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Abstract

Our lives are embedded in networks. Many researchers wish to analyze these networks
to gain a deeper understanding of the underlying mechanisms. Some types of
underlying mechanisms generate communities (aka clusters or modularities) in the
network. This work aims not merely to devise algorithms for community detection,
but also to study the algorithms’ estimation properties, to understand if and when
we can make justifiable inferences from the estimated communities to the underlying
mechanisms.

Spectral clustering is a popular algorithm for community detection. Yet it fails
when dealing with networks with degree heterogeneity. Chapter 2 proposes regularized
spectral clustering and extends the previous statistical estimation results (Chaudhuri
et al. (2012) and Amini et al. (2012)) to the more canonical spectral clustering
algorithm in a way that removes any assumption on the minimum degree and
provides guidance on the choice of the tuning parameter. Moreover, our results show
how the “star shape” in the eigenvectors – a common feature of empirical networks –
can be explained by the Degree-Corrected Stochastic Blockmodel and the Extended
Planted Partition model, two statistical models that allow for highly heterogeneous
degrees.

Chapter 3 extends the regularized spectral clustering algorithm to directed net-
works with general degrees. Chapter 3 proposes and studies a spectral co-clustering
algorithm called di-sim. Building on previous spectral co-clustering algorithms (e.g.
Dhillon (2001)), di-sim incorporates regularization and projection steps. We show
that these two steps are essential when there is a large amount of degree heterogeneity
and several weakly connected nodes.

Chapter 4 studies a random network model where, ignoring log terms, number of
clusters (or communities) K can grow proportionally to number of nodes N . Since the
number of clusters must be smaller than the number of nodes, no reasonable model
allows K to grow faster; thus, our asymptotic results are the “highest” dimensional.
Furthermore, we develop a regularized maximum likelihood estimator that enjoys weak
consistency under certain conditions. This is the first work to explicitly introduce
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and demonstrate the advantages of statistical regularization in a parametric form for
network analysis.

Chapter 5 proposes a fast and memory e�cient community detection algorithm.
It is built upon regularized spectral clustering and the Nyström extension with proper
normalization and regularization. We provide a bound for its misclustering rate under
the Degree-Corrected Stochastic Blockmodel.

Finally, chapter 6 studies the interaction between transitivity and sparsity. The
two common features in empirical networks, implies that there are local regions of
large sparse networks that are dense. We call this the blessing of transitivity and it
has consequences for both modeling and inference. Extant research suggests that
statistical inference for the Stochastic Blockmodel is more di�cult when the edges
are sparse. However, this conclusion is confounded by the fact that the asymptotic
limit in all of the previous studies is not merely sparse, but also non-transitive. To
retain transitivity, the blocks cannot grow faster than the expected degree. Thus, in
sparse models, the blocks must remain asymptotically small. Previous algorithmic
research demonstrates that small “local” clusters are more amenable to computation,
visualization, and interpretation when compared to “global” graph partitions. This
paper provides the first statistical results that demonstrate how these small transitive
clusters are also more amenable to statistical estimation. Theorem 2 of chapter
6 shows that a “local” clustering algorithm can, with high probability, detect a
transitive stochastic block of a fixed size (e.g. 30 nodes) embedded in a large graph.
The only constraint on the ambient graph is that it is large and sparse–it could be
generated at random or by an adversary–suggesting a theoretical explanation for the
robust empirical performance of local clustering algorithms.
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Chapter 1

Introduction

Recent advances in information technology have produced a deluge of data on complex
systems with myriad interacting elements, easily represented by networks or graphs.
Communities or clusters of highly connected actors are an essential feature in a
multitude of empirical networks, and identifying these clusters helps answer vital
questions in various fields. Depending on the area of interest, interacting elements
may be metabolites, people, or computers. Their interactions can be represented in
chemical reactions, friendships, or some type of communication. For example, on
Facebook, groups of people sharing same interest or attending same college form
various communities; a terrorist cell is a cluster in the communication network of
terrorists; web pages that provide hyperlinks to each other form a community that
may host discussions of a similar topic; a cluster in the network of biochemical
reactions might contain metabolites with similar functions and activities. Networks
(or graphs) appropriately describe these relationships. Therefore, the substantive
questions in these various disciplines are, in essence, questions regarding the structure
of networks. Given the demonstrated interest in making statistical inference from
an observed network, it is essential to evaluate the ability of clustering algorithms
to estimate the “true clusters” in a network model. Understanding when and why a
clustering algorithm correctly estimates the “true communities” provides a rigorous
understanding of the behavior of these algorithms and potentially leads to improved
algorithms.

Networks can be complex. Community structures are confounded with many
other features of various types of networks:

(a). In many networks, like the world wide web, their degrees are highly het-
erogeneous, some approximately follow power-law distribution (Adamic and
Huberman (2000)). For a sparse network with strong degree heterogeneity,
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standard spectral clustering often fails to function properly (Amini et al. (2012);
Jin (2015)).

(b). Some networks consist of small communities. Dunbar (1992) suggests that
humans do not have the social intellect to maintain stable communities larger
than roughly 150 people (colloquially referred to as Dunbar’s number). Leskovec
et al. (2008) found a similar result in several other networks that were not
composed of humans. The research of Leskovec et al. (2008) and Dunbar (1992)
suggests that the community sizes should not grow asymptotically.

(c). Some networks are just too large to be even stored in computer memory for
further analysis. In this case, it is important to find a balance point in the
tradeo↵ between accuracy and computing resource.

(d). Transitivity and sparsity are two common features of many networks. Extant
research suggests that statistical inference for the Stochastic Blockmodel is
more di�cult when the edges are sparse.

This work aims to devise and study regularized algorithms that detect communities
under these confounding issues with theoretical performance guarantee. Chapter
2 introduces regularized spectral clustering(RSC) that improves the performance
standard spectral clustering under scenario (a). Chapter 3 extends RSC to directed
networks with degree heterogeneity. Chapter 4 studies a regularized maximum
likelihood estimator that are proven to be useful under asymptotic settings that
mimics scenario (b). Chapter 5 develops and studies a memory e�cient spectral
algorithm that deals with scenario (c). Lastly chapter 6 studies the interaction
between transitivity and sparsity and shows that transitivity can be helpful in
finding communities in sparse networks. Chapter 6 then introduces a local clustering
algorithm that can, with high probability, detect transitive stochastic block of a fixed
size (e.g. 30 nodes) embedded in a large graph.

Each chapter, although highly related to each other, is self-contained. Readers
can start from any chapters of interests. Chapter 2 is adapted from Qin and Rohe
(2013). Chapter 3 is largely adapted from Rohe, Qin, and Yu (2015). Chapter 4 is
adapted from Rohe, Qin, and Fan (2014). Chapter 6 is adapted from Rohe and Qin
(2013).
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Chapter 2

Regularized Spectral Clustering
under the Degree-Corrected
Stochastic Blockmodel

2.1 Introduction

Spectral clustering is a fast and popular algorithm for finding clusters in networks.
Recently, Chaudhuri et al. (2012) and Amini et al. (2012) proposed inspired variations
on the algorithm that artificially inflate the node degrees for improved statistical
performance. This chapter extends the previous statistical estimation results to the
more canonical spectral clustering algorithm in a way that removes any assumption
on the minimum degree and provides guidance on the choice of the tuning parameter.
Moreover, our results show how the “star shape” in the eigenvectors – a common
feature of empirical networks – can be explained by the Degree-Corrected Stochastic
Blockmodel and the Extended Planted Partition model, two statistical models that
allow for highly heterogeneous degrees. Throughout, this chapter characterizes and
justifies several of the variations of the spectral clustering algorithm in terms of these
models.

Several previous authors have studied the estimation properties of spectral clus-
tering under various statistical network models (McSherry (2001); Dasgupta et al.
(2004); Coja-Oghlan and Lanka (2009); Ames and Vavasis (2010); Rohe et al. (2011);
Sussman et al. (2012b) and Chaudhuri et al. (2012)). Recently, Chaudhuri et al.
(2012) and Amini et al. (2012) proposed two inspired ways of artificially inflating the
node degrees in ways that provide statistical regularization to spectral clustering.

This chapter examines the statistical estimation performance of regularized spectral



4

clustering under the Degree-Corrected Stochastic Blockmodel (DC-SBM), an extension
of the Stochastic Blockmodel (SBM) that allows for heterogeneous degrees (Holland
and Leinhardt (1983); Karrer and Newman (2011)). The SBM and the DC-SBM are
closely related to the planted partition model and the extended planted partition
model, respectively. We extend the previous results in the following ways:

(a) In contrast to previous studies, this paper studies the regularization step with
a canonical version of spectral clustering that uses k-means. The results do not
require any assumptions on the minimum expected node degree; instead, there
is a threshold demonstrating that higher degree nodes are easier to cluster. This
threshold is a function of the leverage scores that have proven essential in other
contexts, for both graph algorithms and network data analysis (see Mahoney
(2012a) and references therein). These are the first results that relate leverage
scores to the statistical performance of spectral clustering.

(b) This paper provides more guidance for data analytic issues than previous
approaches. First, the results suggest an appropriate range for the regularization
parameter. Second, our analysis gives a (statistical) model-based explanation
for the “star-shaped” figure that often appears in empirical eigenvectors. This
demonstrates how projecting the rows of the eigenvector matrix onto the unit
sphere (an algorithmic step proposed by Ng et al. (2002)) removes the ancillary
e↵ects of heterogeneous degrees under the DC-SBM. Our results highlight when
this step may be unwise.

Preliminaries: Throughout, we study undirected and unweighted graphs or
networks. Define a graph as G(E, V ), where V = {v

1

, v
2

, . . . , vN} is the vertex or
node set and E is the edge set. We will refer to node vi as node i. E contains a pair
(i, j) if there is an edge between node i and j. The edge set can be represented by
the adjacency matrix A 2 {0, 1}n⇥n. Aij = Aji = 1 if (i, j) is in the edge set and
Aij = Aji = 0 otherwise. Define the diagonal matrix D and the normalized Graph
Laplacian L, both elements of RN⇥N , in the following way:

Dii =
X

j

Aij, L = D�1/2AD�1/2.

The following notations will be used throughout the paper: || · || denotes the
spectral norm, and || · ||F denotes the Frobenius norm. For two sequence of variables
{xN} and {yN}, we say xN = !(yN ) if and only if yN/xN = o(1). �

(.,.) is the indicator
function where �x,y = 1 if x = y and �x,y = 0 if x 6= y.
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2.2 The Algorithm: Regularized Spectral
Clustering (RSC)

For a sparse network with strong degree heterogeneity, standard spectral clustering
often fails to function properly (Amini et al. (2012); Jin (2015)). To account for this,
Chaudhuri et al. (2012) proposed the regularized graph Laplacian that can be defined
as

L⌧ = D�1/2
⌧ AD�1/2

⌧ 2 RN⇥N

where D⌧ = D + ⌧I for ⌧ � 0.
The spectral algorithm proposed and studied by Chaudhuri et al. (2012) divides

the nodes into two random subsets and only uses the induced subgraph on one of
those random subsets to compute the spectral decomposition. In this paper, we
will study the more traditional version of spectral algorithm that uses the spectral
decomposition on the entire matrix (Ng et al. (2002)). Define the regularized spectral
clustering (RSC) algorithm as follows:

RSC

Input: Adjacency matrix A 2 {0, 1}n⇥n, regularizer ⌧ � 0 (Default: ⌧ = average
node degree), number of clusters K.

1. Given input adjacency matrix A, number of clusters K, and regularizer ⌧ ,
calculate the regularized graph Laplacian L⌧ . (As discussed later, a good
default for ⌧ is the average node degree.)

2. Find the eigenvectors X
1

, ..., XK 2 RN corresponding to the K largest eigen-
values of L⌧ . Form X = [X

1

, ..., XK ] 2 RN⇥K by putting the eigenvectors
into the columns.

3. Form the matrix X⇤ 2 RN⇥K from X by normalizing each of X’s rows to
have unit length. That is, project each row of X onto the unit sphere of RK

(X⇤
ij = Xij/(

P

j X
2

ij)
1/2).

4. Treat each row of X⇤ as a point in RK , and run k-means with K clusters.
This creates K non-overlapping sets V

1

, ..., VK whose union is V.

5. Node i is assigned to cluster r if the i’th row of X⇤ is assigned to Vr.

Output: The clusters V
1

, ..., VK from step (5).
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This paper will refer to “standard spectral clustering” as the above algorithm
with L replacing L⌧ .

These spectral algorithms have two main steps: 1) find the principal eigenspace of
the (regularized) graph Laplacian; 2) determine the clusters in the low dimensional
eigenspace. Later, we will study RSC under the Degree-Corrected Stochastic Block-
model and show rigorously how regularization helps to maintain cluster information
in step (a) and why normalizing the rows of X helps in step (b). From now on, we
use X⌧ and X⇤

⌧ instead of X and X⇤ to emphasize that they are related to L⌧ . Let
X i

⌧ and [X⇤
⌧ ]

i denote the i’th row of X⌧ and X⇤
⌧ .

The next section introduces the Degree-Corrected Stochastic Blockmodel and its
matrix formulation.

2.3 The Degree-Corrected Stochastic
Blockmodel (DC-SBM)

In the Stochastic Blockmodel (SBM), each node belongs to one of K blocks. Each
edge corresponds to an independent Bernoulli random variable where the probability
of an edge between any two nodes depends only on the block memberships of the two
nodes (Holland and Leinhardt (1983)). The formal definition is as follows.

Definition 2.1. For a node set {1, 2, ..., N}, let z : {1, 2, ..., N} ! {1, 2, ..., K}
partition the N nodes into K blocks. So, zi equals the block membership for node i.
Let B be a K ⇥K matrix where Bab 2 [0, 1] for all a, b. Then under the SBM, the
probability of an edge between i and j is Pij = Pji = Bz

i

z
j

for any i, j = 1, 2, ..., n.
Given z, all edges are independent.

