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Summary. This article elaborates on the statistical analysis that led to our main
findings visually summarized in the poster3 at the Data Exposition 20064 (This
poster won the first prize). The statistical methods and procedures to impute miss-
ing data and to uncover the natural phenomena, El Niño and La Niña, the ozone
depletion areas and the cloud effect on temperature are discussed.
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1 Introduction

Data Exposition 2006 was a contest sponsored by the sections on Statistical
Graphics, Statistical Computing, and Statistics and the Environment at the
Joint Statistical Meeting of 2006 in Seattle, Washington. The most attractive
and challenging part of the Data Exposition 2006 was a great deal of freedom
to explore a number of potential aspects in the data. In pursuing the objective
of the Data Exposition, we decided to focus on one interesting aspect of the
data at a time, considering appropriate statistical methods for each different
interest. In this article, we elaborate on the statistical analysis that led to our
main findings visually illustrated in the poster for the Data Exposition.

This paper is organized as following. In Section 2, the imputation pro-
cedure for missing data will be discussed. In Section 3 to 5, the statistical

3 The poster is available at the following websites:
http://www.amstat-online.org/sections/graphics/dataexpo/2006entries.php,
http://www.stat.wisc.edu/∼cho, or
http://www.stat.wisc.edu/∼chun.

4 See the following website for more information on the Data Exposition 2006:
http://www.amstat-online.org/sections/graphics/dataexpo/2006.php.
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approaches used to uncover our major results including El Niño and La Niña,
ozone depletion areas and cloud effects on temperature, will be explained. In
Section 6, a brief conclusion will be followed.

2 Data Missing and Imputation

In this section, we discuss the imputation procedure to handle the missing
observations in the data. The initial data exploration identified several miss-
ing values in cloud low where their specific locations and time periods are
summarized in Figure 1. It was necessary to impute the missing observations
for further statistical analysis.

2.1 Statistical method and procedure

A nonparametric spatial model was considered to impute the missing values.
The reasons for our choice of the specific model are two folds. First, there
was relatively a small proportion of missing (0.002 % ∼ 0.003%) in the study
area at a given time whereas there was a great proportion of missing (21% ∼
44%) at a given location over time. Second, a visual exploration found that a
parametric model would not be flexible enough to capture the spatial pattern
of cloud low.

The nonparametric spatial model used for imputation is specified as below.
For a given time,

Cloud Lowij = c + f1(latii) + f2(longj) + f1,2(latii, longj) + f3(elevationij)
+ Errorij , i, j = 1, . . . , 24, (1)

where i, j denote a row and column number on a 24 by 24 grid, respectively, c
an overall mean, f1, f2, f3 nonparametric functions for main effects and f1,2 for
an interaction, respectively, and Errorij ∼ N(0, σ2). The model (1) is called
a “smoothing spline ANOVA”. As implied from its name, this model has an
analogy to a classical analysis of variance (ANOVA) decomposition. The main
difference is that its components, f1, f2, f3, f1,2, are nonparametric functions
and these functions are estimated by smoothing spline. The R routines for
the smoothing spline ANOVA model are implemented in the package gss. See
(Wahba, 1990) and (Gu, 2000) for general discussions on smoothing spline,
smoothing spline ANOVA and the gss package.

There are a couple of lemmas in (Wahba and Luo, 1995) and (Luo, 1996)
which provide theoretical justifications for our imputation approach using the
smoothing spline ANOVA: Leaving-Out-K lemma and Imputation lemma. In
our analysis, Imputation lemma was preferred whereas both lemmas should
lead to an identical result. It was because neither of lemmas is implemented
in R but Imputation lemma could be followed by using the gss package with a
slight modification. See the appendix for details on this computational issue.
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Here are steps we followed to impute missing data. For a given month, if
there is any missing location,

1. Fit a smoothing spline ANOVA excluding missing values.
2. Predict the missing value using the fitted model.
3. Fit a smoothing spline ANOVA again including the imputed values.
4. Update the imputed values using the fitted model.
5. Repeat 3 and 4 step until the imputed values converge.

This procedure is contained in (Luo, 1996). As seen in the last step above,
Imputation lemma requires an iteration. The predicted values from the initial
fitted model serve as a good initial guess for the missing data.

2.2 Results

To validate the imputation result, we selected nearby locations showing tem-
poral trends similar to those at the imputed locations during the observed
time period. As shown in Figure 1, the imputed values are close to the values
at the selected nearby locations during the missing time period. In the mean
time of the imputation, as a byproduct, we found an unusual feature of the
data that all variables except for elevation have identical values in Location
2 and Location 3 over the entire time period.

