sparsity in the solution vector.

3 Risk factor estimation: likelihood basis pursuit and

the LASSO

3.1 The l1 penalty

In Section 2 the penalty functionals were all quadratic, being square norms or seminorms1 in an

RKHS. Generally if there are n observations there will be n representers in the solution, for very

large n this is not desirable. This may be mitigated as in (14), but it is well known that imposing an

absolute value penalty (l1 penalty) on coefficients of the form
∑n

i=1 |ci| (as opposed to a quadratic

form in the c’s) will tend to provide a sparse solution, that is, many of the ci will be zero. Figure 4

suggests why. The concentric ellipses are meant to represent the level curves of a quadratic function

Q(x1, x2) in x1 and x2 (with the minimum in the middle) and the circle and inscribed diamond

are level curves of |x|l2 = x2
1 + x2

2 and |x|l1 = |x1|+ |x2| respectively. If the problem is to minimize

Q(x) + |x|lp for p = 1 or 2, it can be seen that with the l1 norm, the minimum is more likely to be

at one of the corners of the diamond. The desirability of sparsity comes up in different contexts;

to select a sparser number of basis functions given an overcomplete set of basis functions, or to

1A seminorm here is the norm of the projection of f onto a subspace with orthocomplement of low

dimension. The orthocomplement is the null space of J . The thin plate penalty functionals are seminorms.
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select a smaller number of variables or clusters of variables out of a much larger set to be used

for regression or classification. Likelihood basis pursuit (Chen, Donoho & Saunders 1998) and the

LASSO (Tibshirani 1996) are two basic papers in the basis function context and variable selection

context respectively. There is a large literature in the context of variable selection in linear models,

based on the LASSO, which in its simplest form imposes an l1 penalty on the coefficients in a linear

model, see (Efron, Hastie, Johnstone & Tibshirani 2004) (Fan & Li 2001) (Knight & Fu 2000)

and others. An overcomplete set of basis functions in a wavelet context was generated in (Chen

et al. 1998), who then reduced the number of basis functions in their model via an l1 penalty on

the coefficients. In the spirit of (Chen et al. 1998), (Zhang, Wahba, Lin, Voelker, Ferris, Klein &

Klein 2004) generated an overcomplete set of basis functions by the use of of representers in an

SS-ANOVA model to do model fitting and variable selection in a flexible way, similarly reducing

the number of main effects or interactions by an l1 penalty on basis function coefficients, The

method was used to obtain flexible main effects models for risk factors for eye diseases based on

data collected in the Beaver Dam Eye Study (Klein, Klein, Linton & DeMets 1991). Beginning with

(Gunn & Kandola 2002) various authors have simultaneously imposed l1 and quadratic penalties in

the context of flexible nonparametric regression/kernel methods, see (Zhang & Lin 2006b) (Zhang

2006) and (Zhang & Lin 2006a) (who called it “COSSO”). Software for the COSSO may be found

at http://www4.stat.ncsu.edu/~hzhang/software.html. Later (Zou & Hastie 2005) (calling it

“Elastic Net”) in the context of (linear) parametric regression, used the same idea of a two term

penalty functional, one quadratic the other l1.

3.2 LASSO-Patternsearch

The LASSO-Patternsearch method of (Shi, Wahba, Lee, Klein & Klein 2006) was designed with

specially selected basis functions and tuning procedures to take advantage of the sparsity inducing

properties of l1 penalties to enable the detection of potentially important higher order variable

interactions. Large and possibly very large attribute vectors x = (x1, · · · , xp) with entries 0 or 1

are considered, with Bernoulli outcomes. The log odds ratio f(x) = log[p(x)/(1−p(x))] is modeled

there as

f(x) = µ +
p
∑

α=1

cαBα(x) +
∑

α<β

cαβBαβ(x) +
∑

α<β<γ

cαβγBαβγ(x) + · · · + c123···pB123···p(x) (25)

where Bα(x) = xα, Bαβ(x) = xαxβ and so forth, and the optimization problem to be solved is:

Find f of the form (25) to minimize

Iλ{y, f} =
n
∑

i=1

−yif(x(i)) + log(1 + ef(x(i)) + λ
∑

all c

|c|, (26)
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where the sum taken over all c means the sum of the absolute values of the coefficients (the l1

penalty). For p small (say, p = 8), the series in (25) may be continued to the end, but for large

p the series will be truncated. A special purpose numerical numerical algorithm was proposed

that can handle a very large number (at least 4000) of unknown coefficients, many of which will

turn out to be 0. The “patterns”, or basis functions in (25) follow naturally from the log linear

representation of the multivariate Bernoulli distribution, see (Shi et al. 2006) (Whittaker 1990).

This approach is designed for the case when the direction of all or almost all of the “risky” variables

are known and are coded as 1, since then the representation of (25) is most compact then, although

this is by no means necessary.. When this and similar problems are tuned for predictive loss,

there is a bias towards overestimating the number of basis functions and including some noise

patterns. However, at the same time it insures a high probability of including including all the

important basis functions, see (Leng, Lin & Wahba 2006) (Zou 2006). The LASSO-Patternsearch

is a two-step approach, with the first step global, as opposed to a greedy approach. In the first

first step the model is fitted globally and tuned by a predictive loss criteria. Then a second step

takes those patterns surviving the first step and enters them a parametric generalized linear model.