One limitation of the SBM is that it presumes all nodes within the same block have
the same expected degree. The Degree-Corrected Stochastic Blockmodel (DC-SBM)
(Karrer and Newman (2011)) is a generalization of the SBM that adds an additional
set of parameters (✓i > 0 for each node i) that control the node degrees. Let B
be a K ⇥ K matrix where Bab � 0 for all a, b. Then the probability of an edge
between node i and node j is ✓i✓jBz

i

z
j

, where ✓i✓jBz
i

z
j

2 [0, 1] for any i, j = 1, 2, ..., n.
Parameters ✓i are arbitrary to within a multiplicative constant that is absorbed
into B. To make it identifiable, Karrer and Newman (2011) suggest imposing the
constraint that, within each block, the summation of ✓i’s is 1. That is,

P

i ✓i�zi,r = 1
for any block label r. Under this constraint, B has explicit meaning: If s 6= t, Bst

represents the expected number of links between block s and block t and if s = t,
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Bst is twice the expected number of links within block s. Throughout the paper, we
assume that B is positive definite.

Under the DC-SBM, define A , EA. This matrix can be expressed as a product
of the matrices,

A = ⇥ZBZT⇥,

where (1) ⇥ 2 RN⇥N is a diagonal matrix whose ii’th element is ✓i and (2) Z 2
{0, 1}N⇥K is the membership matrix with Zit = 1 if and only if node i belongs to
block t (i.e. zi = t).

Population Analysis

Under the DC-SBM, if the partition is identifiable, then one should be able to
determine the partition from A . This section shows that with the population
adjacency matrix A and a proper regularizer ⌧ , RSC perfectly reconstructs the block
partition.

Define the diagonal matrix D to contain the expected node degrees, Dii =
P

j Aij

and define D⌧ = D + ⌧I where ⌧ � 0 is the regularizer. Then, define the population
graph Laplacian L and the population version of regularized graph Laplacian L⌧ ,
both elements of RN⇥N , in the following way:

L = D�1/2A D�1/2, L⌧ = D�1/2
⌧ A D�1/2

⌧ .

DefineDB 2 RK⇥K as a diagonal matrix whose (s, s)’th element is [DB]ss =
P

t Bst.
A couple lines of algebra shows that [DB]ss = Ws is the total expected degrees of
nodes from block s and that Dii = ✓i[DB]z

i

z
i

. Using these quantities, the next Lemma
gives an explicit form for L⌧ as a product of the parameter matrices.

Lemma 2.2. (Explicit form for L⌧ ) Under the DC-SBM with K blocks with param-
eters {B, Z,⇥}, define ✓⌧i as:

✓⌧i =
✓2i

✓i + ⌧/Wz
i

= ✓i
Dii

Dii + ⌧
.

Let ⇥⌧ 2 Rn⇥n be a diagonal matrix whose ii’th entry is ✓⌧i . Define BL = D�1/2
B BD�1/2

B ,
then L⌧ can be written

L⌧ = D
� 1

2
⌧ A D

� 1
2

⌧ = ⇥
1
2
⌧ ZBLZ

T⇥
1
2
⌧ .
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Recall that A = ⇥ZBZT⇥. Lemma 3.3 demonstrates that L⌧ has a similarly
simple form that separates the block-related information (BL) and node specific
information (⇥⌧ ). Notice that if ⌧ = 0, then ⇥

0

= ⇥ and L = D� 1
2A D� 1

2 =
⇥

1
2ZBLZT⇥

1
2 . The next lemma shows that L⌧ has rank K and describes how its

eigen-decomposition can be expressed in terms of Z and ⇥.

Lemma 2.3. (Eigen-decomposition for L⌧) Under the DC-SBM with K blocks
and parameters {B, Z,⇥}, L� has K positive eigenvalues. The remaining N �K
eigenvalues are zero. Denote the K positive eigenvalues of L⌧ as �

1

� �
2

� ... �
�K > 0 and let X⌧ 2 RN⇥K contain the eigenvector corresponding to �i in its i’th
column. Define X ⇤

⌧ to be the row-normalized version of X⌧ , similar to X⇤
⌧ as defined

in the RSC algorithm in Section 2. Then, there exists an orthogonal matrix U 2 RK⇥K

depending on ⌧ , such that

1. X⌧ = ⇥
1
2
⌧ Z(ZT⇥⌧Z)�1/2U

2. X ⇤
⌧ = ZU , Zi 6= Zj , ZiU 6= ZjU , where Zi denote the i’th row of the

membership matrix Z.

This lemma provides four useful facts about the matrices X⌧ and X ⇤
⌧ . First,

if two nodes i and j belong to the same block, then the corresponding rows of X⌧

(denoted as X i
⌧ and X j

⌧ ) both point in the same direction, but with di↵erent lengths:
||X i

⌧ ||2 = ( ✓⌧
iP

j

✓⌧
j

�
z

j

,z

i

)1/2. Second, if two nodes i and j belong to di↵erent blocks, then

X i
⌧ and X j

⌧ are orthogonal to each other. Third, if zi = zj then after projecting these
points onto the sphere as in X ⇤

⌧ , the rows are equal: [X ⇤
⌧ ]

i = [X ⇤
⌧ ]

j = Uz
i

. Finally,
if zi 6= zj, then the rows are perpendicular, [X ⇤

⌧ ]
i ? [X ⇤

⌧ ]
j. Figure 1 illustrates the

geometry of X⌧ and X ⇤
⌧ when there are three underlying blocks. Notice that running

k-means on the rows of X ⇤
� (in right panel of Figure 1) will return perfect clusters.

Note that if ⇥ were the identity matrix, then the left panel in Figure 1 would look
like the right panel in Figure 1; without degree heterogeneity, there would be no star
shape and no need for a projection step. This suggests that the star shaped figure
often observed in data analysis stems from the degree heterogeneity in the network.

2.4 Regularized Spectral Clustering with the
Degree-corrected model

This section bounds the mis-clustering rate of Regularized Spectral Clustering under
the DC-SBM. The section proceeds as follows: Theorem 2.4 shows that L⌧ is close to
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Figure 2.1: In this numerical example, A comes from the DC-SBM with three blocks.
Each point corresponds to one row of the matrix X⌧ (in left panel) or X ⇤

⌧ (in right
panel). The di↵erent colors correspond to three di↵erent blocks. The hollow circle is
the origin. Without normalization (left panel), the nodes with same block membership
share the same direction in the projected space. After normalization (right panel),
nodes with same block membership share the same position in the projected space.

L⌧ . Theorem 2.5 shows that X⌧ is close to X⌧ and that X⇤
⌧ is close to X ⇤

⌧ . Finally,
Theorem 2.7 shows that the output from RSC with L⌧ is close to the true partition
in the DC-SBM (using Lemma 2.3).

Theorem 2.4. (Concentration of the regularized Graph Laplacian) Let G be a random
graph, with independent edges and pr(vi ⇠ vj) = pij. Let � be the minimum expected
degree of G, that is � = mini Dii. For any ✏ > 0, if � + ⌧ > 3 lnN + 3 ln(4/✏), then
with probability at least 1� ✏,

||L⌧ � L⌧ ||  4

r

3 ln(4N/✏)

� + ⌧
. (2.1)

Remark: This theorem builds on the results of Chung and Radcli↵e (2011)
and Chaudhuri et al. (2012) which give a seemingly similar bound on ||L � L ||
and ||D�1

⌧ A � D�1

⌧ A ||. However, the previous papers require that � � c lnN ,
where c is some constant. This assumption is not satisfied in a large proportion of
sparse empirical networks with heterogeneous degrees. In fact, the regularized graph
Laplacian is most interesting when this condition fails, i.e. when there are several
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nodes with very low degrees. Theorem 2.4 only assumes that �+⌧ > 3 lnN+3 ln(4/✏).
This is the fundamental reason that RSC works for networks containing some nodes
with extremely small degrees. It shows that, by introducing a proper regularizer ⌧ ,
||L⌧ � L⌧ || can be well bounded, even with � very small. Later we will show that a
suitable choice of ⌧ is the average degree.

The next theorem bounds the di↵erence between the empirical and population
eigenvectors (and their row normalized versions) in terms of the Frobenius norm.

Theorem 2.5. Let A be the adjacency matrix generated from the DC-SBM with K
blocks and parameters {B, Z,⇥}. Let �

1

� �
2

� ... � �K > 0 be the only K positive
eigenvalues of L⌧ . Let X⌧ and X⌧ 2 RN⇥K contain the top K eigenvectors of L⌧ and
L⌧ respectively. Define m = mini{||X i

⌧ ||2} as the length of the shortest row in X⌧ .
Let X⇤

⌧ and X ⇤
⌧ 2 RN⇥K be the row normalized versions of X⌧ and X⌧ , as defined in

step 3 of the RSC algorithm.
For any ✏ > 0 and su�ciently large N , assume that � + ⌧ > 3 lnN + 3 ln(4/✏),

then with probability at least 1� ✏, the following holds,

||X⌧�X⌧O||F  c
0

1

�K

r

K ln(4N/✏)

� + ⌧
, and ||X⇤

⌧�X ⇤
⌧ O||F  c

0

1

m�K

r

K ln(4N/✏)

� + ⌧
.

(2.2)

The proof of Theorem 2.5 can be found in the appendix.
Next we use Theorem 2.5 to derive a bound on the mis-clustering rate of RSC. To

define “mis-clustered”, recall that RSC applies the k-means algorithm to the rows of
X⇤

⌧ , where each row is a point in RK . Each row is assigned to one cluster, and each
of these clusters has a centroid from k-means. Define C

1

, . . . , Cn 2 RK such that Ci

is the centroid corresponding to the i’th row of X⇤
⌧ . Similarly, run k-means on the

rows of the population eigenvector matrix X ⇤
⌧ and define the population centroids

C
1

, . . . , Cn 2 RK . In essence, we consider node i correctly clustered if Ci is closer to
Ci than it is to any other Cj for all j with Zj 6= Zi.

The definition is complicated by the fact that, if any of the �
1

, . . . ,�K are equal,
then only the subspace spanned by their eigenvectors is identifiable. Similarly, if any
of those eigenvalues are close together, then the estimation results for the individual
eigenvectors are much worse that for the estimation results for the subspace that
they span. Because clustering only requires estimation of the correct subspace, our
definition of correctly clustered is amended with the rotation OT 2 RK⇥K , the matrix
which minimizes kX⇤

⌧O
T � X ⇤

⌧ kF . This is referred to as the orthogonal Procrustes
problem and Schönemann (1966) shows how the singular value decomposition gives
the solution.
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Definition 2.6. If CiOT is closer to Ci than it is to any other Cj for j with Zj 6= Zi,
then we say that node i is correctly clustered. Define the set of mis-clustered nodes:

M = {i : Existsj 6= i, s.t.||CiO
T � Ci||2 > ||CiO

T � Cj||2}. (2.3)

The next theorem bounds the mis-clustering rate |M |/N .

Theorem 2.7. (Main Theorem) Suppose A 2 RN⇥N is an adjacency matrix of a
graph G generated from the DC-SBM with K blocks and parameters {B, Z,⇥}. Let
�
1

� �
2

� ... � �K > 0 be the K positive eigenvalues of L⌧ . Define M , the set of
mis-clustered nodes, as in Definition 2.6. Let � be the minimum expected degree of
G. For any ✏ > 0 and su�ciently large N , assume (a) and (b) as in Theorem 2.5.
Then with probability at least 1� ✏, the mis-clustering rate of RSC with regularization
constant ⌧ is bounded,

|M |/N  c
1

K ln(N/✏)

Nm2(� + ⌧)�2

K

. (2.4)

Remark 1 (Choice of ⌧): The quality of the bound in Theorem 2.7 depends on
⌧ through three terms: (�+⌧ ),�K , and m. Setting ⌧ equal to the average node degree
balances these terms. In essence, if ⌧ is too small, there is insu�cient regularization.
Specifically, if the minimum expected degree � = O(lnN), then we need ⌧ � c(✏) lnN
to have enough regularization to satisfy condition (b) on � + ⌧ . Alternatively, if ⌧ is
too large, it washes out significant eigenvalues.

To see that ⌧ should not be too large, note that

C = (ZT⇥⌧Z)
1/2BL(Z

T⇥⌧Z)
1/2 2 RK⇥K (2.5)

has the same eigenvalues as the largest K eigenvalues of L⌧ (see supplementary
materials for details). The matrix ZT⇥⌧Z is diagonal and the (s, s)’th element is the
summation of ✓⌧i within block s. If EM = !(N lnN) where M =

P

i Dii is the sum
of the node degrees, then ⌧ = !(M/N) sends the smallest diagonal entry of ZT⇥⌧Z
to 0, sending �K , the smallest eigenvalue of C, to zero.

The trade-o↵ between these two suggests that a proper range of ⌧ is (↵EM
N

, � EM
N

),
where 0 < ↵ < � are two constants. Keeping ⌧ within this range guarantees that �K

is lower bounded by some constant depending only on K. In simulations, we find
that ⌧ = M/N (i.e. the average node degree) provides good results. The theoretical
results only suggest that this is the correct rate. So, one could adjust this by a
multiplicative constant. Our simulations suggest that the results are not sensitive to
such adjustments.
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Remark 2 (Thresholding m): Mahoney (2012a) (and references therein) shows
how the leverage scores of A and L are informative for both data analysis and
algorithmic stability. For L, the leverage score of node i is ||X i||2

2

, the length of
the ith row of the matrix containing the top K eigenvectors. Theorem 2.7 is the
first result that explicitly relates the leverage scores to the statistical performance of
spectral clustering. Recall that m2 is the minimum of the squared row lengths in X⌧ ,
that is the minimum leverage score in both L⌧ . This appears in the denominator of
(5.7). The leverage scores in L⌧ have an explicit form

||X i
⌧ ||22 =

✓⌧i
P

j ✓
⌧
j �zj ,zi

.

So, if node i has small expected degree, then ✓⌧i is small, rendering ||X i
⌧ ||2 small. This

can deteriorate the bound in Theorem 2.7. The problem arises from projecting X i
⌧

onto the unit sphere for a node i with small leverage; it amplifies a noisy measurement.
Motivated by this intuition, the next corollary focuses on the high leverage nodes.
More specifically, let m⇤ denote the threshold. Define S to be a subset of nodes whose
leverage scores in L⌧ , ||X i

⌧ || exceed the threshold m⇤:

S = {i : ||X i
⌧ || � m⇤}.