3 El Niño and La Niña

The main purpose of this section is to describe our approach to confirm the
well-known natural phenomena, El Niño and La Niña, which create severe
abnormal weather worldwide. El Niño and La Niña refer to warmer and cooler
than normal sea surface temperatures (SST) in the Pacific Ocean, respectively.
Since the study area of the Data Exposition covers the western Pacific Ocean,
we wondered whether we could identify these climate events from the given
data set.

3.1 Statistical methods and procedure

As our general approach, the mean sea surface temperature over the entire
time period from 1995 to 2000 was first obtained at each grid point in the
study area. By using a dynamic plot, we narrowed down to three interesting
areas indicating the most and least fluctuation in the temporal trends of sea
surface temperature. The mean sea surface temperatures were compared to
the temporal patterns of sea surface temperature in the selected areas.

The mean sea surface temperatures, which served as normal temperature
levels in our comparison, were obtained as following. The observed values were
first adjusted for seasonality by subtracting the centered monthly means. The
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adjusted observations were then averaged over the entire time period at each
grid location. Finally, the averaged values in the study area were smoothed
by the smoothing spline ANOVA

Mean SSTij = c + f1(latii) + f2(longj) + f1,2(latii, longj) + Errorij

where i, j denote a row and column number on a 24 by 24 grid, respectively,
c an overall mean, f1, f2 main effects and f1,2 an interaction, respectively,
f1, f2, f1,2 are nonparametric functions and Errorij ∼ N(0, σ2).

The seasonal decomposition of time series by loess (STL) proposed by
(Cleveland et al., 1990) was utilized to obtain a temporal pattern of sea surface
temperature (SST) at a given location. By the STL process, the sea surface
temperature was decomposed as

SSTt = Trendt + Seasonalt + Errort (2)

where t = 1, 2, · · · , 72, denotes each month from 1995 to 2000 in a sequence.
From the decomposition in the equation (2), the trend component was ex-
tracted as a temporal pattern of sea surface temperature. The STL process is
implemented in R function, stl, by B.D. Ripley.

It would be most exhaustive to compare a temporal pattern of sea surface
temperature on each grid point to its mean sea surface temperature. We in-
stead chose a less exhaustive but more informative comparison as following.
By using a dynamic plot, we first narrowed down our attention to three in-
teresting local areas including the equator, the upper coast of Peru and the
coast of Chile. These locations are denoted as 1, 2, 3, respectively, in Figure
2. Location 1 and location 2 exhibited the most variation and location 3 the
least in terms of temporal patterns. In the selected locations, we averaged
the values along the latitude and then fitted a STL model to the averaged
values at each longitude. The trends of sea surface temperature at several dif-
ferent longitudes were plotted over time. In Figure 2, the temporal patterns
at different longitudes can be compared simultaneously.

3.2 Results

The most exciting result was that we could identify El Niño and La Niña in all
the selected locations. As shown in Figure 2, the time periods at the highest
and lowest surface temperatures at all three locations correspond with El Niño
(1997-98) and La Niña (1995 - 96, 1998-99) periods, respectively. Although
the location 3 showed the very constant temporal trend, the effects of El Niño
and La Niña are certainly observable. The location 3 showing the lowest mean
surface temperature corresponds with so-called Cold-Water Up-Welling areas
along the coast of Chile. As an additional minor observation, not directly
related to the climate events, El Niño and La Niña, we realized that the mean
sea surface temperature in Figure 2 is highest around 10◦N rather than the
equator.
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4 Ozone Depletion Areas

In this section, we explain our approach to discover a couple of interesting
locations indicating ozone depletion. The reduction in ozone levels is a serious
global environmental issue, increasing the risk of harmful effects such as skin
cancer, cataract rates and crop damage. It was our interest to find some
locations showing abnormal ozone trends in the study area.

4.1 Statistical methods and procedure

As a simple approach, a linear model was used to obtain an increasing or
decreasing pattern at each grid location. The seasonal component was first
removed from the observations at a given location, which consist of 72 values
from each month between 1995 and 2000. The residuals of the simple linear
model fitted to the adjusted observations implied that the errors were au-
tocorrelated with a lag 1. As such, the linear model with AR(1) error was
considered as

Adjusted Ozone = β0 + β1Time + Error

where Error ∼ AR(1). At each grid location, the estimated regression coeffi-
cient, β̂1, was plotted to show a linear ozone trend over time.

The linear ozone trends may be related to other variables. In a similar
fashion, linear models were fitted to the observations of all the variables except
for pressure and elevation. The linear trends at each grid location were
compared among all the variables considered.