Finally, all basis functions whose coefficients fail a significance test in this model at level q are

deleted, where the value of q is treated as another tuning parameter. This method uncovered an

interesting relation between smoking vitamins and cataracts as risk factors in myopia data collected

as part of the Beaver Dam Eye study (Klein et al. 1991). The method has also been successfully

used to select patterns of SNP’s (single nucleotide polymorphisms in DNA data) that can separate

cases from controls with a high degree of accuracy. Pseudocode is found in (Shi et al. 2006).

Other approaches for finding clusters of important variables include (Breiman 2001) (Ruczinski,

Kooperberg & LeBlanc 2002) (Yuan & Lin 2006) (Park & Hastie 2007). These methods rely on

sequential, stepwise or greedy algorithms, and tend to work well in a broad range of scenarios,

although stepwise algorithms are not guaranteed to always find the best subset. Some preliminary

results suggest that under certain kinds of correlated scenarios the global aspects of the LASSO

Patternsearch may prove advantageous over stepwise approaches.

4 Classification: Support Vector Machines and related

estimates

Support Vector Machines were proposed by Vapnik and colleagues as a nonparametric classification

method in the early 90’s, see (Vapnik 1995) and references cited there, where it was obtained in

an argument quite different than the description we give here. However in the late 90’s (Evgeniou,
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Figure 5: SVM: Toy problem, tuned by GACV and the XiAlpha method.

Pontil & Poggio 2000) (Wahba 1999) it was observed that SVMs could be obtained as the solution to

an optimization problem in an RKHS. This made it easy to compare and contrast SVMs with other

nonparametric methods involving optimization problems in an RKHS, to develop generalizations,

and to examine its theoretical properties. In any case the efficiency of the SVM was quickly

recognized in practice, and theory soon followed to explain just why SVMs worked so well. Before

giving details, we note the following books: (Cristianini & Shawe-Taylor 2000) (Scholkopf, Burges

& Smola 1999) (Scholkopf & Smola 2002) (Scholkopf, Tsuda & J-P.Vert 2004) (Shawe-Taylor &

Cristianini 2004) (Smola, Bartlett, Scholkopf & Schuurmans 2000).

4.1 Two category Support Vector Machines

Figure 5 illustrates the flexibility of a (two category) SVM. The locations of the + and o “attribute

vectors” were chosen according to a uniform distribution on the unit rectangle. Attribute vectors

falling between the two dotted lines were assigned to be + or o with equal probability of .5. Points

above the upper dotted (true) line were assigned + with .95 and o with probability .05, and below

the lower dotted line the reverse: o with probability .95 and + with probability .05. Thus, any

classifier whose boundary lies within the two dotted lines is satisfying the Bayes rule - that is, it will

minimize the expected classification error from new observations drawn from the same distribution.

In the two category SVM the training data is coded yi ± 1 according as the ith object is in the

+ class or the o class. The classifier f is assumed to be of the form f(s) = d + h(s) where the
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constant d and h ∈ HK are chosen to minimize

Iλ{y, f} =
1

n

n
∑

i=1

C(yi, f(t(i))) + λ‖h‖2
HK

(27)

where C is the so-called hinge function: C(y, f) = (1−yf)+ where (τ)+ = 1 if τ > 0 and 0 otherwise.

A new object with f(x) > 0 will be classified as in the + class and f(x) < 0 in the o class. From

the representer theorem, the minimizer of Iλ{y, f} again has a representation of the form:

f(s) = d +
n
∑

i=1

ciK(t(i), s). (28)

‖∑n
i=1 ciKt(i)(·)‖2

HK
= c′Knc where Kn is the n × n matrix with i, jth entry K(t(i), t(j)) is sub-

stituted into (27). The problem of finding d and c1, · · · , cn is solved numerically by transforming

the problem to its dual problem, which results in the problem of minimizing a convex functional

subject to a family of linear inequality constraints. Details of this transformation may be found in

any of the books cited, in (Evgeniou et al. 2000) (Wahba, Lin & Zhang 2000) and elsewhere.

For the toy problem in Figure 5, the reproducing kernel K(s, t) was taken as the Gaussian

kernel K(s, t) = e−
1

2σ2 ‖s−t‖2

, so that the two tuning parameters λ and σ2 have to be chosen. The

solid line in Figure 5 is the 0 level curve of f obtained by choosing λ and σ2 by the GACV method,

and the dashed line by choosing λ and σ2 by Joachim’s XiAlpha method, see Section 6.4. The

SV M light software is popular code for computing the two class SVM, and the XiAlpha method

is implemented in it. See (Joachims 1999), http://svmlight.joachims.org. Other codes and

references can be found at http://www.kernel-machines.org.

Figure 6 is a toy example which demonstrates the difference between SVM and penalized likeli-

hood estimates. The penalized likelihood method provides an estimate of the probability p that

an object is in the “1” class. p is above or below .5 according as f is positive or negative. There-

fore a classification problem with a representative number of objects in each class in the training

set, and equal costs of misclassification can be solved by implementing the Bayes rule, which is

equivalent to determining whether the log odds ratio f is positive or negative. The fundamental

reason why the SVM works so well is that it is estimating the sign of the log odds ratio. See

(Lin 2001)(Lin 2002)(Lin, Wahba, Zhang & Lee 2002) for proofs. This is demonstrated in Figure 6.