Then by applying k-means on the set of vectors {[X⇤
⌧ ]

i, i 2 S}, we cluster these nodes.
The following corollary bounds the mis-clustering rate on S.

Corollary 2.8. Let N
1

= |S| denote the number of nodes in S and define M
1

=
M \ S as the set of mis-clustered nodes restricted in S. With the same settings and
assumptions as in Theorem 2.7, let � > 0 be a constant and set m⇤ = �/

p
N . If

N/N
1

= O(1), then by applying k-means on the set of vectors {[X⇤
⌧ ]

i, i 2 S}, we have
with probability at least 1� ✏, there exist constant c

2

independent of ✏, such that

|M
1

|/N
1

 c
2

K ln(N
1

/✏)

�2(� + ⌧)�2

K

. (2.6)

In the main theorem (Theorem 2.7), the denominator of the upper bound contains
m2. Since we do not make a minimum degree assumption, this value potentially
approaches zero, making the bound useless. Corollary 2.8 replaces Nm2 with the
constant �2, providing a superior bound when there are several small leverage scores.

If �K (the Kth largest eigenvalue of L⌧ ) is bounded below by some constant
and ⌧ = !(lnN), then Corollary 2.8 implies that |M

1

|/N
1

= op(1). The above
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thresholding procedure only clusters the nodes in S. To cluster all of the nodes, define
the thresholded RSC (t-RSC) as follows:

(a) Follow step (1), (2), and (3) of RSC as in section 2.1.

(b) Apply k-means with K clusters on the set S = {i, ||X i
⌧ ||2 � �/

p
N} and assign

each of them to one of V
1

, ..., VK . Let C1

, ..., CK denote the K centroids given
by k-means.

(c) For each node i /2 S, find the centroid Cs such that ||[X⇤
⌧ ]

i�Cs||2 = min
1tK ||[X⇤

⌧ ]
i�

Ct||2. Assign node i to Vs.

(d) Output V
1

, ...VK .

Remark 3 (Applying to SC): Theorem 2.7 can be easily applied to the standard
SC algorithm under both the SBM and the DC-SBM by setting ⌧ = 0. In this setting,
Theorem 2.7 improves upon the previous results for spectral clustering.

Define the four parameter Stochastic Blockmodel SBM(p, r, s,K) as follows: p is
the probability of an edge occurring between two nodes from the same block, r is the
probability of an out-block linkage, s is the number of nodes within each block, and
K is the number of blocks.

Because the SBM lacks degree heterogeneity within blocks, the rows of X within
the same block already share the same length. So, it is not necessary to project X i’s
to the unit sphere. Under the four parameter model, �K = (K[r/(p � r)] + 1)�1

(Rohe et al. (2011)). Using Theorem 2.7, with p and r fixed and p > r, and applying
k-means to the rows of X, we have

|M |/N = Op

✓

K2 lnN

N

◆

. (2.7)

If K = o(
q

N
lnN

), then |M |/N ! 0 in probability. This improves the previous results

that required K = o(N1/3) (Rohe et al. (2011)). Moreover, it makes the results for
spectral clustering comparable to the results for the MLE in Choi et al. (2012).

2.5 Simulation and Analysis of Political Blogs

This section compares five di↵erent methods of spectral clustering. Experiment 1 gen-
erates networks from the DC-SBM with a power-law degree distribution. Experiment
2 generates networks from the standard SBM. Finally, the benefits of regularization
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are illustrated on an empirical network from the political blogosphere during the 2004
presidential election (Adamic and Glance (2005)).

The simulations compare (1) standard spectral clustering (SC), (2) RSC as defined
in section 2, (3) RSC without projectingX⌧ onto unit sphere (RSC wp), (4) regularized
SC with thresholding (t-RSC), and (5) spectral clustering with perturbation (SCP)
(Amini et al. (2012)) which applies SC to the perturbed adjacency matrix Aper =
A+ a11T . In addition, experiment 2 compares the performance of RSC on the subset
of nodes with high leverage scores (RSC on S) with the other 5 methods. We set
⌧ = M/N , threshold parameter � = 1, and a = M/N2 except otherwise specified.

Experiment 1

This experiment examines how degree heterogeneity a↵ects the performance of the
spectral clustering algorithms. The ⇥ parameters (from the DC-SBM) are drawn
from the power law distribution with lower bound xmin = 1 and shape parameter � 2
{2, 2.25, 2.5, 2.75, 3, 3.25, 3.5}. A smaller � indicates to greater degree heterogeneity.
For each fixed �, thirty networks are sampled. In each sample, K = 3 and each
block contains 300 nodes (N = 900). Define the signal to noise ratio to be the
expected number of in-block edges divided by the expected number of out-block edges.
Throughout the simulations, the SNR is set to four and the expected average degree
is set to eight.

The left panel of Figure 2 plots � against the misclustering rate for SC, RSC,
RSC wp, t-RSC, SCP and RSC on S. Each point is the average of 30 sampled
networks. Each line represents one method. If a method assigns more than 95%
of the nodes into one block, then we consider all nodes to be misclustered. The
experiment shows that (1) if the degrees are more heterogeneous (�  3.5), then
regularization improves the performance of the algorithms; (2) if � < 3, then RSC
and t-RSC outperform RSC wp and SCP, verifying that the normalization step helps
when the degrees are highly heterogeneous; and, finally, (3) uniformly across the
setting of �, it is easier to cluster nodes with high leverage scores.

Experiment 2

This experiment compares SC, RSC, RSC wp, t-RSC and SCP under the SBM with
no degree heterogeneity. Each simulation has K = 3 blocks and N = 1500 nodes. As
in the previous experiment, SNR is set to four. In this experiment, the average degree
has three di↵erent settings: 10, 21, 30. For each setting, the results are averaged over
50 samples of the network.
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Figure 2.2: Left Panel: Comparison of Performance for SC, RSC, RSC wp, t-RSC,
SCP and (RSC on S) under di↵erent degree heterogeneity. Smaller � corresponds to
greater degree heterogeneity. Right Panel: Comparison of Performance for SC and
RSC under SBM with di↵erent sparsity.

The right panel of Figure 2 shows the misclustering rate of SC and RSC for the
three di↵erent values of the average degree. SCP, RSC wp, t-RSC perform similarly to
RSC, demonstrating that under the standard SBM (i.e. without degree heterogeneity)
all spectral clustering methods perform comparably. The one exception is that under
the sparsest model, SC is less stable than the other methods.

Analysis of Blog Network

This empirical network is comprised of political blogs during the 2004 US presidential
election (Adamic and Glance (2005)). Each blog has a known label as liberal or
conservative. As in Karrer and Newman (2011), we symmetrize the network and
consider only the largest connected component of 1222 nodes. The average degree
of the network is roughly 15. We apply RSC to the data set with ⌧ ranging from 0
to 30. In the case where ⌧ = 0, it is standard Spectral Clustering. SC assigns 1144
out of 1222 nodes to the same block, failing to detect the ideological partition. RSC
detects the partition, and its performance is insensitive to the ⌧ . With ⌧ 2 [1, 30],
RSC misclusters (80± 2) nodes out of 1222.
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If RSC is applied to the 90% of nodes with the largest leverage scores (i.e. excluding
the nodes with the smallest leverage scores), then the misclustering rate among these
high leverage nodes is 44/1100, which is almost 50% lower. This illustrates how
the leverage score corresponding to a node can gauge the strength of the clustering
evidence for that node relative to the other nodes.

We tried to compare these results t the regularized algorithm in Chaudhuri et al.
(2012). However, because there are several very small degree nodes in this data, the
values computed in step 4 of the algorithm in Chaudhuri et al. (2012) sometimes take
negative values. Then, step 5 (b) cannot be performed.

2.6 Discussion

In this chapter, we give theoretical, simulation, and empirical results that demonstrate
how a simple adjustment to the standard spectral clustering algorithm can give
dramatically better results for networks with heterogeneous degrees. Our theoretical
results add to the current results by studying the regularization step in a more
canonical version of the spectral clustering algorithm. Moreover, our main results
require no assumptions on the minimum node degree. This is crucial because it
allows us to study situations where several nodes have small leverage scores; in these
situations, regularization is most beneficial. Finally, our results demonstrate that
choosing a tuning parameter close to the average degree provides a balance between
several competing objectives.
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Chapter 3

Regularized Co-clustering for
Directed Graphs

3.1 Introduction

Co-clustering (a.k.a. bi-clustering) was first proposed in Hartigan (1972) for data
arranged in a matrix M 2 Rn⇥d. In addition to clustering the rows of M into kr
clusters, co-clustering simultaneously clusters the columns of M into kc clusters. In
the past decade, co-clustering has become an important data analytic technique in
biological applications (e.g. Madeira and Oliveira (2004), Tanay et al. (2004), Tanay
et al. (2005), Madeira et al. (2010)), text processing (e.g. Dhillon (2001), Bisson and
Hussain (2008)), and natural language processing (e.g. Freitag (2004), Rohwer and
Freitag (2004)). In these settings, Banerjee et al. (2004) describes how co-clustering
dramatically reduces the number of parameters that one needs to estimate. This
leads to three advantages over traditional clustering: (1) more interpretable results,
(2) faster computation, and (3) implicit statistical regularization.

Previous applications of co-clustering have involved matrices where the rows and
columns index di↵erent sets of objects. For example, in text processing, the rows
correspond to documents, and the columns correspond to words. Element i, j of this
matrix denotes how many times word j appears in document i. The row clusters
correspond to clusters of similar documents and the column clusters correspond to
clusters of similar words. In contrast, this paper applies co-clustering to a matrix
where the rows and columns index the same set of nodes. The ith row of the matrix
identifies the outgoing edges for node i; two nodes are in the same row cluster if they
send edges to several of the same nodes. The ith column of this matrix identifies the
incoming edges for node i; two nodes are in the same row co-cluster if they send edges
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to several of the same nodes. As such, each node i is in two types of clusters (one for
the ith column and one for the ith row). Comparing these two distinct partitions of
the nodes can lead to novel insights when compared to the standard co-clustering
applications where the rows and columns index di↵erent sets.

This paper proposes and studies a spectral co-clustering algorithm called di-sim.
Building on previous spectral co-clustering algorithms (e.g. Dhillon (2001)), di-sim
incorporates regularization and projection steps. These two steps are essential when
there is a large amounts of degree heterogeneity and several weakly connected nodes.
The name di-sim has three meanings. First, because di-sim co-clusters the nodes,
it uses two distinct (but related) similarity measures between nodes: “the number
of common parents” and “the number of common o↵spring” to create two di↵erent
partitions of the nodes. In this sense, di-sim means two similarities and two partitions.
Second, di- denotes that this algorithm is specifically for directed graphs. Finally,
di-sim, pronounced “dice ‘em”, dices data into clusters.

3.2 The di-sim Algorithm

Let G = (V,E) denote a graph, where V is a vertex set and E is an edge set. The
vertex set V = {1, . . . , n} contains vertices or nodes. These are the actors in the
graph. This paper considers unweighted, directed edges. So, the edge set E contains
a pair (i, j) if there is an edge, or relationship, from node i to node j: i ! j. The
graph can be represented as an adjacency matrix A 2 {0, 1}n⇥n:

Aij =

⇢

1 if (i, j) is in the edge set
0 otherwise.

If the adjacency matrix is symmetric, then the graph is undirected. We are interested
in exploring the asymmetries in A.

The graph Laplacian is a function of the adjacency matrix. It is fundamental
to spectral graph theory and the spectral clustering algorithm (Chung (1997); von
Luxburg (2007)). Several previous papers have proposed and or studied various ways
of regularizing the graph Laplacian; these regularization steps improve the statistical
performance of various spectral algorithms (Page et al. (1999); Andersen et al. (2006);
Chaudhuri et al. (2012); Amini et al. (2013); Qin and Rohe (2013); Joseph and Yu
(2014)). This paper generalizes the regularization proposed in Chaudhuri et al. (2012)
to directed graphs. Define the regularized graph Laplacian L 2 Rn⇥n for directed
graphs with the diagonal matrices P 2 Rn⇥n and O 2 Rn⇥n, regularization parameter
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⌧ � 0, and identity matrix I 2 Rn⇥n,

Pjj =
P

k Akj =
P

k 1{k ! j} and P ⌧ = P + ⌧I;

Oii =
P

k Aik =
P

k 1{i ! k} and O⌧ = O + ⌧I; and

Lij = A
ijp

O⌧

ii

P ⌧

jj

= 1{i!j}p
O⌧

ii

P ⌧

jj

= [(O⌧ )�1/2A(P ⌧ )�1/2]ij.
(3.1)

Pjj is the number of nodes that send an edge to node j, or the number of parents
to node j. Similarly, Oii is the number of nodes to which i sends an edge, or the
number of o↵spring to node i. A more standard definition of the graph Laplacian is
I � O�1/2AO�1/2. Our definition also uses P in the normalization and it does not
contain I�. These changes are essential to our theoretical results and many of the
interpretations of di-sim would not hold otherwise. The regularized degree matrices,
P ⌧ and O⌧ , artificially inflate every degree by a constant ⌧ . In the setting of undirected
graphs, Qin and Rohe (2013) showed that in order to make the asymptotic bounds
informative, ⌧ should grow proportionally to the average node degree,

P

i Oii/n. Note
that

P

i Oii/n =
P

j Pjj/n since the out degree equals to the in degree. We use the
average node degree as the default value for ⌧ .

To apply di-sim to a bipartite graph on disjoint sets of vertices U and V (e.g. U
contains words and V contains documents), let U index the rows of A and V index
the columns of A. As such, A is rectangular and Aij = 1 if and only if i 2 U shares
an edge with j 2 V (e.g. word i is contained in document j). While the dimensions of
O,P, and L must change to reflect that A is rectangular, the definitions in Equations
(6.9) remain the same.

Throughout, for x 2 Rd, kxk
2

=
q

Pd
i=1

x2

i , for M 2 Rd⇥p, kMk denotes the

spectral norm and kMkF denotes the Frobenius norm. With the above notation,
di-sim is defined as follows.
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di-sim

Input: Adjacency matrix A 2 {0, 1}n⇥n, regularizer ⌧ � 0 (Default: ⌧ = average
node degree), number of row-clusters ky, number of column-clusters kz.