As a more general approach, the seasonal decomposition of time series by
loess was used to obtain nonlinear ozone trends over time at each grid location
as

Ozonet = Trendt + Seasonalt + Errort (3)

where t = 1, 2, · · · , 72, denotes each month from 1995 to 2000 in a sequence.
The nonlinear ozone trends were considered since a linear model would be
unable to identify other than linear patterns. The nonlinear ozone trends
obtained by the decomposition in (3) were then classified into groups using
K-means clustering algorithm. In clustering, we used the location informa-
tion of latitude and longitude as additional inputs to K-means algorithm. As
a heuristic approach, the hidden number of groups was determined by min-
imizing within-cluster dissimilarity. More specifically, the number of groups
was first plotted over its corresponding within-cluster dissimilarity, and from
the plot a number was then chosen when increasing the number of groups
no longer resulted in a significant reduction in the within-cluster dissimilarity
(See (Hastie et al., 2001)). Since K-means clustering algorithm is vulnerable
to local minima and is sensitive to initial values, we repeated the clustering
algorithm 100 times using different random initial values and then chose the
clustering result occurring more than 90 times out of 100 repetitions.
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4.2 Results

By the linear ozone trends, we identified two interesting locations denoted as
1 and 2 in Figure 3. Location 1 showed a linear decreasing trend whereas all
other its nearby locations showed linear increasing trends. Location 2 showed
the fastest linear decreasing trend among all the locations in the study area.
By further investigation, we found that there is a city, Chihuahua, in Location
1 where air and water pollution have been environmental issues and that
there is a city, La Paz, in Location 2 where an ozone hole has been reported.
Location 1 and 2 were consistently identified as distinct groups in clustering
the nonlinear ozone trends. Another interesting observation was that ozone
and surface temperature showed opposite linear trends in Location 1 and 2 as
shown in Figure 3.

5 Cloud Effect on Temperature

This section describes our approach to find cloud effects on temperature.
According to the description of the variables in the data, there is a subtle
difference between surface temperature and temperature, i.e. surface
temperature is the energy emitted from the surface of the Earth under clear
sky whereas temperature refers to the air temperature near the surface of
the Earth. Based on our conjecture that the difference between temperature
and surface temperature may result from cloud effects, we considered a linear
model to identify any relationship among the five variables including temper-
ature, surface temperature and clouds (high, mid, low).

5.1 Statistical methods and procedure

Our interest here was to find cloud effects on temperature. In pursuing
the interest, we first tried to identify areas with the marginal homogeneity of
each variable in terms of its temporal trend as following. For each variable, the
seasonal decomposition of time series by loess was utilized to extract nonlinear
temporal trends and then K-means clustering algorithm to classify them into
groups. In clustering, the location information was considered as an additional
input to K-means algorithm for spatial smoothness.

As a result, we identified two regions consistently clustered as common
groups in all the five variables considered. It was interesting that these regions,
denoted as Region 1 and Region 2 in Figure 4, are most and least influenced
by El Niño and La Niña, respectively.

In order to find relations among the five variables in the selected two
regions, we proceeded as following. For each variable, all the observed values
belonging to Region 1 and 2 were first averaged in each month from 1995 to
2000, respectively. The averaged values were then adjusted for seasonality by
subtracting monthly averages in Region 1 and 2, respectively. The residuals
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obtained by the initial fitted linear model were autocorrelated with a lag 1
and thus we considered a linear model with AR(1) error.

5.2 Result

The fitted model in Region 1 around the equator is given as

Adj. Temp = 0.218 Adj. Surf.Temp− 0.037 Adj. Cloud Low + Error
(4)

where Error ∼ AR(1) with its estimated autocorrelation, 0.883. The fitted
model implies that the adjusted temperature and surface temperature are
positively associated (p-value: 0.0002) whereas the adjusted temperature and
cloud low are negatively associated (p-value: 0.0032). The negative association
between temperature and cloud low was somewhat reasonable to expect
since cloud low reflects the energy from the sun resulting in lowering the air
temperature.

In Region 2 around the coast of Peru, we found no statistically significant
relationship among the variables. As seen from the clustering results in Fig-
ure 4, cloud mid and cloud low showed opposite temporal trends in both
regions. The constant trend of temperature in Region 2 may be due to the
opposite relationship between cloud mid and cloud low, and it is possible
that there exists confounding among covariates.

6 Conclusion

The primary objective of this article was to describe our statistical approaches
used to find major results presented in the poster at the Data Exposition
2006. In Section 2, we described the imputation procedure for missing data
using the smoothing spline ANOVA. In Section 3, the statistical methods and
procedure using nonparametric time series and spatial models were explained
in identifying the climate events, El Niño and La Niña. In Section 4, the
linear and nonlinear time-series models to discover ozone depletion areas were
followed. In Section 5, our approaches to find cloud effects on temperature
were discussed.