The vertical scale in Figure 6 is 2p− 1. 300 equally spaced samples in x were selected and assigned

the + class with probability p, given by the solid (“truth”) line in Figure 5 . The dotted line

(labeled “logistic regression”) is the penalized likelihood estimate of 2p− 1 and is very close to the

true 2p−1. The dashed line is the SVM. The SVM is very close to −1 if 2p−1 < 0, and close to +1

for 2p−1 > 0. Note however that they result in almost exactly the same classifier. The SVM is just
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Figure 6: Penalized likelihood and the support vector machine compared.

one member of the class of large margin classifiers. A large margin classifier is one where C(y, f)

depends only on the product yf . When the data are coded as ±1, then the negative log likelihood

becomes log(1 + eyf ) and so it is also a large margin classifier. From (Lin 2001) (Lin 2002) it can

be seen that under very weak conditions on C(y, f) = C(yf), large margin classifiers implement

the Bayes rule, that is, the sign of the estimate of f is an estimate of the sign of the log odds ratio.

Among the special properties of the SVM, however, is that the hinge function is, in some sense, the

closest convex upper bound to the misclassification counter [−yf ]∗, where [τ ]∗ = 1 if τ > 0 and 0

otherwise. Furthermore, due to the nature of the dual optimization problem, the SVM estimate of

f tends to have a sparse representation, that is, many of the coefficients ci are 0, a property not

shared by the penalized likelihood estimate.

Regarding the form f(s) = d + h(s) with h ∈ HK of (27), frequently the kernel K is taken

as a radial basis function. In some applications, particularly in variable selection problems as we

shall see later, it is convenient to choose K as tensor sums and products of univariate rbf’s, as in

SS-ANOVA models, with one important difference: The null space of the penalty functional should

only contain at most the constant function. For technical reasons, the SVM may fail to have a

unique solution for larger null spaces.
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4.2 Nonstandard Support Vector Machines

The previous (standard) SVM, when appropriately tuned, asymptotically implements the Bayes

rule, that is, it minimizes the expected cost, when the training set is representative of the population

to be classified in the future, and the costs of each kind of misclassification are the same. The

nonstandard SVM of (Lin, Lee & Wahba 2002) is a modification of the standard SVM which

implements the Bayes rule when neither of these conditions hold. Let π+ and π− = 1 − π+ be

prior probabilities of + and − classes, and let π+
s and π−

s be proportions of + and − classes in

the training set, and c+ and c− be the costs for false + and false − classifications. Let g+(x) and

g−(x) be the densities for x in the + class and the 1 class respectively. Let p(x) be Pr[y = 1|x] in

the population to be classified. Then

p(x) =
π+g+(x)

π+g+(x) + π−g−(x)
. (29)

Let ps(x) be Pr[y = 1|x] in a population distributed as the training sample. Then

ps(x) =
π+

s g+(x)

π+
s g+(x) + π−

s g−(x)
. (30)

Then the Bayes rule classifies as + when p(x)
1−p(x) > c+

c− and − otherwise, equivalently when

ps(x)
1−ps(x) > c+

c−
π+

s

π−
s

π−

π+ . Letting L(−1) = c+π+
s π− and L(1) = c−π−

s π+, the Bayes rule is then equiva-

lent to classifying as + when sign(ps − L(−1)
L(−1)+L(1)) > 0 and − otherwise. The nonstandard SVM

finds f of the form
1

n

n
∑

i=1

L(yi)[(1 − yif(x(i))]+ + λ‖h‖2
HK

(31)

over functions of the form f(x) = h(x) + b. It is shown in (Lin, Lee & Wahba 2002) that the

nonstandard SVM of (31) is estimating sign(ps− L(−1)
L(−1)+L(1)), again just what you need to implement

the Bayes rule.

4.3 Multicategory Support Vector Machines

Many approaches have been proposed to classify into one of k possible classes by using SVMs. A

google search as of 2006 for “multiclass support vector machine” or “multicategory support vector

machine” gives over 500 hits. For the moment, letting yj ∈ {1, · · · , k} and considering the standard

situation of equal misclassification costs and representative training sample, if P (y = j|x) = pj(x)

then the Bayes rule assigns a new x to the class with the largest pj(x). Two kinds of strategies

appear in the literature. The first solves the problem via solving several binary problems, one-vs-

rest, one-vs-one, and various designs of several-vs-several. See for example (Allwein, Schapire &
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Singer 2000)(Dietterich & Bakiri 1995). The second considers all classes at once. Two examples of

this are (Crammer & Singer 2000) (Weston & Watkins 1999) with many variants in the recent lit-

erature. Many of these methods are highly successful in general practice, but, in general, situations

can be found where they do not implement the Bayes rule, see (Lee et al. 2004).

The multicategory SVM (MSVM) of (Lee & Lee 2003) (Lee et al. 2004) goes as follows: First

yi is coded as a k-dimensional vector (yi1, · · · yik) with 1 in the jth position if yj is in class j, and

− 1
k−1 in the other positions, thus

∑k
r=1 yir = 0, i = 1, · · ·n. Let Ljr = 1 for j 6= r and 0 otherwise.