(1) Compute the regularized graph Laplacian L = (O⌧ )�1/2A(P ⌧ )�1/2.

(2) Compute the top K left and right singular vectors XL 2 Rn⇥K , XR 2 Rn⇥K ,
where K = min{ky, kz}.

(3) Normalize each row of XL and XR to have unit length. That is, define
X⇤

L 2 Rn⇥K , X⇤
R 2 Rn⇥K , such that

[X⇤
L]i =

[XL]i
k[XL]ik2

, [X⇤
R]j =

[XR]j
k[XR]jk2

,

where [XL]i is the ith row of XL and similarly for [X⇤
L]i, [XR]j, [X⇤

R]j.

(4) Cluster the rows of X⇤
L into kr clusters with (1 + ↵)-approximate k-means

(Kumar et al. (2004)). Because each row of X⇤
L corresponds to a node’s

sending pattern in the graph, the results cluster the nodes’ sending patterns.

(5) Cluster the receiving patterns by performing step (4) on the matrix X⇤
R

with kz clusters.

Output: The clusters from step (4) and (5).

When A is undirected, then the left and right singular vectors of L are equal to
each other and equal to the eigenvectors of L. In this special case, di-sim is equivalent
to previous versions of undirected spectral clustering (e.g. see von Luxburg (2007),
Qin and Rohe (2013)).

3.3 Stochastic co-Blockmodel

This section proposes a statistical model for a directed graph with dual notions of
stochastic equivalence. Despite the fact that di-sim is not a model based algorithm,
when the graph is sampled from this model, di-sim will estimate these dual partitions.
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Stochastic equivalence, a model based similarity

Stochastic equivalence is a fundamental concept in classical social network analysis.
In the Stochastic Blockmodel, two nodes are in the same block if and only if they are
stochastically equivalent (Holland et al. (1983)). In a directed network, two nodes a
and b are stochastically equivalent if and only if both of the following hold:

P (a ! x) = P (b ! x) 8x and (3.2)

P (x ! a) = P (x ! b) 8x (3.3)

where a ! x denotes the event that a sends an edge to x. Separating these two notions
allows for co-clustering structure. Two nodes a and b are stochastically equivalent
senders if and only if Equation 3.2 holds. Two nodes a and b are stochastically
equivalent receivers if and only if Equation 3.3 holds. These two concepts correspond
to a model based notion of co-clusters and they are simultaneously represented in the
new Stochastic co-Blockmodel.

A statistical model of co-clustering in directed graphs

The Stochastic Blockmodel provides a model for a random network with K well
defined blocks, or communities (Holland et al. (1983)). The Stochastic co-Blockmodel
is an extension of the Stochastic Blockmodel.

This model naturally generalizes to bi-partite graphs, where the rows and the
columns of A index di↵erent sets of actors (e.g. words and documents). As such, the
rest of the paper allows for a di↵erent number of rows (Nr) and columns (Nc) in the
adjacency matrix A. Using the notation from the previous sections, a directed graph
would satisfy Nr = Nc = n.

Definition 3.1. Define three nonrandom matrices, Y 2 {0, 1}Nr

⇥k
y , Z 2 {0, 1}Nc

⇥k
z

and B 2 [0, 1]ky⇥k
z . Each row of Y and each row of Z has exactly one 1 and each

column has at least one 1. Under the Stochastic co-Blockmodel (ScBM), the
adjacency matrix A 2 {0, 1}Nr

⇥N
c is random such that E(A) = Y BZT . Further, each

edge is independent, so the probability distribution factors

P (A) =
Y

i,j

P (Aij).

Without loss of generality, we will always presume that ky  kz.
In the Stochastic Blockmodel, E(A) = ZBZT . In the ScBM, E(A) = Y BZT . In

this definition, Y and Z record two types of block membership which correspond to
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the two types of stochastic equivalence (Equations 3.2 and 3.3). Denote yi as the ith
row of Y and zi to be the ith row of Z.

Proposition 3.2. Under the ScBM for a directed graph, if yi = yj, then nodes i and
j are stochastically equivalent senders, Equation 3.2. Similarly, if zi = zj, then nodes
i and j are stochastically equivalent receivers, Equation 3.3.

Wang and Wong (1987) previously proposed and studied a directed Stochastic
Blockmodel. However, our aims are di↵erent. Where Wang and Wong (1987) sought
to understand the dependence between Aij and Aji, the current paper seeks to
understand the co-clustering structure of the blocks. Importantly, where we use
two types of stochastic equivalence (sending and receiving), Wang and Wong (1987)
uses only one type of stochastic equivalence which implies that if two nodes are
stochastically equivalent senders, then the nodes are also stochastically equivalent
receivers and vice versa. By encoding co-clustering structure, the ScBM more closely
aligns with the concept of separately exchangeable arrays (e.g. see Diaconis and
Janson (2007) and Wolfe and Choi (2014)).

Degree Correction for co-Blockmodel

The degree-corrected Stochastic Blockmodel generalizes the Stochastic Blockmodel
to allow for nodes in the same block to have highly heterogeneous degrees (Karrer
and Newman (2011)). Theorem 3.7 below studies a similar generalization of the
ScBM. The Degree-Corrected Stochastic co-Blockmodel (DC-ScBM) adds two sets of
parameters (✓yi > 0, i = 1, ..., Nr and ✓zj > 0, j = 1, ..., Nc) that control the in- and
out-degrees for each node. Let B be a ky⇥kz matrix where Bab � 0 for all a, b. Then,
under the DC-ScBM

P (Aij = 1) = ✓yi ✓
z
jBy

i

z
j

where ✓yi ✓
z
jBy

i

z
j

2 [0, 1]. Note that parameters ✓yi and ✓zj are arbitrary to within a
multiplicative constant that is absorbed into B. To make it identifiable, we impose
the constraint that within each row block, the summation of ✓yi s is 1. That is, for
each row-block s,

X

i

✓yi 1(Yis = 1) = 1.

Similarly, for any column-block t, we impose

X

j

✓zj1(Zjt = 1) = 1.
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Under this constraint, B has explicit meaning: Bst represents the expected number
of links from row-block s to column-block t. Under the DC-ScBM, define A , EA.
This matrix can be expressed as a product of the matrices,

A = ⇥yYBZT⇥z,

where ⇥y is a diagonal matrix whose ii’th element is ✓yi and ⇥z is defined similarly
with ✓zj .

3.4 Estimating the Degree Corrected Stochastic
co-Blockmodel with di-sim

Theorem 3.7 bounds the number of nodes that di-sim “misclusters”. This demon-
strates that the co-clusters from di-sim estimate both the row- and column-block
memberships, one in matrix Y and the other in matrix Z, corresponding to the
two types of stochastic equivalence. This implies that the two notions of stochastic
equivalence relate to the two sets of singular vectors of L.

In a diverse set of large empirical networks, the optimal clusters, as judged by
a wide variety of graph cut objective functions, are not very large (Leskovec et al.
(2008)). To account for this, the results below limit the growth of community sizes by
allowing the number of communities to grow with the number of nodes. Previously,
Rohe et al. (2011); Choi et al. (2012); Rohe et al. (2014) have also studied this high
dimensional setting for the undirected Stochastic Blockmodel.

Several previous papers have explored the use of spectral tools to aid the estimation
of the Stochastic Blockmodel, including McSherry (2001); Dasgupta et al. (2004);
Coja-Oghlan and Lanka (2009); Ames and Vavasis (2010); Rohe et al. (2011); Sussman
et al. (2012a); Chaudhuri et al. (2012); Joseph and Yu (2014); Qin and Rohe (2013);
Sarkar and Bickel (2013); Krzakala et al. (2013); Jin (2015); and Lei and Rinaldo
(2015). The results below build on this previous literature in several ways. Theorem
3.7 gives the first statistical estimation results for directed graphs or bipartite graphs
with general degree distributions. Because we study a graph that is directed, di-sim
uses the leading singular vectors of a sparse and asymmetric matrix. As such, the
proof required novel extensions of previous proof techniques. These techniques allow
the results to also hold for bipartite graphs; previous results for bipartite graphs have
only studied computationally intractable techniques, e.g. Flynn and Perry (2012);
Wolfe and Choi (2014). For directed graphs and particularly for bipartite graphs, it is
not necessarily true that the number of sending clusters should equal the number of
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receiving clusters. Theorem 3.7 below does not presume that the number of sending
clusters equals the number of receiving clusters; the theoretical results highlight the
statistical price that is paid when they are not equal. Finally, we study a sparse
degree corrected model and the theoretical results highlight the importance of the
regularization and projection steps in di-sim.

Previous theoretical papers that use the non-regularized graph Laplacian all
require that the minimum degree grows with the number of nodes (e.g. Rohe et al.
(2011); Sarkar and Bickel (2013); Lei and Rinaldo (2015)). However, in many empirical
networks, most nodes have 1, 2, or 3 edges. In these settings, the non-regularized graph
Laplacian often has highly localized eigenvectors that are uninformative for estimating
large partitions in the graph. Because di-sim uses a regularized graph Laplacian, the
concentration of the singular vectors does not require a growing minimum node degree.
Several previous papers have realized the benefits of regularizing the graph Laplacian
(e.g. Page et al. (1999); Andersen et al. (2006); Amini et al. (2013); Chaudhuri et al.
(2012); Qin and Rohe (2013); Joseph and Yu (2014)). While the regularized singular
vectors concentrate without a growing minimum degree, the weakly connected nodes
e↵ect the conclusions through their statistical leverage scores. From the perspective
of numerical linear algebra, the leverage scores and the localization of the singular
vectors are essential to controlling the algorithmic di�culty of computing the singular
vectors (Mahoney, 2012a).

Population notation

Recall that A = E(A) is the population version of the adjacency matrix A. Under
the Degree-Corrected Stochastic co-Blockmodel,

A = ⇥yYBZT⇥z,

Similar to Equation (6.9), define regularized population versions of O, P , and L as

Ojj =
P

k Akj

Pii =
P

k Aik

O⌧ = O + ⌧I, P⌧ = P + ⌧I

L = O
� 1

2
⌧ A P

� 1
2

⌧

(3.4)

where O and P are diagonal matrices.
Define OB 2 Rk

y

⇥k
y as a diagonal matrix whose (s, s)’th element is [OB]ss =

P

t Bst. Similarly define PB 2 Rk
z

⇥k
z as a diagonal matrix whose (t, t)’th element is
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[PB]tt =
P

s Bst. A couple lines of algebra shows that [OB]ss is the total expected
out-degrees of row nodes from block s and that Oii = ✓Yi [OB]y

i

y
i

. Similarly [PB]tt is
the total expected in-degrees of column nodes from block t and that Pjj = ✓Zj [PB]z

j

z
j

.

Define BL = O�1/2
B BP�1/2

B .
The population graph Laplacian L has an alternative expression in terms of Y

and Z.

Lemma 3.3. (Explicit form for L⌧ ) Under the DC-ScBM with parameters {B, Y, Z,⇥Y ,⇥Z},
define ⇥Y,⌧ 2 RN

r

⇥N
r(⇥Z,⌧ 2 RN

c

⇥N
c) to be diagonal matrix where

[⇥Y,⌧ ]ii = ✓Yi
Oii

Oii + ⌧
[⇥Z,⌧ ]jj = ✓Zj

Pjj

Pjj + ⌧
.

Then L has the following form,

L = O
� 1

2
⌧ A P

� 1
2

⌧ = ⇥
1
2
Y,⌧Y BLZ

T⇥
1
2
Z,⌧ .

The proof of Lemma 3.3 is in Section B.2, in the appendix.

Definition of misclustered

Rigorous discussions of clustering require careful attention to identifiability. In the
ScBM, the order of the columns of Y and Z are unidentifiable. This leads to di�culty
in defining “misclustered”. Theorem 3.7 uses the following definition of misclustered
that is extended from Rohe et al. (2011).

By the singular value decomposition, there exist orthonormal matrices XL 2
RN

r

⇥k
y and XR 2 RN

c

⇥k
y and diagonal matrix ⇤ 2 Rk

y

⇥k
y such that

L = XL⇤X T
R .

Define X ⇤
L and X ⇤

R as the row normalized population singular vectors,

[X ⇤
L ]i =

[XL]i
||[XL]i||2

, [X ⇤
R ]j =

[XR]j
||[XR]j||2

.

Unless stated otherwise, we will presume without loss of generality that ky  kz.
If rank(B) = ky, then there exist matrices µy 2 Rk

y

⇥k
y and µz 2 Rk

z

⇥k
y such that

Y µy = X ⇤
L and Zµz = X ⇤

R (implied by Lemma B.4 in the appendix). Moreover, the
rows of µy are distinct; with a slightly stronger assumption, the rows of µz are also
distinct. As such, k-means applied to the rows of X ⇤

L will reveal the partition in Y .
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Similarly for µz, X ⇤
R , and Z. As such, di-sim applied to the population Laplacian,

L , can discover the block structure in the matrices Y and Z.
Let XL 2 RN

r

⇥k
y be a matrix whose orthonormal columns are the right singular

vectors corresponding to the largest ky singular values of L. di-sim applies k-means
(with ky clusters) to the rows of X⇤

L, denoted as u
1

, . . . , uN
r

. Each row is assigned to
one cluster and each cluster has a centroid.

Definition 3.4. For i = 1, . . . , Nr, define cLi 2 Rk
y to be the centroid corresponding

to ui after running (1 + ↵)-approximate k-means on u
1

, . . . , uN
r

with ky clusters.

If cLi is closer to some population centroid other than its own, i.e. yjµy for
some yj 6= yi, then we call node i Y -misclustered. This definition must be slightly
complicated by the fact that the coordinates inXL must first align with the coordinates
in XL. So, the definitions below include an additional rotation matrix RL.

Definition 3.5. The set of nodes Y -misclustered is

My =
�

i : kcLi � yiµ
yRLk2 > kcLi � yjµ

yRLk2 for any yj 6= yi
 

, (3.5)

where RL is the orthonormal matrix that solves Wahba’s problem min kXL�XLRLkF ,
i.e. it is the procrustean transformation.

Defining Z-misclustered, requires defining cRi and µz analogous to the previous
definitions.