Computational aspects

All the plots shown in this paper were drawn merely using the“grid” package
in R. This powerful and flexible graphical package enabled us to produce
very customized plots effectively presenting our main results in a way that we
imagined. See (Murrell, 2006) for details on R graphics.
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Correction

Please note that Figure 2 in the poster for Data Exposition 2006 needs a cor-
rection and there is a slight difference in the imputed values compared to the
part b in Figure 1. The difference is due to the fact that smoothing parame-
ters were not fixed in implementing Imputation lemma. See the appendix for
more details.
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Appendix: Leaving-Out-K and Imputation Lemma

Here we elaborate on the computational issue as the imputation procedure
was discussed in Section 2. As mentioned earlier, the Leaving-Out-K lemma
and the Imputation lemma both can be used for the imputation purpose using
the smoothing spline ANOVA. Just in case, we include both lemmas at the
end of the appendix.

The Imputation lemma proposed by (Wahba and Luo, 1995) was originally
intended for incomplete data. The implementation of the lemma requires an
iteration, but with a good initial guess the convergence would not be an issue.
In Section 2, we used as the initial guess the predicted values obtained from
the initial fitted model in step 1. The imputation procedure completed in just
one iteration. As a technical comment, the predicted values here should not
be confused with the imputed values which can be obtained by the Leaving-
Out-K lemma.

As addressed earlier in Section 2, both lemmas are currently not imple-
mented in gss package. However, the Imputation lemma can be used with a
minor modification of ssanova function in gss package. Note that the results
of the Imputation lemma hold for fixed smoothing parameters. The ssanova
function determines optimal smoothing parameters as default and does not
provide an optional argument to use fixed smoothing parameters. By modi-
fying the ssanova function, we imputed the missing values as summarized in
Section 2.

From some helpful feedback at JSM, we later realized that the Leaving-
Out-K lemma could also have been used. In this purpose, the function
ssanova1 can be used with a minor modification. This alternative approach
has a benefit since it does not require an iteration step.

As a technical comment, the detailed justification using the ssanova1 for
the Leaving-Out-K lemma is given in the following equation.

min
f

 1
n

n∑
i=1,i/∈SK

(yi − f(t(i)))2 + λ‖P ?f‖2
 (5)

∝ min
f

 1
n−K

n∑
i=1,i/∈SK

(yi − f(t(i)))2 +
n

n−K
λ‖P ?f‖2

 . (6)

(5) is the objective function of the Leaving-Out-K lemma and (6) is its equiva-
lent objective function of the smoothing spline ANOVA. Both objective func-
tions do not include missing data. The connection above is due to the fact that
both objective functions rely on subsets of basis functions, which do not have
to be chosen from the basis functions corresponding with missing data. By
using a fixed but modified smoothing parameter, λ∗ = n

n−K λ, we can impute
at one step following the Leaving-Out-K lemma.
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Lemma 1 Leaving-Out-K Lemma, (Wahba and Luo, 1995)
Let an reproducing kernel Hilbert space H be decomposed as ⊕p

β=0Hβ, and
for f ∈ H let ‖Pf‖2 =

∑p
β=1 θ−1

β ‖P βf‖2, where P β is a projection onto Hβ

and θβ are smoothing parameters . Let f [K] be the solution to the variational
problem:

min
f∈H

1
n

n∑
i = 1

i /∈ SK

(yi − f(t(i)))2 + λ‖Pf‖2

where SK = i1, . . . iK is a subset of 1, . . . , n with the property that above
functional has a unique minimizer, and let y?

i , i ∈ SK be imputed values for
the missing data imputed as y?

i = f [K](t(i)), i ∈ SK . Then the solution to the
problem:

min
f∈H

1
n

 n∑
i = 1

i /∈ SK

(yi − f(t(i)))2 +
∑

i∈SK

(y?
i − f(t(i)))2

 + λ‖Pf‖2

is f [K].

Lemma 2 Imputation Lemma, (Wahba and Luo, 1995)
Let f̂ be the minimizer of the variational problem:

min
f∈H

1
n

n∑
i=1

(yi − f(t(i)))2 + λ‖Pf‖2

and write f̂ as A(λ)y by using influence matrix A(λ).

Denote A(λ) =

A11

... A12

. . . . . . . . .

A21

... A22

. Let g2
(0) be a K-vector of initial values for

an impuation of (f [K](t(i1)), . . . , f [K](t(iK)))T , and suppose 0 ≺ (I − A22).
Let successive imputations g2

(l) for l = 1, 2, . . . be obtained via g1
(l)

. . .
g2
(l)

 = A(λ)

 y1

. . .
g2
(l−1)

 .

Then

lim
l→∞

 g1
(l)

. . .
g2
(l)

 =

 f [K](t(1))
...

f [K](t(n))

 .