The MSVM solves for a vector of functions fλ = (f1
λ , · · · , fk

λ ), with f r(x) = dr + hr(x), each hk in

HK satisfying the sum-to-zero constraint
∑k

r=1 f r(x) = 0 all x, which minimizes

1

n

n
∑

i=1

k
∑

r=1

Lcat(i)r(f
r(x(i)) − yir)+ + λ

k
∑

j=1

‖hj‖2
HK

(32)

equivalently

1

n

n
∑

i=1

∑

r 6=cat(i)

(f r(x(i)) +
1

k − 1
)+ + λ

k
∑

j=1

‖hj‖2
HK

(33)

where cat(i) is the category of yi.

It can be shown that k = 2 case reduces to the usual 2-category SVM.

The target for the MSVM is shown in (Lee et al. 2004) to be f(t) = (f1(t), · · · , fk(t)) with

f j(t) = 1 if pj(t) is bigger than the other pl(t) and f j(t) = − 1
k−1 otherwise, thus implementing

an estimate of the Bayes rule. Similar to the two-class case, there is a nonstandard version of the

MSVM. Suppose the sample is not representative, and misclassification costs are not equal. Let

Ljr = (πj/πj
s)cjr, j 6= r (34)

where cjr is the cost of misclassifying a j as an r and crr = 0 = Lrr. πj is the prior probability of

category j, and πj
s is the fraction of samples from category j in the training set. Substituting (34)

into (32) gives the nonstandard MSVM, and it is shown in (Lee et al. 2004) that the nonstandard

MSVM has as its target the Bayes rule. That is, the target is fj(x) = 1 if j minimizes

k
∑

ℓ=1

cℓjpℓ(x)

equivalently
k
∑

l=1

Lℓjp
s
ℓ(x),

and fj(x) = − 1
k−1 otherwise.

To illustrate the use of the MSVM (Lee et al. 2004) revisited the small round blue cell tumors

(SRBCTs) of childhood data set in (Khan, Wei, Ringner, Saal, Ladanyi, Westermann, Berthold,

23



Schwab, Atonescu, Peterson & Meltzer 2001). There are 4 classes: neuroblastoma (NB), rhab-

domyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS),

and the data were cDNA gene expression profiles. There was a training set of 63 samples, (NB: 12,

RMS: 20, BL: 8, EWS: 23), and a test set of 20 SRBCT cases (NB: 6, RMS: 5, BL: 3, EWS: 6) and

five non SRBCTs. The gene expression profiles contained observations on 2308 genes, after several

preprocessing steps the observations were reduced to those on 100 genes, and the final data set for

classification consisted of a vector of three principal components based on the 100 gene observations

for each profile. The principal components turned out to contain enough information for nearly

perfect classification.

The four class labels are coded according as EWS: (1,−1/3,−1/3,−1/3),

BL: (−1/3, 1,−1/3,−1/3), NB: (−1/3,−1/3, 1,−1/3) and RMS: (−1/3,−1/3,−1/3, 1).

The top four panels in Figure 7 show the predicted decision vectors (f1, f2, f3, f4) at the test
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Figure 7: Predicted four dimensional decision vectors for 20 test samples in four classes and

5 test samples in “none of the above”. c©Oxford University Press

examples. The first 6 columns are the estimated class labels for the 6 EWS cases in the test set:

ideally they will be (1,−1/3,−1/3,−1/3). As can be seen, of these six cases the f1 bars (top panel)

are all close to 1, and in the three next lower panels, the f2, f3, f4 bars are all negative, so that

these six members of the test set are all identified correctly. The next three columns are the three
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BL cases in the test set, ideally their estimates are (−1/3, 1,−1/3,−1/3) —in the second panel

they are all about 1, and in the first, third and fourth panel they are all negative, so that these

BL cases are all classified correctly. In the next 6 columns, the 6 members of the NB class are

classified correctly, that is, f3 is close to 1 and the other components are negative, and the next 5

RMS cases are all classified correctly. The last five columns are the 5 nonSRBT cases, and with one

exception none of the bars are close to one, with the exceptional case having both f1 and f4 positive,

leading to a dubious classification (“none of the above”). The bottom panel gives a measure of the

weakness of the classification, obtained from a bootstrap argument, and it is suggesting that the

classification of all of the “none of the above” cases is weak. Software for the MSVM can be found

at http://www.stat.ohio-state.edu/~yklee/software.html.

4.4 Support Vector Machines with variable selection

In dealing with classification problems with very large observation vectors such as occur, for example

in microarray (gene chip) or SNP data, classification is only part of the problem. It is typically

of scientific interest to know which genes out of the thousands obtained from the gene chip data

are important for the classification, or, which SNPs from the thousands that are observed, are

important. Google provides thousands of hits for “Variable Selection” and SVM. Here we briefly

provide the flavor of three recent papers appropriate to these situations. We describe only two-

category SVM’s, but most of the results generalized to the MSVM.