Definition 3.6. The set of nodes Z-misclustered is

Mz =
�

i : kcRi � ziµ
zRRk2 > kcRi � zjµ

zRRk2 for any zj 6= zi
 

, (3.6)

where RR is the orthonormal matrix that solves Wahba’s problem min kXR�XRRRkF ,
i.e. it is the procrustean transformation.

Asymptotic performance

Define
H = (Y T⇥Y,⌧Y )1/2BL(Z

T⇥Z,⌧Z)
1/2.

H 2 Rk
y

⇥k
z shares same top K singular values with the population graph Laplacian

L . Define H·j as the jth column of H, and define

�z = min
i 6=j

kH·i �H·jk2. (3.7)
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When kz > ky, �z controls the additional di�culty in estimating Z.
Define my as the minimum row length of XL. Similarly define mz as the minimum

row length of XR. That is,

my = min
i=1,..,N

r

||[XL]i||2, mz = min
j=1,..,N

c

||[XR]j||2. (3.8)

These are the minimum leverage scores for the matrices L L T and L TL .
The next theorem bounds the sizes of the sets of misclustered nodes, |My| and

|Mz|.

Theorem 3.7. Suppose A 2 RN
r

⇥N
c is an adjacency matrix sampled from the Degree-

Corrected Stochastic co-Blockmodel with ky left blocks and kx right blocks. Let K =
min{ky, kz} = ky. Define L as in Equation 3.4. Define �

1

� �
2

� · · · � �K > 0
as the K nonzero singular values of L . Let My and Mz be the sets of Y - and Z-
misclustered nodes (Equations 3.5 and 3.6) by DI-SIM. Let � be the minimum expected
row and column degree of A, that is � = min(mini Oii,minj Pjj). Define �z, my and
mz as in Equations 3.7 and 3.8. For any ✏ > 0, if � + ⌧ > 3 ln(Nr +Nc) + 3 ln(4/✏),
then with probability at least 1� ✏,

My

Nr

 c
0

(↵)
K ln(4(Nr +Nc)/✏)

Nr�2

Km
2

y(� + ⌧)
, (3.9)

Mz

Nc

 c
1

(↵)
K ln(4(Nr +Nc)/✏)

Nc�2

Km
2

z�
2

z (� + ⌧)
. (3.10)

A proof of Theorem 3.7 is contained in the appendix.
Because kXLk2F = K, the average leverage score ||[XL]i||2 is

p

K/Nr. If the my

is of the same order, with �K and K fixed, then M
y

N
r

goes to zero when � + ⌧ grows
faster than ln(Nr +Nc). In sparse graphs, � is fixed and so ⌧ must grow with n. To
ensure that �K remains fixed while ⌧ is growing, it is necessary for the average degree
to also grow.

In many empirical networks, the vast majority of nodes have very small degrees;
this is a regime in which � is not growing. In such networks, the bounds in Equations
(3.9) and (3.10) are vacuous unless ⌧ > 0. While these equations are upper bounds,
the simulations in the appendix show that for sparse networks (i.e. � small), these
bounds align with the performance of di-sim. Moreover, the performance of di-sim
is drastically improves with statistical regularization.

These results highlight the sensitivity to the smallest leverage scores my and mz.
When there are excessively small leverage scores, then the bound above can become
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meaningless. However, a slight modification of di-sim that excludes the low leveraged
points from the k-means step and the clustering results, obtains a vastly improved
bound. If one computes the leading singular vectors and only runs k-means on the
with the observations i that satisfy ||[XL]i||2 > ⌘

p

K/N , then the theoretical results
are much improved. Denote the nodes misclustered by this procedure as M ⇤

y . Let

there be N⇤ nodes with ||[XL]i||2 > ⌘
p

K/N . If N/N⇤ = O(1) and the population
eigengap �K is not asymptotically diminishing, then

M ⇤
y

N⇤  c
2

(↵)
ln((Nr +Nc)/✏)

⌘2(� + ⌧)
.

The proof mimics the proof of Theorem 3.7.
In Theorem 3.7, the bound for Mz exceeds the bound for My because the bound

for Mz contains an additional term �z. This asymmetry stems from allowing kz � ky.
In fact, if ky = kz, then �z can be removed, making the bounds identical. However, if
kz > ky, then Rank(L ) is at most ky. So, the singular value decomposition represents
the data in ky dimensions and the k-means steps for both the left and the right
clusters are done in ky dimensions. In estimating Y , there is one dimension in the
singular vector representation for each of the ky blocks. At the same time, the singular
value representation shoehorns the kz blocks in Z into less than kz dimensions. So,
there is less space to separate each of the kz clusters, obscuring the estimation of Z.

To further understand the bound in Theorem 3.7, define the following toy model.

Definition 3.8. The four parameter ScBM is an ScBM parameterized by K 2
N, s 2 N, r 2 (0, 1), and p 2 (0, 1) such that p+r  1. The matrices Y, Z 2 {0, 1}n⇥K

each contain s ones in each column and B = pIK + r1K1
T
K.

In the four parameter ScBM, there are K left- and right-blocks each with s nodes
and the node partitions in Y and Z are not necessarily related. If yi = zj, then
P (i ! j) = p+ r. Otherwise, P (i ! j) = r.

Corollary 3.9. Assume the four parameter ScBM, with same number of rows and
columns, and r, p fixed and K growing with N = Ks. Since � is growing with n, set
⌧ = 0. Then,

�K =
1

K(r/p) + 1
,

where �K is the Kth largest singular value of L . Moreover,

N�1(|My|+ |Mz|) = Op

✓

K2 logN

N

◆

.
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The proportion of nodes that are misclustered converges to zero, as long as number of
clusters K = o(

p

N/ logN).

The proof of Corollary 3.9 is contained in the Appendix.

3.5 Simulation

The theoretical results of Theorem 3.7 identify (1) the expected node degree and (2) the
spectral gap as essential parameters that control the clustering performance of di-sim.
The simulations investigate di-sim’s non-asymptotic sensitivity to these quantities
under the four parameter Stochastic Co-Blockmodel (Definition 3.8). Moreover, the
simulations investigate the performance under the model without degree correction
and with degree correction.

Both simulations use k = 5 blocks for both Y and Z. Each of the five blocks
contains 400 nodes. So, n = 2000. When the model is degree corrected, ✓

1

, . . . , ✓n are

iid with ✓i
d
=

p
Z + .169 where Z ⇠ exponential(1). The addition of .169 ensures that

E(✓i) ⇡ 1 and thus the expected degrees are unchanged between the degree corrected
model and the model without degree correction.

In the first simulation, the expected node degree is represented on the horizontal
axis; the out of block probability r and the in block probability p + r change in a
way that keeps the spectral gap of L fixed across the horizontal axis. In the second
simulation, the spectral gap is represented on the horizontal axis; the probabilities p
and r change so that the expected degree pk + rn remains fixed at twenty. In both
simulations, the partition matrices Y and Z are sampled independently and uniformly
over the set of matrices with s = 400 and k = 5.

To design the parameter settings of p and r, note that the population graph
Laplacian L is a rank k matrix. So, its k + 1 eigenvalue is �k+1

= 0 and the spectral
gap is �k � �k+1

= �k. Corollary 3.9 says that the kth eigenvalue of L for ⌧ = 0 is

�k =
1

k(r/p) + 1
.

To keep the spectral gap �k fixed, it is equivalent to keeping r/p fixed.
We use the k-means++ algorithm (Kumar et al. (2004), Borchers (2012)) with

ten initializations. Only the results for Y -misclustered (Definition 3.5) are reported.
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Simulation 1

This simulation investigates the sensitivity of di-sim to a diminishing number of
edges. Figure 3.1 displays the simulation results for a sequence of nine equally spaced
values of the expected degree between 5 and 16. To decrease the variability of the
plot, each simulation was run twenty times; only the average is displayed. The solid
line corresponds to setting the regularization parameter equal to zero (⌧ = 0). The
line with longer dashes represents ⌧ = 1. The line with small dashes represents the
average degree, ⌧ = 1
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Figure 3.1: In the simulation on the left, the data comes from the four parameter
Stochastic Co-Blockmodel. On the right, the data comes from the same model, but
with degree correction. The ✓i parameters have expectation one. In both models,
k = 5 and s = 400. The probabilities p and r vary such that p = 5r, keeping the
spectral gap fixed at �k = 1/2. This simulation shows that for small expected degree,
regularization decreases the proportion of nodes that are misclustered. Moreover, the
benefits of regularization are more pronounced under the degree corrected model.

Figure 3.1 demonstrates two things. First, the number of misclustered nodes
increases as the expected degree goes to zero. Second, regularization decreases the
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number of misclustered nodes for small values of the expected degree.

Simulation 2

This simulation investigates the sensitivity of di-sim to a diminishing spectral gap �k.
Figure 3.1 displays the simulation results for a sequence of nine equally spaced values
of the spectral gap, between .3 and .6. In each simulation, the expected degree is held
constant at twenty. To decrease the variability, each simulation was run twenty times;
only the average is displayed. The solid line corresponds to setting the regularization
parameter equal to zero (⌧ = 0). The line with longer dashes represents ⌧ = 1. The
line with small dashes represents the average degree, ⌧ = 1

n

P

i Pii.
Figure 3.2 demonstrates two things. First, the number of misclustered nodes

increases as the spectral gap goes to zero. Second, regularization yields slight benefits
when the spectral gap is small and the model is degree corrected.

3.6 Discussion

Related SVD methods

Several other researchers have used SVD to explore and understand di↵erent network
features.

Kleinberg (1999) proposed the concept of “hubs and authorities” for hyperlink-
induced topic search (HITS). This algorithm that was a precursor to Google’s PageR-
ank algorithm (Page et al. (1999)). The SVD plays a key role in this algorithm.
The SVD also played a key role in Ho↵ (2009), where the left and right singular
vectors estimate “sender-specific and receiver-specific latent nodal attributes”. Like
di-sim, the algorithms in Kleinberg (1999) and Ho↵ (2009) use the SVD to investigate
asymmetric features of directed graphs.

Dhillon (2001) suggested an algorithm similar to di-sim that was to be applied to
bipartite graphs in which the rows and columns of L correspond to di↵erent entities
(e.g. documents and words). There are three key di↵erences between di-sim and
the algorithm in Dhillon (2001). First, Dhillon (2001) does not use regularization.
So, the definition of L remains the same, but ⌧ = 0. The regularization step helps
di-sim when L has highly localized singular vectors; this often happens when several
nodes have very small degrees. Second, Dhillon (2001) does not project the rows
of the singular vectors onto the sphere. The project step helps di-sim when the
node degrees are highly heterogeneous. Finally, to estimate K clusters, Dhillon
(2001) only uses dlog

2

Ke singular vectors (dxe is the smallest integer greater than x).
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Figure 3.2: In the simulation on the left, the data comes from the four parameter
Stochastic Co-Blockmodel. On the right, the data comes from the same model, but
with degree correction. The ✓i parameters have expectation one. In both models,
k = 5 and s = 400. The spectral gap, displayed on the horizontal axis, changes
because the probabilities p and r change. The values of p and r vary in a way
that keeps the expected degree fixed at twenty for all simulations. Without degree
correction, the three separate lines are di�cult to distinguish because they are nearly
identical. Under the degree corrected model, regularization improves performance
when the spectral gap is small.

While it is much faster to only compute log
2

K singular vectors, there is additional
information contained in the remaining top K singular vectors. For example, under
the four parameter ScBM, �

2

= · · · = �K . As such, there is not an eigengap after the
dlog

2

Keth singular value.
SVD has been used in other forms of discrete data, most notably in correspondence

analysis (CA). In fact, di-sim normalizes the rows and columns in an identical fashion
to CA. CA has similarities to principal components analysis, but it is applicable to
categorical data in contingency tables and is built on a beautiful set of algebraic
ideas (Holmes (2006)). The methodology was first published in Hirschfeld (1935) and
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(like spectral clustering) it has been rediscovered and reapplied several times over
(Guttman (1959)). While there exists a deep algorithmic, algebraic, and heuristic
understanding of CA, it is rarely conceived through a statistical model; Goodman
(1986) is one exception. Wasserman et al. (1990) study how one could use CA to
study relational data, but was particularly interested in two-way or bipartite networks.
Anderson et al. (1992) mentions CA and visual inspection as one possible way to
construct blocks in a Stochastic Blockmodel. The previous CA literature has not
explored the parameter estimation performance of CA under any of these models, nor
has the literature explored the dual partitions under a directed graph. Algorithmically,
the CA literature does not employ the regularization step (using ⌧) for sparse data.
Nor does it employ the projection step, where the rows of the singular vector matrices
are normalized to have unit length. This is a potentially fruitful area for further
research in CA.

In research that was contemporaneous to this paper’s tech report (Rohe and Yu
(2012)), both Wolfe and Choi (2014) and Flynn and Perry (2012) studied likelihood
formulations of co-clustering in the network setting. Wolfe and Choi (2014) studied a
“non-parametric” model that assumes the nodes are separately exchangeable. This
is a generalization of the Stochastic co-Blockmodel. Flynn and Perry (2012) uses
a profile likelihood formulation to develop a consistent estimator of the Stochastic
co-Blockmodel.

Conclusion

By extending both spectral clustering and the Stochastic Blockmodel to a co-clustering
framework, this paper aims to better conceptualize clustering in directed graphs;
co-clustering is a meaningful procedure for directed networks and helps to guide the
development of reasonable questions for network researchers.