In (Zhang 2006), f is modeled as a (low order) SS-ANOVA model which can be written:

f(x1, · · · , xd) = d +
d
∑

α=1

hα(xα) +
∑

α<β

hαβ(xα, xβ) + · · · (35)

with hα ∈ Hα, hαβ ∈ Hα ⊗Hβ · · · and so forth. The proposed SVM optimization problem becomes

minf∈F

n
∑

i=1

[1 − yif(x(i))]+ + τ [
d
∑

α=1

‖hα‖Hα +
∑

α<β

‖hαβ‖Hα⊗Hβ + · · ·] (36)

where x = (x1, . . . , xd). Note that (36) uses norms rather than squared norms in the penalty

functional. This formulation is shown to be equivalent to

minf∈F

n
∑

i=1

[1− yif(x(i))]+ +[
d
∑

α=1

θ−1
α ‖hα‖2

Hα +
∑

α<β

θ−1
αβ‖hαβ‖2

Hα⊗Hβ + · · ·]+λ[
∑

θα +
∑

θαβ + · · ·]

(37)

where the θs are constrained to be non-negative. Lee et al ((Lee, Kim, Lee & Koo 2006) also

considered the approach of (37), in the context of the MSVM of (Lee et al. 2004) and applied the
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method to the data of (Khan et al. 2001) that was used there, to select influential genes. The home

pages of both these first authors cited contain related software relevant to this problem.

Mukherjee and Wu (Mukherjee & Wu 2006) perform variable selection via an algorithm which

learns the gradient of the response with respect to each variable - if the gradient is small enough

then the variable is deemed not important. They applied their method to the same two-class

leukemia data of (Golub, D.Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing,

Caligiuri, C.Bloomfield & Lander 1999) that was analyzed in (Lee & Lee 2003).

5 Dissimilarity data and kernel estimates

In many problems direct attribute vectors are not known, or are not convenient to deal with,

while some sort of pairwise dissimilarity score between pairs of objects in a training set is known.

Examples could be subjective pairwise differences between images as provided by human observers,

pairwise differences between graphs, strings, sentences, microarray observations, protein sequences,

etc. Given pairwise dissimilarity scores we describe two approaches to obtaining a kernel, which

can then be used in an SVM for classifying protein sequence data.

5.1 Regularized Kernel Estimation

The Regularized Kernel Estimation (RKE) method (Lu, Keles, Wright & Wahba 2005) goes as

follows: Given K, a non-negative definite n × n matrix, the squared distance d̂ij between the ith

and jth object in a set of n objects can be defined by d̂ij(K) = K(i, i) + K(j, j) − 2K(i, j), where

K(i, j) is the (i, j) entry of K. Given a set of noisy, possibly incomplete, set of pairwise distances

{dij} between n objects, the regularized kernel estimation problem is to find an n×n non-negative

definite matrix which minimizes

min
K�0

∑

(i,j)∈Ω

|dij − d̂ij(K)| + λ trace(K). (38)

Here Ω is a set of pairwise distances which forms a connected set, that is, a graph connecting

the included pairs is connected. This problem can be solved numerically for K by a convex code

algorithm, see (Benson & Ye 2004) (Lu et al. 2005) (Tütüncü, Toh & Todd 2003).

Letting K = Kλ be the minimizer of (38), the eigenvalues of Kλ are set to zero after the pth

largest, resulting in Kλ,p, say. Pseudo data z(i), i = 1, · · · , n for the n objects can be found by

letting z(i) = (z1(i), · · · , zp(i)) where zν(i) =
√

λνφν(i), ν = 1, · · · p. with the λν and φν being

the eigenvalues and eigenvectors of Kλ,p. Given labels on (a subset of) the n objects, a support

vector machine can be built on the pseudodata. To classify a new object, a “newbie” algorithm is
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used to obtain the pseudodata z(n + 1) for the n + 1st object. The newbie algorithm obtains an

(n + 1) × (n + 1) kernel Kn+1 of the form

K̃n+1 =





Kn bT

b c



 � 0, (39)

(where b ∈ Rn and c is a scalar) that solves the following optimization problem:

minc≥0,b
∑

i∈Ψ

∣

∣

∣di,n+1 − d̂i,n+1(Kn+1)
∣

∣

∣ (40)

such that b ∈ Range(Kn), c − bT K+
n b ≥ 0,

where K+
n is the pseudo-inverse of Kn = Kλ,p and Ψ is a suitably rich subset of {1, 2, . . . , n}.

Pseudodata z(n + 1) is found upon observing that z(i)T z(n + 1) = K(i, n + 1) = bi. Figure 8 from

(Lu et al. 2005) gives the 280 eigenvalues for K based on dissimilarity scores from protein sequence

alignment scores from 280 protein sequences. The eigenvalues of Kλ were truncated after p = 3,

and a three dimensional black and white plot of the pseudo-data is given in Figure 9. The four

classes can be seen, although the original color plot in (Lu et al. 2005) is clearer.

This approach can easily tolerate missing data, in fact only about 36 % of the pairs were used,

and it is robust to very noisy or binned dissimilarity data, for example dissimilarity information

given on a scale of 1,2,3,4 or 5.
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Figure 8: Left five panels: log scale eigensequence plots for five values of λ. As λ increases,

smaller eigenvalues begin to shrink. Right panel: first ten eigenvalues of the λ = 1 case

displayed on a larger scale. c©PNAS
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The RKE can be used in the semisupervised situation, where the kernel is built on both labeled

and unlabeled data, and then used to classify both the unlabeled data used to build it as well as

new observations that were not.