Given that empirical graphs can be sparse, with highly heterogeneous node degrees,
we propose a novel spectral algorithm di-sim that incorporates both the regularization
and projection steps. Investigating the statistical properties of di-sim required several
theoretical novelties that build on the extensive literature for spectral algorithms.
The results highlight the importance of regularization and the statistical leverage
scores. Importantly, because of the regularization, the convergence of the singular
vectors does not require a growing minimum degree. Moreover, because the theory
accommodates a “degree corrected” model, it was necessary to project the rows of
XL and XR onto the sphere. Finally, these results extend to bipartite graphs, where
the rows and columns of the adjacency matrix index di↵erent sets of objects.
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Chapter 4

The Highest Dimensional
Stochastic Blockmodel with a
Regularized Estimator

4.1 Introduction

In the high dimensional Stochastic Blockmodel for a random network, the number
of clusters (or blocks) K grows with the number of nodes N . Two previous studies
have examined the statistical estimation performance of spectral clustering and the
maximum likelihood estimator under the high dimensional model; neither of these
results allow K to grow faster than N1/2. We study a model where, ignoring log
terms, K can grow proportionally to N . Since the number of clusters must be
smaller than the number of nodes, no reasonable model allows K to grow faster;
thus, our asymptotic results are the “highest” dimensional. To push the asymptotic
setting to this extreme, we make additional assumptions that are motivated by
empirical observations in physical anthropology (Dunbar, 1992), and an in depth
study of massive empirical networks (Leskovec, Lang, Dasgupta, and Mahoney, 2008).
Furthermore, we develop a regularized maximum likelihood estimator that leverages
these insights and we prove that, under certain conditions, the proportion of nodes
that the regularized estimator misclusters converges to zero. This is the first paper
to explicitly introduce and demonstrate the advantages of statistical regularization in
a parametric form for network analysis.

The Stochastic Blockmodel is a model for a random network. The “blocks” in the
model correspond to the concept of “true communities” that we want to study. In
the Stochastic Blockmodel, N actors (or nodes) each belong to one of K blocks and
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the probability of a connection between two nodes depends only on the memberships
of the two nodes (Holland and Leinhardt, 1983). This paper adds to the rigorous
understanding of the maximum likelihood estimator (MLE) under the Stochastic
Blockmodel.

There has been significant interest in how various clustering algorithms perform
under the Stochastic Blockmodel (for example, Bickel and Chen (2009); Rohe, Chat-
terjee, and Yu (2011); Choi, Wolfe, and Airoldi (2012); Bickel, Chen, and Levina
(2011); Zhao, Levina, and Zhu (2011a); Celisse, Daudin, and Pierre (2011); Chan-
narond, Daudin, and Robin (2011); Flynn and Perry (2012); Bickel, Choi, Chang, and
Zhang (2012); Sussman, Tang, Fishkind, and Priebe (2012b)). In a parallel line of
research, several authors have studied clustering algorithms on the Planted Partition
Model, a model nearly identical to the Stochastic Blockmodel. For example, McSherry
(2001) studies a spectral algorithm to recover the planted partition and analyzes the
estimation performance of this algorithm. Chaudhuri, Chung, and Tsiatas (2012)
improves upon this algorithm by introducing a type of regularization and proving
consistency results under the planted partition model.

In the previous literature, two papers have studied the high dimensional Stochastic
Blockmodel, where the number of blocks K grows with the number of nodes N (Rohe,
Chatterjee, and Yu, 2011; Choi, Wolfe, and Airoldi, 2012). The impetus for a high
dimensional model comes from two empirical observations. First, Leskovec, Lang,
Dasgupta, and Mahoney (2008) found that in a large corpus of empirical networks,
the tightest clusters (as judged by several popular clustering criteria) were no larger
than 100 nodes, even though some of the networks had several million nodes. This
result echoes similar findings in Physical Anthropology. Dunbar (1992) took various
measurements of brain size in 38 di↵erent primates and found that the size of the
neocortex divided by the size of the rest of the brain had a log-linear relationship with
the size of the primate’s natural communities. In humans, the neocortex is roughly
four times larger than the rest of the brain. Extrapolating the log-linear relationship
estimated from the 38 other primates, Dunbar (1992) suggests that humans do not
have the social intellect to maintain stable communities larger than roughly 150
people (colloquially referred to as Dunbar’s number). Leskovec et al. (2008) found
a similar result in several other networks that were not composed of humans. The
research of Leskovec et al. (2008) and Dunbar (1992) suggests that the block sizes
in the Stochastic Blockmodel should not grow asymptotically. Rather, block sizes
should remain fixed (or grow very slowly).

In the previous research of Rohe, Chatterjee, and Yu (2011) and Choi, Wolfe,
and Airoldi (2012), the average block size grows at least as fast as N3/4 and N1/2

respectively. Even though these asymptotic results allow for K to grow with N ,
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K does not grow fast enough. The average block size quickly surpasses Dunbar’s
number. In this paper, we introduce the highest dimensional asymptotic setting that
allows K = N log�5 N and N/K = log5 N . Thus, under this asymptotic setting, the
size of the clusters grows much more slowly. We call it the “highest” dimensional
because, ignoring the log term, K cannot grow any faster. If it did, then eventually
K > N and there would necessarily be blocks containing zero nodes. To create a
sparse graph, the out-of-block probabilities decay roughly as log� N/N in the highest
dimensional setting, where � > 0 is some constant. To ensure that a block’s induced
subgraph remains connected, the in-block probabilities are only allowed to decay
slowly like log�1 N . We show that under this asymptotic setting, a regularized
maximum likelihood estimator (RMLE) can estimate the block partition for most
nodes.

This paper departs from the previous high dimensional estimators of Rohe, Chat-
terjee, and Yu (2011) and Choi, Wolfe, and Airoldi (2012) by introducing a restricted
parameter space for the Stochastic Blockmodel. In several high dimensional settings,
regularization restricts the full parameter space providing a path to consistent esti-
mators (Negahban, Ravikumar, Wainwright, and Yu, 2010). If the true parameter
setting is close to the restricted parameter space, then regularization trades a small
amount of bias for a potentially large reduction in variance. For example, in the high
dimensional regression literature, sparse regression techniques such as the LASSO
restrict the parameter space to produce sparse regression estimators (Tibshirani,
1996). Several authors have also suggested parameter space restrictions for high
dimensional covariance estimation, e.g. Fan, Fan, and Lv (2008); Friedman, Hastie,
and Tibshirani (2008); Ravikumar, Wainwright, Raskutti, and Yu (2011). Parameter
space restrictions have also been applied in Linear Discriminant Analysis (Tibshirani,
Hastie, Narasimhan, and Chu, 2002). In graph inference, previous authors have
explored various ways of incorporating statistical regularization into eigenvector com-
putations (Chaudhuri, Chung, and Tsiatas, 2012; Amini, Chen, Bickel, and Levina,
2012; Mahoney and Orecchia, 2010; Perry and Mahoney, 2011; Mahoney, 2012b).

In this paper, we propose restricting the parameter space for the Stochastic
Blockmodel. These restrictions are supported by empirical observations (Dunbar,
1992; Leskovec, Lang, Dasgupta, and Mahoney, 2008), and they result in a statistically
regularized estimator. We will show that the RMLE is suitable in the highest
dimensional asymptotic setting. This work is distinct from previous approaches to
regularization in graph inference because we study a parametric method, the MLE.
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4.2 Preliminaries

Highest Dimensional Asymptotic Setting

In the Stochastic Blockmodel (SBM), each node belongs to one of K blocks. Each
edge corresponds to an independent Bernoulli random variable where the probability
of an edge between any two nodes depends only on the two nodes’ block memberships
(Holland and Leinhardt, 1983). The formal definition is as follows.

Definition 4.1. For a node set {1, 2, ..., N}, let Pij denote the probability of including
an edge linking node i and j. Let z̃ : {1, 2, ..., N} ! {1, 2, ..., K} partition the N
nodes into K blocks. So, z̃i equals the block membership for node i. z̃ specifies all
true clusters in the model. Let ✓ be a K ⇥K matrix where ✓ab 2 [0, 1] for all a, b.
Then Pij = ✓z̃

i

z̃
j

for any i, j = 1, 2, ..., n. So under the SBM, the the probability of
observing adjacency matrix A is

P (A) =
Y

i<j

✓z̃
i

z̃
j

A
ij(1� ✓z̃

i

z̃
j

)(1�A
ij

).

The distribution factors over i < j because we only consider undirected graphs without
self-loops.

The highest dimensional asymptotic setting, defined in Definition 4.2, restricts
the parameters of the SBM in two ways. First, because empirical evidence suggests
that community sizes do not grow with the size of the network, this setting allows s,
defined to be the population of the smallest block, to grow very slowly. The second
restriction ensures that the sampled networks will have sparse edges. At a high level,
there are two types of edges, “in-block edges” that connect nodes in the same block
and “out-of-block edges” that connect nodes in di↵erent blocks. In order to ensure
sparse edges in the high dimensional setting, it is necessary that both the number of
out-of-block edges and the number of in-block edges do not grow too fast. To control
the number of out-of-block edges, the o↵-diagonal elements of ✓ must be (roughly)
on the order of 1/N , otherwise the graph will be dense. The definition allows a set
Q to prevent this restriction from becoming too stringent; if (a, b) 2 Q, then ✓ab is
not required to shrink as the network grows, allowing blocks a and b to have a tight
connection. As for the in-block edges, the slowly growing communities prevent these
from creating a dense network; the number of in-block edges connected to each node
is bounded by the size of the block population. As such, the highest dimensional
asymptotic setting allows the probability of an in-block connection to remain fixed or
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decay slowly. It is necessary to prevent these probabilities from converging to zero too
quickly because in such small blocks, it would quickly erase any community structure.

Definition 4.2. The highest dimensional asymptotic setting is an SBM with the
following asymptotic restrictions.

(R1) For s equal to the population of the smallest block and xn = !(yn) , yn/xn =
o(1),

s = !(log� N), � > 4.

(R2) Let (c, d) be the interval between c and d and let Q contain a subset of the
indices for ✓. For constants C and f(N) = o(s/ logN),

✓ab = ✓ba 2

8

<

:

(log�1 N, 1� log�1 N) a = b
(1/N2, Cf(N)/N) a < b, {a, b} /2 Q
(log�1 N, 1� log�1 N) a < b, {a, b} 2 Q.

Assumption (R1) requires that the population of the smallest block s = !(log� N), � >
4. This includes the scenario where each block size is very small (e.g. o(log5 N)). In
this case, the expected degree for each node is o(log5 N). In the next sections we will
introduce the RMLE and then show that it can identify the blocks under the highest
dimensional asymptotic setting.

Regularized Maximum Likelihood Estimator

Under the highest dimensional asymptotic setting, the number of parameters in ✓ is
quadratic in K and the sample size available for estimating each parameter in ✓ is as
small as s2. For tractable estimation in the “large K small s” setting, we propose an
RMLE.

Recall that z̃ denotes the true partition. Let z denote any arbitrary partition.
The log-likelihood for an observed adjacency matrix A under the SBM w.r.t node
partition z is

L(A; z,✓) = logP (A; z,✓) =
X

i<j

{Aij log ✓z
i

z
j

+ (1� Aij) log(1� ✓z
i

z
j

)}.

For fixed class assignment z, let Na denote the number of nodes assigned to class a,
and let nab denote the maximum number of possible edges between class a and b; i.e.,
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nab = NaNb if a 6= b and naa =
�

N
a

2

�

. For an arbitrary partition z, the MLE of ✓ is

✓̂(z) = arg max
✓2[0,1]K⇥K

L(A; z,✓).

This is a symmetric matrix in the parameter space ⇥ = [0, 1]K⇥K . It is straightforward
to show

✓̂(z)ab =
1

nab

X

i<j

Aij1{zi = a, zj = b}, 8a, b = 1, 2, ..., K

By substituting ✓̂(z) into L(A; z,✓), we get the profiled log-likelihood (Bickel and
Chen (2009)). Define

L(A; z) = L(A; z, ✓̂(z)).

Define ẑ = argmaxz L(A; z) as the MLE of z̃. To define the RMLE, define the
restricted parameter space, ⇥R ⇢ ⇥, by the following regularization:

⇥R =
n

✓ 2 [0, 1]K⇥K : ✓ab = c, 8 a 6= b and for c 2 [0, 1]
o

.

If ✓ 2 ⇥R, then all o↵-diagonal elements of ✓ are equal. We call the new estimator
“regularized” because, where ⇥ has K(K + 1)/2 free parameters, ⇥R has only K + 1
free parameters.

Given class assignment z, The RMLE ✓R,(z) is the maximizer of L(A; z,✓) within
⇥R.

✓R,(z) = arg max
✓2⇥R

L(A; z,✓).

The optimization problem within ⇥R can be treated as an unconstrained optimization
problem within [0, 1]K+1 since we force the o↵-diagonal elements of ✓ to be equal to
some number r. It has a closed form solution:

✓̂R,(z)
ab =

(

✓̂(z)aa = 1

n
aa

P

i<j Aij1{zi = a, zj = b} a = b,
r̂(z) = 1

n
out

P

i<j Aij1{zi 6= zj} a 6= b.

Here nout =
P

a<b nab is the maximum number of possible edges between all di↵erent
blocks. The Regularized MLE for ✓aa is exactly the same as ordinary MLE, while
the Regularized MLE for ✓ab, a 6= b is set to be equal to the total o↵-diagonal

average. Finally, by substituting ✓̂
R,(z)

into L(A; z,✓), define the regularized profile
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log-likelihood to be

LR(A; z) = L(A; z, ✓̂
R,(z)

) = sup
✓2⇥R

L(A; z,✓),

and denote the RMLE of the true partition z̃ to be

ẑR = argmax
z

LR(A; z). (4.1)

4.3 Performance of the RMLE in the highest
dimensional asymptotic setting

Our main result shows that most nodes are correctly clustered by the RMLE under
the highest dimensional asymptotic setting. This result requires the definition of
“correctly clustered” from Choi, Wolfe, and Airoldi (2012).

Definition 4.3. For any estimated class assignment z, define Ne(z) as the number
of incorrect class assignments under z, counted for every node whose true class under
z̃ is not in the majority within its estimated class under z.

The main result, Theorem 4.4, uses the KL divergence between two Bernoulli
distributions. This is defined as

D(pkq) = p log
p

q
+ (1� p) log

1� p

1� q
.

Recall that under the highest dimensional asymptotic setting, Q denotes the o↵
diagonal indices of ✓ that do not asymptotically decay. Additionally, nab denotes the
total number of possible edges between nodes in block a and nodes in block b. Define
|Q| as the number of possible tight edges across di↵erent blocks,

|Q| =
X

{a,b}2Q

nab. (4.2)

The following theorem is our main result. It shows that under the highest
dimensional asymptotic setting, the proportion of nodes that the RMLE misclusters
converges to zero.

Theorem 4.4. Under the highest dimensional asymptotic setting in Definition 4.2,
N is the total number of nodes, and s is the population of the smallest block. Assume
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that the set of friendly block pairs Q (defined in R2 of Definition 4.2) is small enough
that |Q| = o(Ns), where |Q| is defined in Equation 4.2. Furthermore, for the matrix
of probabilities ✓, assume that for any distinct class pairs (a, b), there exists a class c
such that the following condition holds:

D

✓

✓ack
✓ac + ✓bc

2

◆

+D

✓

✓bck
✓ac + ✓bc

2

◆

� C
MK

N2

(4.3)

Under these assumptions, RMLE ẑR defined in Equation 4.1 satisfies

Ne(ẑR)

N
= op(1),

where Ne(z) is the number of misclustered nodes defined in Definition 4.3.

This theorem requires two main assumptions. The first main assumption is
|Q| = o(Ns). Define the number of expected edges M =

P

i<j EAij. Under the
highest dimensional asymptotic setting, this first assumption implies that M grows
slowly, specifically M = !(N(logN)3+�), where � > 0. The second main assumption
says that every distinct class pair (a, b) has at least one class c that satisfies Equation
4.3. This assumption relates to the identifiability of z̃ under the highest dimensional
asymptotic setting. For example, if (a, b) 62 Q, then choosing c = a satisfies the
assumption in Equation 4.3, because ✓aa is large and ✓ba is small. However, if (a, b) 2 Q,
then there should exist at least one class c to make ✓ac,✓bc identifiable. Otherwise,
blocks a and b should be merged into the same block. Interestingly, this assumption
is not strong enough to ensure that z̃ maximizes E(LR(A, ·)), but this is not relevant
for our asymptotic results. If one is concerned about this abnormality, it would be
enough to assume in R2 (in the definition of the highest dimensional asymptotic
setting) that if {a, b} 2 Q, then ✓ab < �. This ensures that the probabilities in the set
Q are smaller than the in-block probabilities. Such an assumption does not change
the asymptotic result.

While theorem 4.4 does not make an explicit assumption about the size of the
largest block, Equation 4.3 makes an implicit assumption because the size of the largest
blocks a↵ects the number of edges M . Equation 4.3 is satisfied when MK/N2 ! 0
and the set Q does not interfere. For example, if |Q| = 0 and the largest block is
O(N1/2�✏) for some ✏ > 0, then Equation 4.3 is satisfied.
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4.4 Simulations

This section compares the RMLE’s and the MLE’s ability to estimate the block mem-
berships in the Stochastic Blockmodel. In our simulations, the RMLE outperforms
the MLE in a wide range of scenarios, particularly when there are several blocks and
when the out-of-block probabilities are not too heterogeneous.

Implementation

Computing the exact RMLE and MLE is potentially computationally intractable
owing to the combinatorial nature of the parameter space. In this simulation, we fit
the MLE with the pseudo-likelihood algorithm proposed in Amini, Chen, Bickel, and
Levina (2012). A slight change to the pseudo-likelihood algorithm can fit the RMLE
as well; immediately after the pseudo-likelihood algorithm updates ✓(z), we replace
the o↵-diagonal elements with the average of the o↵-diagonal elements.

This pseudo-likelihood implementation of the RMLE often returns an estimated
partition that contained empty sets; for example, if the model was simulated with
K = 30 blocks and the algorithm was told to estimate 30 blocks, it often estimates
fewer than 30 blocks. When the pseudo-likelihood implementation of the RMLE
discards a block, the simulations below “reseeds” a new block. This reseeding is done
by the following algorithm that was motivated by follow-up work to the current paper
(see Rohe and Qin (2013)):

1. Find the block (as defined by the current iteration of the partition) with the
smallest empirical in-block probability.

2. For each node in this block, take its neighborhood and remove any nodes that
do not connect to any other nodes in the neighborhood. Call this the transitive
neighborhood.

3. Combine into a new block both (1) the node with the most nodes in its transitive
neighborhood with (2) this node’s transitive neighborhood.

We found it beneficial to do this reseeding not only when blocks disappear, but also
whenever they are smaller than two nodes.

Section C demonstrates how this reseeding provides consistently better values
of the restricted likelihood, that is LR(A, ẑreseed) � LR(A, ẑno.reseed) where ẑreseed
is the partition estimated with reseeding and ẑno.reseed is the partition estimated
without reseeding. In essence, the reseeding technique is helping the pseudo-likelihood
implementation of RMLE attain larger likelihood scores.
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Similarly to the suggestion in Amini, Chen, Bickel, and Levina (2012), we initialize
the pseudo-likelihood algorithm with spectral clustering using the regularized graph
Laplacian (Chaudhuri, Chung, and Tsiatas, 2012). Specifically, it runs k-means on

the top K eigenvectors of the matrix D�1/2
⌧ AD�1/2

⌧ , where D�1/2
⌧ is a diagonal matrix

whose i, ith element is 1/
p
Dii + ⌧ . Dii =

P

j Aij is the degree of node i and tuning
parameter ⌧ is set to be the average degree of all nodes, as was proposed in Qin and
Rohe (2013).

Numerical results

This section contains two sets of simulations. In the first set of simulations, K is
growing while everything else remains fixed. The second set of simulations investigate
the sensitivity of the algorithms to heterogeneous values in the o↵-diagonal elements
of ✓.

The results in Figure 4.1 compare the RMLE and MLE under an asymptotic
regime that keeps the population of each block fixed at twenty nodes and simply adds
blocks. The horizontal axes corresponds to K growing from ten to one hundred. In
both the left and the right panel, the probability of a connection between two nodes
in the same block is 8/20. In the left panel, the probability of a connection between
two nodes in separate blocks is 5/N . In the right panel, it is 10/N . Under these two
asymptotics, the expected number of “signal” edges connected to each node is eight,
while the expected number of “noisy” edges is either five or ten. The vertical axis in
both figures is Ne(ẑ)/N , the proportion of misclustered nodes.

The results in Figure 4.2 examine the sensitivity of the algorithms to deviations
from the model in Figure 4.1 that makes the o↵-diagonal elements of ✓ equal to
one another. In all simulations, the expected number of “signal edges” per node
is eight, the expected number of “noisy edges” per node is 5, s = 20, and K = 40.
On the left side of Figure 4.2, the o↵-diagonal elements of ✓ come from the Gamma
distribution. In the top left figure, the shape parameter in the Gamma distribution
(↵) varies along the horizontal axis. While the shape parameter varies, the rate
parameter changes to ensure that each node has an expected out-of-block degree
equal to five.1 Under our scaling of the rate parameter, the variance of the Gamma
distribution is proportional to 1/↵. As such, the small values of ↵ make the out-of-
block probabilities more heterogeneous, deviating further from the implicit model.
For a point of reference, recall that ↵ = 1 gives the exponential distribution. Our
simulations present ↵ 2 (.1, .55), more variable than the exponential distribution.
For values of ↵ greater than .18, the RMLE outperforms the MLE. The bottom left

1
Since ✓ is now random, this expectation is taken over both A and ✓.
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Figure 4.1: In this simulation, across a wide range of K, the RMLE misclusters
fewer nodes than the MLE. In each simulation, every block contains 20 nodes and
K grows from 10 to 100 along the horizontal axis. The vertical axis displays the
proportion of nodes misclustered. Both algorithms are initialized with regularized
spectral clustering and the results for this initialization are displayed by the dashed
line. The MLE makes minor improvements to the initialization, while the RMLE
makes more significant improvements. Each point in this figure represents the average
of 300 simulations. All methods were run on the same simulated adjacency matrices.

plot shows the top left 400⇥ 400 submatrix of the adjacency matrix for a simulated
example when ↵ = .18; the block pattern is clearly recognizable at this level of ↵,
suggesting that the RMLE is surprisingly robust to deviations from the implicit
model.

The plots on the right side of Figure 4.2 are similar, except the o↵-diagonal
elements of ✓ are scaled Bernoulli(p) random variables. Note that when p = 1, this
simulation would be identical to a setting in Figure 4.1. The scaling ensures that
the expected out-of-block degree is always five. Here, the break-even point is around
p = .14 and the bottom right figure shows the top left 400 ⇥ 400 submatrix of the
adjacency matrix for a sample when p = .14; the block pattern is clearly recognizable
for this level of p. In both of these cases, the RMLE appears robust to deviations
from the implied model. At the same time, for small levels of p and ↵, the MLE
misclusters fewer nodes than the RMLE.
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Figure 4.2: These figures investigate the sensitivity of the algorithms to deviations
from the RMLE’s “implied model” that has homogeneous o↵-diagonal elements in
✓. The top left figure displays results when these elements of ✓ come from the
Gamma distribution with varying shape parameter. The top right figure displays
results when these elements of ✓ come from the Bernoulli distribution with varying
probability p. In both cases, adjustments are made so that each node has five expected
out-of-block neighbors. The bottom plots illustrate the how these heterogenous
probabilities manifest in the adjacency matrix; in both cases, A is sampled with the
parameterization that corresponds to the break-even point between the MLE and the
RMLE. Each point represents an average over 200 simulations
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4.5 Discussion

This paper examines the theoretical properties of the regularized maximum likelihood
estimator (RMLE) under the highest dimensional asymptotic setting, showing that
under a novel and relevant asymptotic regime, regularization allows for weakly
consistent estimation of the block memberships.

Under the highest dimensional asymptotic setting, the size of the communities
grows at a poly-logarithmic rate, not at a polynomial rate, aligning with several
empirical observations (Dunbar, 1992; Leskovec, Lang, Dasgupta, and Mahoney,
2008). There are two natural implications of the block populations growing this slowly.
Under any Stochastic Blockmodel, to ensure the sampled graph has sparse edges, the
probability of an out-of-block connection must decay. In previous “low-dimensional”
analyses, it was also necessary for the probability of an in-block connection to decay.
The first clear implication of small blocks is that the probability of an in-block
connection must stay bounded away from zero. Otherwise, a block’s induced sub-
graph will become disconnected. The second implication of small block sizes is that
the number of o↵ diagonal elements in ⇥ grows nearly quadratically with N , while
the number of in-block parameters (diagonal elements of ⇥) grows linearly with N .

The proposed estimator, restricts the parameter space of the SBM in a way
that leverages both of these implications. Since the out-of-block edge probabilities
decay to zero, we maximize the likelihood over a parameter space that estimates
the probabilities as equal. Theorem 4.4 shows that under the highest dimensional
asymptotic setting and certain conditions that are similar to identifiability conditions,
the RMLE can estimate the correct block for most nodes. Correspondingly, the
simulation section demonstrates the advantages of the RMLE over the MLE. Overall,
this paper represents a first step in applying statistically regularized estimators to high
dimensional network analysis in a parametric setting. Because of the computational
issues involved in computing both the MLE and the RMLE, future work will propose
a “local estimator” that (1) incorporates the insights gained from the current analysis
and (2) is computationally straight-forward.
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Chapter 5

A Normalized and Regularized
Nyström Extension for Clustering
Network with General Degrees

5.1 Introduction

With the help of fast developing technology, we find ourselves being connected to each
other more than ever before. Our lives are embedded in networks: social, biological,
communication, etc. Many researchers are trying to analyze these networks to gain
a deeper understanding of the underlying mechanisms. Some types of underlying
mechanisms generate communities (aka clusters or modularities) in the network. As
some networks tend to grow so overwhelmingly massive that it is di�cult even to
store and analyze them in the first place. This chapter has two aims:

(a) To devise algorithms for community detection that are highly practical – scalable,
memory e�cient and fast.

(b) To understand if and when we can make justifiable inferences from the estimated
communities to the underlying mechanisms.

This chapter proposes a fast and memory e�cient algorithm based on standard
spectral clustering and a variation of the Nystsröm extension. We then examines
its statistical estimation performance under the Degree-Corrected Stochastic Block-
model (DC-SBM), an extension of the Stochastic Blockmodel (SBM) that allows for
heterogeneous degrees (Holland and Leinhardt (1983),Karrer and Newman (2011)).
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Spectral Clustering

Spectral clustering is a popular technique for finding communities in networks. Several
previous authors have studied the estimation properties of spectral clustering under
various statistical network models (McSherry (2001); Dasgupta et al. (2004); Qin and
Rohe (2013); Coja-Oghlan and Lanka (2009); Ames and Vavasis (2010); Rohe et al.
(2011); Lei and Rinaldo (2015) and Chaudhuri et al. (2012)).

The algorithm is defined in terms of a graph G, represented by a vertex set V
and an edge set E. The vertex set V = {v

1

, v
2

, . . . , vN} contains vertices or nodes.
We will refer to node vi as node i. E contains a pair (i, j) if there is an edge between
node i and j. The edge set can be represented by the adjacency matrix G 2 {0, 1}n⇥n.
Gij = Gji = 1 if (i, j) is in the edge set and Gij = Gji = 0 otherwise. Define Graph
Laplacian L and diagonal matrix D both elements of RN⇥N in the following way:

Dii =
X

j

Gij, L = D�1/2GD�1/2. (5.1)

The spectral clustering algorithm is defined as follows:

Spectral clustering

Input: Adjacency matrix G 2 {0, 1}N⇥N , number of clusters K.

1. Get top K eigenvectors of L and form N by K matrix E by putting
eigenvectors into its columns.

2. Treat each row of E as a point in RK , and run k-means with K clusters.
This creates K non-overlapping sets V

1

, ..., VK whose union is V. Node i is
assigned to cluster r if the i’th row of E is assigned to Vr.

Output: The clusters V
1

, ..., VK .

Compared to maximum likelihood based methods and modularity based methods,
spectral clustering is computationally more tractable and reasonably fast.

However, when applied to massive networks with degree heterogeneity, spectral
clustering falls short in three aspects: (a). Degree heterogeneity significantly influence
the stability of spectral clustering, which makes spectral clustering return highly
unbalanced or meaningless clusters. (b). For dense networks, the time complexity of
spectral clustering is O(N2K) where N is the number of nodes and K is the number
of desired clusters. (c). To compute top eigenvectors, it requires the whole network
to be stored into memory first.
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To handle networks with heterogeneous degrees, Chaudhuri et al. (2012) and Qin
and Rohe (2013) studied regularized versions of spectral clustering that stabilize its
performance. Yet both extensions su↵er the same time and space bottlenecks as
spectral clustering To overcome all three practical disadvantages while maintaining
decent clustering performance of spectral clustering, next section will introduce a
memory e�cient version of regularized spectral clustering.