Data from multiple sources, some of which may involve dissimilarity data and some direct

attribute data, can be combined in an SVM once kernels are given for each source. Let z be a pseudo-

attribute vector of length p, obtained from the n×n kernel KZ which was derived from dissimilarity

data and then had its eigenvalues truncated after the pth, and let x be an attribute vector, with

an associated kernel KX(x, x′) to be chosen, (for example a Gaussian kernel). We can define a

composite attribute vector as tT = (zT : xT ) and build a support vector machine on the domain

of the composite attribute vectors based on the kernel Kµ(t, t′) = µZKZ(z, z′) + µXKX(x, x′),

where µZ and µX are non-negative tuning parameters. KZ(z, z′) = (z, z′), the Euclidean inner

product, from the way that z was obtained, but some other kernel, for example, a Gaussian or

SS-ANOVA kernel could be built on top of the psudodata. Then the (two category) SVM finds d

and c = (c1, · · · , cn) to minimize

n
∑

i=1

[1 − yif(x(i)]+ + λc′Kµc. (41)

as before where

f(t) = d +
n
∑

i=1

ciKµ(t(i), t) (42)

and µ = (µZ , µX) are to be chosen. Generalizations to the MSVM can also be defined.

5.2 Kernels from constructed attribute vectors

In (Lanckriet, Cristianini, Bartlett, ElGhoui & Jordan 2004) a detailed study was carried out using

data from several sources, including both direct data and dissimilarity data. For dissimilarity

data they used a kernel constructed from n-dimensional attribute vectors whose components are

themselves dissimilarity measures. The method is described in (Liao & Noble 2003) and elsewhere.

It goes as follows: The training set consists of n objects, with
(n
2

)

dissimilarity scores dij available

between all pairs. The ith object is assigned an n dimensional vector x(i) whose rth component is

dir. Then K(i, j) is defined as (x(i), x(j)), where the inner product is the Euclidean inner product.
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6 Tuning methods

6.1 Generalized Cross Validation

This article has concentrated on Bernoulli and categorical data, since this kind of data is typically

assumed when “Statistical Learning” is the topic. However, to best explain several of the tuning

methods used in conjunction with Bernoulli and categorical data, it is easiest to begin by describing

tuning for nonparametric function estimation with Gaussian data. The model is

yi = f(x(i)) + ǫi, i = 1, · · · , n (43)

where x ∈ T (some domain), f ∈ HK and the ǫi are i.i.d Gaussian random variables with common

unknown variance σ2. The estimate fλ is obtained as the solution to the problem find f ∈ HK to

minimize

Iλ{y, f} =
1

n

n
∑

i=1

(yi − f(x(i)))2 + λJ(f) (44)

where J(f) = ‖f‖2
HK

or a seminorm in HK . The target for choosing λ is to minimize

1

n

n
∑

i=1

(f(x(i) − fλ(x(i)))2 (45)

where f is the “true” f in the model. The GCV (Generalized Cross Validation) to be described

(Craven & Wahba 1979)(Golub et al. 1979) is derived from a leaving-out- one estimate for λ which

goes as follows: Let f
[−k]
λ (x(k)) be the estimate of f based on the data omitting the k th data

point. The leaving-out-one function V0(λ) is defined as

V0(λ) =
1

n

n
∑

k=1

(yk − f
[−k]
λ (x(k)))2 (46)

and the minimizer of V0 is the leaving-out-one estimate. Let A(λ) be the n × n influence matrix,

which satisfies

(fλ(x(1)), · · · , fλ(x(n))T = A(λ)(y1, · · · , yn)T , (47)

which exists since the estimate is linear in the data. It is known from the leaving-out-one lemma

(Craven & Wahba 1979) that

V0(λ) ≡ 1

n

n
∑

k=1

(yk − fλ(x(k))2

(1 − akk(λ))2
(48)

where the akk ∈ (0, 1) are the diagonal elements of A(λ). The GCV function V (λ) is obtained by

replacing each akk in (48) by their average, namely 1
ntraceA(λ), to get

V (λ) =
1

n

∑n
i=1(yi − fλ(x(i))2

(1 − 1
ntrA(λ))2

(49)
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and the estimate of λ is the minimizer of V (λ). Theoretical properties are discussed in (Li 1986),

and the important randomized trace technique for calculating trA(λ) can be found in (Girard 1989)

(Girard 1995) (Hutchinson 1989). A different calculation method is found in (Golub & vonMatt

1997). For comparison to the methods described below, we note that when Iλ{y, f} is as in (44),

that is, J is a quadratic form in (fλ(x(i), · · · fλ(x(n)) then A(λ) is the inverse Hessian of Iλ of (44)

with respect to fi ≡ fλ(x(i), i = 1, · · · , n.

6.2 Generalized Approximate Cross Validation, Bernoulli data,

RKHS penalties

The GACV (Generalized Approximate Cross Validation) for Bernoulli data and reproducing kernel

squared norms or seminorms as penalties was provided in (Xiang & Wahba 1996). As in Section 2

Iλ is of the form

Iλ{y, f} =
1

n

n
∑

i=1

−yif(x(i)) + log(1 + ef(x(i))) + λJ(f), (50)

where J(f) is a squared norm or seminorm in an RKHS. The target for the GACV is the expected

value of the so-called Comparative Kullback Liebler distance (CKL) between the true and estimated

probability distribution, and is

CKLλ) =
1

n

n
∑

i=1

−p(x(i))fλ(x(i)) + log(1 + efλ(x(i))) (51)

where p(x) is the true but unknown probability that y = 1|x. The leaving-out-one estimate of the

CKL is

V0(λ) =
1

n

n
∑

k=1

−ykf
[−k]
λ (x(k)) + log(1 + efλ(x(k))). (52)

The GACV is obtained from V0(λ) by a series of approximations followed by averaging over the

diagonal elements of a matrix which plays the role of the influence matrix, and the result is

GACV (λ) =
1

n

n
∑

i=1

−yif)λ(x(i)) + log(1 + efλ(x(i))) +
1

n
trA(λ)

∑n
i=1 yi(yi − pλ(x(i)))

(n − trW 1/2A(λ)W 1/2)
. (53)

Here A(λ) = A(λ, fλ) is the inverse Hessian of Iλ{y, f} with respect to fi ≡ fλ(x(i)), i = 1, · · · , n,

and W = W (λ, fλ) is the diagonal matrix with iith entry pλ(x(i))(1−pλ(x(i)), which is the variance

of the estimated Bernoulli distribution as well as the second derivative of log(1 + efλ(x(i))). Figure

10 from (Xiang & Wahba 1996)

gives two plots comparing the true CKL(λ) with GACV (λ) in a simulation experiment where

p(x) is known. Numerous experimental works show that the minimizer of the GACV provides a
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good estimate of the minimizer of the CKL, but theoretical results analogous to those in (Li 1986)

for GCV remain to be found. A generalization of the GACV to the two-eye problem of Section 2.5

based on leaving-out-one-unit is found in (Gao et al. 2001).

6.3 Generalized Approximate Cross Validation, Bernoulli data, l1

penalties

A general version of GACV targeted at the CKL adapted for LASSO-type optimization problems

appears in (Zhang et al. 2004). A special case, for optimization problems like that of the LASSO-

Patternsearch (Shi et al. 2006) goes as follows. For each trial value of λ, there will be, say,

N = N(λ) basis functions in the model with non-zero coefficients. Let B be the n × N design

matrix for the N basis functions and W be as before. Let A(λ, fλ) = B(BT WB)−1BT and observe

that trW 1/2A(λ)W 1/2 = N . The GACV becomes

GACV (λ) =
1

n

n
∑

i=1

−yif(x(i)) + log(1 + ef(x(i)) +
1

n
trA(λ)

∑n
i=1 yi(yi − pλ(x(i)))

(n − N)
. (54)

6.4 Support Vector Machines

A large number of competing methods have been proposed for tuning SVMs. When sufficiently

large data sets are available, a common practice is to divide the data into three parts: a training

set, a tuning set for choosing λ and any other tuning parameters, and a test set for evaluating the

results. Five-fold and ten-fold cross validation are both popular. Several tuning methods related in

some way to cross validation ideas are described in (Chapelle, Vapnik, Bousquet & Mukherjee 2002)

(Gold & Sollich 2003). Tuning methods based on structural risk minimization appear in (Lanckriet

et al. 2004). A perturbation method which perturbs both inputs and outputs is proposed in (Wang

& Shen 2006). A popular method is Joachims’ XiAlpha method (Joachims 2000), which is part

of the SV M light package at http://svmlight.joachims.org/. A GACV method was derived in

(Wahba 1999) by methods analogous to those in Section 6.2. The XiAlpha and GACV methods

are seen to be related (Wahba, Lin, Lee & Zhang 2001), where a generalization of both methods to

the nonstandard case is proposed. A GACV for the multicategory support vector machine of Lee,

Lin and Wahba is in (Lee et al. 2004).

6.5 Regularized Kernel Estimates

A leaving out pairs algorithm can be obtained to choose λ in the RKE estimate, although Kλ

appears to be insensitive to λ over a fairly broad range. To date the choice of p has been made
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visually by plotting eigenvalues, but when the pseudo-data is used for classification one possibility

is to chose it simultaneously with the SVM parameters. A definitive automatic procedure is yet to

be obtained.

7 Regularization, Empirical Bayes, Gaussian Processes

Priors and Reproducing Kernels

It is well known that there is a duality between zero mean Gaussian processes and RKHS: For every

positivie definite function K there is a unique RKHS with K as its reproducing kernel, and for every

positive definite function K there is an associated zero mean Gaussian process prior with K as its

covariance, see (Aronszajn 1950) (Kimeldorf & Wahba 1971) (Parzen 1970) (Wahba 1990). When

the first term in the optimization problem is a negative log likelihood L{y, f} and the penalty term

involves RKHS squared norms then for fixed tuning parameters the estimate is a Bayes estimate with

a Gaussian Process prior. These remarks extend to the case when the penalty term involves squared

seminorms, which correspond to an improper prior, see (Kimeldorf & Wahba 1971) (Wahba 1990).

Similarly, in the LASSO class of estimates, the l1 penalty corresponds to negative exponential

priors on the coefficients. In typical regularization methods like those described here the tuning

parameters are chosen by generalization and model selection arguments, in “frequentist” style.

There is a large literature labeled Empirical Bayes methods, as well as Gaussian Process Priors

methods, and the discerning reader may consider the relationships between those and regularization

methods.
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Tütüncü, R. H., Toh, K. C. & Todd, M. J. (2003), ‘Solving semidefinite-quadratic-linear programs

using SDPT3’, Mathematical Programming 95(2), 189–217.

Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer.

Wahba, G. (1981), ‘Numerical experiments with the thin plate histospline’, Commun. Statist.-

Theor. Meth. A10, 2475–2514.

Wahba, G. (1990), Spline Models for Observational Data, SIAM. CBMS-NSF Regional Conference

Series in Applied Mathematics, v. 59.

Wahba, G. (1999), Support vector machines, reproducing kernel Hilbert spaces and the randomized

GACV, in B. Scholkopf, C. Burges & A. Smola, eds, ‘Advances in Kernel Methods-Support

Vector Learning’, MIT Press, pp. 69–88.

Wahba, G. (2002), ‘Soft and hard classification by reproducing kernel Hilbert space methods’,

Proceedings of the National Academy of Sciences 99, 16524–16530.

Wahba, G., Lin, Y., Lee, Y. & Zhang, H. (2001), On the relation between the GACV and Joachims’

ξα method for tuning support vector machines, with extensions to the non-standard case,

Technical Report 1039, Statistics Department University of Wisconsin, Madison WI.

Wahba, G., Lin, Y. & Zhang, H. (2000), Generalized approximate cross validation for support

vector machines, in A. Smola, P. Bartlett, B. Scholkopf & D. Schuurmans, eds, ‘Advances in

Large Margin Classifiers’, MIT Press, pp. 297–311.

Wahba, G., Wang, Y., Gu, C., Klein, R. & Klein, B. (1995), ‘Smoothing spline ANOVA for exponen-

tial families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopa-

thy’, Ann. Statist. 23, 1865–1895. Neyman Lecture.

Wahba, G. & Wendelberger, J. (1980), ‘Some new mathematical methods for variational objective

analysis using splines and cross-validation’, Monthly Weather Review 108, 1122–1145.

Wang, J. & Shen, X. (2006), ‘Estimation of generalization error: random and fixed inputs’, Statistica

Sinica 16, 569–588.

Wang, Y. (1998), ‘Mixed-effects smoothing spline ANOVA’, J. Roy. Statist. Soc. B 60, 159–174.

Wang, Y., Ke, C. & Brown, M. (2003), ‘Shape-invriant modeling of circadian rhythms with random

effects and smoothing spline anova decompositions’, Biometrics 59, 241–262.

38



Weston, J. & Watkins, C. (1999), Support vector machines for multiclass pattern recognition, in

‘Proceedings of the Seventh European Symposium On Artificial Neural Networks’.

*citeseer.nj.nec.com/article/weston99support.html

Whittaker, J. (1990), Graphical Models in Applied Mathematical Multivariate Statistics, Wiley.

Xiang, D. & Wahba, G. (1996), ‘A generalized approximate cross validation for smoothing splines

with non-Gaussian data’, Statistica Sinica 6, 675–692.

Xiang, D. & Wahba, G. (1997), Approximate smoothing spline methods for large data sets in the

binary case, Technical Report 982, Department of Statistics, University of Wisconsin, Madison

WI. Proceedings of the 1997 ASA Joint Statistical Meetings, Biometrics Section, pp 94-98

(1998).

Yuan, M. & Lin, Y. (2006), ‘Model selection and estimation in regression with grouped variables’,

J. Roy. Statist. Soc. B 68, 49–67.

Zhang, H. (2006), ‘Variable selection for SVM via smoothing spline ANOVA’, Statistica Sinica

16, 659–674.

Zhang, H. & Lin, Y. (2006a), ‘Component selection and smoothing for nonparametric regression in

exponential families’, Statistica Sinica 16, 1021–1042.

Zhang, H. & Lin, Y. (2006b), ‘Component selection and smoothing in multivariate nonparametric

regression’, Ann. Statist. 34, 2272–2297.

Zhang, H., Wahba, G., Lin, Y., Voelker, M., Ferris, M., Klein, R. & Klein, B. (2004), ‘Variable

selection and model building via likelihood basis pursuit’, J. Amer. Statist. Assoc. 99, 659–672.

Zhu, J. & Hastie, T. (2003), ‘Classification of gene microarrays by penalized logistic regression’,

Biostatistics 5, 427–443.

Zou, H. (2006), ‘The adative LASSO and its oracle properties’, J. Amer. Statist. Assoc. 101, 1418–

1429.

Zou, H. & Hastie, T. (2005), ‘Regularization and variable selection via the elastic net’, J. Roy.

Statist. Soc. B 67, Part 2, 301–320.

39



−0.4−0.3−0.2−0.100.10.20.30.4

−1

0

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 9: 3D representation of the sequence space for 280 proteins from the globin

family. c©PNAS

40



log10(lambda)

kl
 d

is
ta

nc
e

-5 -4 -3 -2 -1 0

0.
55

0.
60

0.
65

0.
70

log10(lambda)

kl
 d

is
ta

nc
e

-5 -4 -3 -2 -1 0

0.
50

0.
55

0.
60

0.
65

0.
70

Figure 10: Two GACV (λ) (solid lines) and CKL(λ) (dotted lines) curves. c©Statistica

Sinica

41