The Nystsröm Extension

The Nystsröm extension was originally introduced to compute the numerical solution
of an integral equation by replacing the integral with a representative weighted
sum. Let K : [a, b] ⇥ [a, b] ! R be an SPSD kernel and (uk,�k), k 2 N denote its
eigenfunction and eigenvalue pairs:

Z b

a

K(x, y)uk(y)dy = �kuk(x), k 2 N.

Let {(xi, xj)}ni,j=1

2 [a, b] ⇥ [a, b] be n2 distinct points. Define Kn 2 Rn⇥n where

Kn(i, j) = K(xi, xj). Let {(vk, �̂k)}1:n represent the n eigenvector and eigenvalue
pairs of Kn/n:

1

n

n
X

j=1

Kn(i, j)vk(j) = �̂kvk(i), k = 1, 2, ..., n.

Then uk can be approximated by ûk as follows:

ûk(x) =
1

n�̂k

n
X

i=1

K(x, xi)vk(i).

The key idea of the Nystsröm extension is to use partial information about the kernel
(n2 evaluations) to get eigen decomposition of a simpler system Kn and then extend
it to approximate the whole set of eigenfunctions of the kernel.

Williams and Seeger (2001) applied similar idea to approximate eigenvectors of
SPSD matrices. Let G 2 RN⇥N and be partitioned as

G =

"

A BT

B C

#

,
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where A 2 RN1⇥N1 . Spectral decomposition of A gives A ⇡ XA⇤AXT
A , where

XA contains top K eigenvectors of A. The Nystsröm extension then provides an
approximation for K eigenvectors of G:

X̃ :=

"

XA

BXA⇤
�1

A

#

.

Consequently, one can approximate the original matrix G as follows,

W̃ := X̃⇤AX̃
T =

"

A BT

B BA�1BT

#

.

The Nystsröm extension has various applications in matrix approximation(Belabbas
and Wolfe (2009); Drineas and Mahoney (2005)) and image segmentation (Fowlkes
et al. (2004)). This paper proposes a memory e�cient spectral clustering algorithm
for the task of community detection. The proposed algorithm first compute properly
normalized top eigenvalue and eigenvector pairs of a sub-adjacency matrix A. Then
a regularized version of Nystsröm extension is applied to get extended eigenvectors
that contain community information of the whole graph. Lastly k-means is applied to
the extended eigenvectors to get clusters of all the nodes. Its estimation performance
is then study under the DC-SBM. Di↵erent from previous works, this work is the
first to study the statistical estimation performance under a parametric framework.

The Degree-Corrected Stochastic Blockmodel

In the Stochastic Blockmodel (SBM), each node belongs to one of K blocks. Each
edge corresponds to an independent Bernoulli random variable where the probability
of an edge between any two nodes depends only on the block memberships of the two
nodes (Holland and Leinhardt (1983)). The formal definition is as follows.

Definition 5.1. For a node set {1, 2, ..., N}, let z : {1, 2, ..., N} ! {1, 2, ..., K}
partition the N nodes into K blocks. So, zi equals the block membership for node i.
Let P be a K ⇥K matrix where Pab 2 [0, 1] for all a, b. Then under the SBM, the
probability of an edge between i and j is Pij = Pji = Pz

i

z
j

for any i, j = 1, 2, ..., n.
Given z, all edges are independent.

One limitation of the SBM is that it presumes all nodes within the same block have
the same expected degree. The Degree-Corrected Stochastic Blockmodel (DC-SBM)
(Karrer and Newman (2011)) is a generalization of the SBM that adds an additional
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set of parameters (✓i > 0 for each node i) that control the node degrees. Let P be a
K ⇥K matrix where Pab � 0 for all a, b. Then the probability of an edge between
node i and node j is ✓i✓jPz

i

z
j

, where ✓i✓jPz
i

z
j

2 [0, 1] for any i, j = 1, 2, ..., n. The
scale of parameter ✓i is arbitrary to within a multiplicative constant that is absorbed
into P. To make it identifiable, Karrer and Newman (2011) suggest imposing the
constraint that, within each block, the summation of ✓i’s is 1. That is,

P

i ✓i�zi,r = 1
for any block label r. Under this constraint, P has explicit meaning: If s 6= t, Pst

represents the expected number of links between block s and block t and if s = t,
Pst is twice the expected number of links within block s. Throughout the paper, we
assume that P is positive definite.

Under the DC-SBM, define G , EG. This matrix can be expressed as a product
of the matrices,

G = ⇥ZPZT⇥,

where (1) ⇥ 2 RN⇥N is a diagonal matrix whose ii’th element is ✓i and (2) Z 2
{0, 1}N⇥K is the membership matrix with Zit = 1 if and only if node i belongs to
block t (i.e. zi = t).

Preliminaries

For any two subsets V
1

, V
2

✓ V . Let G(V
1

, V
2

) denote the submatrix of G with row
indices restricted to V

1

and column indices restricted to V
2

.
Let V = VA[VB, VA\VB = ; be a partition of the vertex set. where |VA| = NA and

|VB| = NB, NA +NB = N . Let A = G(VA, VA) 2 {0, 1}NA

⇥N
A and B = G(VB, VA) 2

{0, 1}NB

⇥N
A . Define the diagonal matrix DA 2 RN

A

⇥N
A , DB 2 RN

B

⇥N
B and the

normalized graph laplacian LA of A, in the following way:

[DA]ii =
X

j

Aij, [DB]ii =
X

j

Bij, LA = D�1/2
A AD�1/2

A .

Similarly, define the population adjacency submatrices, A = G (VA, VA) and B =
G (VB, VA). Further define ZA 2 {0, 1}NA

⇥K and ZB 2 {0, 1}NB

⇥K to be the commu-
nity labels for nodes in VA and VB respectively.

The following notations will be used throughout the paper: For vector, k · k
denotes l

2

norm. For matrix, k · k denotes the spectral norm, and k · kF denotes the
Frobenius norm. For two sequence of variables {xN} and {yN}, we say xN = !(yN)
if and only if yN/xN = o(1). �

(.,.) is the indicator function where �x,y = 1 if x = y
and �x,y = 0 if x 6= y.
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5.2 Algorithm: Memory e�cient regularized
spectral clustering(mRSC)

The algorithm includes three steps, The first stage is to compute spectral decom-
position of a submatrix A of adjacency matrix G, and the second stage involves
“projecting” the rest of the nodes onto the properly stretched eigenspace and get the
extended eigenvectors. Lastly, k-means is applied to the extended eigenvectors to get
clusters of all nodes. The formal algorithm is described below.

mRSC

Input: Two sub-adjacency matrices A 2 {0, 1}NA

⇥N
A , B 2 {0, 1}NB

⇥N
A , reg-

ularizer ⌧ � 0 (Default: ⌧ = average row degree in B), number of clusters
K.

1. Get top K eigenvalues �
1

� �
2

� ... � �K of LA and its correspond-
ing eigenvectors X̃

1

, ..., X̃K 2 RN
A . Form ⇤ = diag(�

1

, ...,�K) and
X̃ = [X̃

1

, ..., X̃K ] 2 RN
A

⇥K by putting the eigenvectors into the columns.

2. Compute the normalized eigenvectors X 2 RN
A

⇥K where X = D�1/2
A X̃.

3. Compute the extended eigenvectors Y 2 RN
B

⇥K :

Y = (DB + ⌧I)�1BX⇤�1.

4. Form matrix X⇤ and Y ⇤ by normalizing each row of X and Y to have unit
length. Form F 2 RN⇥K by combining X⇤ and Y ⇤, F T = [X⇤T , Y ⇤T ].

5. Treat each row of F as a point in RK , and run k-means with K clusters.
This creates K non-overlapping sets V

1

, ..., VK whose union is V . Node i is
assigned to cluster r if the i’th row of F is assigned to Vr.

Output: The clusters V
1

, ..., VK from step (6).

Step 2 normalizes the eigenvectors of LA by a factor of D�1/2
A . The normalization

will be shown crucial for the algorithm to work under the DC-SBM in the next
section. Step 3 is di↵erent from the standard Nyström extension, because each row
is normalized by its degree plus a regularizing factor ⌧ . This extra step helps the
concentration of degrees to their expectations for those low degree nodes and in turn
makes our result more general by weakening the assumption on the minimum expected
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degree. Step 4 further projects each row onto unit sphere. This was suggested by Ng
et al. (2002) and Qin and Rohe (2013).

Related works

Chaudhuri et al. (2012) studies a related algorithm first divides the nodes into two
random subsets and then requires two runs of spectral decomposition and projection.
In addition, their algorithm need to combine the clustering results of the two subsets
of node. Inspired by their work, the proposed mRSC requires only one run of spectral
decomposition and k-means on the extended eigenvectors clusters the whole set of
nodes.

Fowlkes et al. (2004) proposes a similar spectral algorithm that applies the
Nyström extension. Their algorithm computes the orthogonalized eigenvectors and
then approximate normalized graph laplacian for the whole graph. Their algorithm
is shown to be e↵ective by several data applications.

5.3 Population analysis

This section shows that under the DC-SBM, with the two submatrices A and B of
population adjacency matrix and a proper regularizer ⌧ , mRSC perfectly reconstructs
the block partition.

Define the diagonal matrix DA to contain the expected node degrees of A, [DA ]ii =
P

j Aij and define DB where [DB]ii =
P

j Bij . Define the population graph Laplacian
of A ,as LA 2 RN

A

⇥N
A , in the following way:

LA = D�1/2
A A D�1/2

A .

Define ⇥A = ⇥(VA, VA) and ⇥B = ⇥(VB, VB).
The next two lemmas give explicit forms of the population version of X and Y .

Lemma 5.2. (Eigen-decomposition for LA ) Under the DC-SBM with K blocks
and parameters {P,Z,⇥}, Assume P is positive definite, then LA has K positive
eigenvalues. The remaining NA � K eigenvalues are zero. Denote the K positive
eigenvalues of LA as �̄

1

� �̄
2

� ... � �̄K > 0 and let X̃ 2 RN
A

⇥K contain the
eigenvector corresponding to �̄i in its i’th column. Define X = D�1/2

A X̃ and define
X ⇤ to be the row-normalized X , similar to X⇤ as defined in the mRSC algorithm in
Section 2. Let V = diag[(ZT

A⇥AZA)P (ZT
A⇥AZA)1]. Then, there exists an orthogonal

matrix U 2 RK⇥K, such that
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1. X = ZAV �1/2U ,

2. X ⇤ = ZAU .

Lemma 5.3. (Structure of Y and Y ⇤) Define the population version of Y as

Y = (DB + ⌧I)�1BX ⇤̄�1,

and define Y ⇤ by normalizing each row of Y to have unit length. Then

1. Y = (DB + ⌧I)�1DBZBV �1/2U ,

2. Y ⇤ = ZBU ,

where U is the same orthogonal matrix as in Lemma 5.2.

Define F = [X ⇤T ,Y ⇤T ]T . Lemma 5.2 and lemma 5.3 reveal two important facts:
First, after projection, population eigenvector X ⇤ and extended population

eigenvector Y ⇤ share similar simple form. Notice that U 2 RK⇥K is orthogonal
matrix, rows of U are K distinct points that are orthogonal to each other. Hence, if
two nodes i and j belong to the same block (zi = zj), then no matter which partition
they belong to, the corresponding rows of X ⇤ or Y ⇤ are equal. If two nodes i and j
belong to two di↵erent blocks (zi 6= zj), then their corresponding rows in X ⇤ or Y ⇤

are perpendicular. Notice that running k-means on the rows of F will return perfect
clusters.

Second, lemma 5.2 and lemma 5.3 also indicates that unbalanced clusters will
make clustering more di�cult. For now we set ⌧ = 0. Before projection, population
eigenvector X ⇤ and extended population eigenvector Y ⇤ both share the same form:
X = ZAV �1/2U and Y = ZBV �1/2U . They share K points in the K dimensional
space, each representing one underlying cluster. for node i, its corresponding row is
ZiV �1/2U . Its distance to origin is 1/

p

Vz
i

,z
i

. Notice that by definition of V , Vss is the
expected volume of cluster s within A. Hence, if the clusters are highly unbalanced,
the cluster will be close the the others.

This section shows that mRSC applied to the population adjacency matrix A
and B results in perfect community recovery. The next section will show that the
perturbation between empirical and population eigenvectors is small. Consequently,
we may expect good clustering performance on networks generated from the DC-SBM.
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5.4 Perturbation analysis and a bound on
mis-clustering rate

The next lemma bounds the distance between LA and LA .

Lemma 5.4. (Concentration of Graph Laplacian) Let �A be the minimum expected
degree of A, that is �A = mini[DA ]ii. For any ✏ > 0, if �A > 3 ln(4NA/✏), then with
probability at least 1� ✏,

kLA � LA k  2

s

3 ln(4NA/✏)

�A
, (5.2)

and consequently,

|�i � �̄i|  2

s

3 ln(4NA/✏)

�A
, (5.3)

for all 1  i  NA.

The next theorem bounds the di↵erence between the empirical and population
(extended) eigenvectors (and their row normalized versions) in terms of the Frobenius
norm.

Theorem 5.5. Let �B be the minimum expected degree of B, that is �B = mini[DB]ii.
Define Vmax = maxiVii, which is the maximum expected volume of clusters within A.
For any ✏ > 0, assume the following:

(a). There exists constant �, such that �̄i � �̄i+1

� �, i = 1, ..., K � 1 and �̄K � �,

(b). �A > 3 ln(4NA/✏),

(c). �B + ⌧ > 4 ln(4NA/✏),

then,

kX⇤ � X ⇤OkF  c
0

p

KVmax ln(4NA/✏)

�A�̄K

, (5.4)

kY ⇤ � Y ⇤OkF  c
1

max
�

p

KVmaxNB(�B + ⌧) ln(NA/✏)

�A�B�̄2

K

,

p

KVmaxNB ln(NB/✏)p
�A�B�̄K

 

,

(5.5)
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where O 2 RK⇥K is diagonal matrix with either 1 or �1 as its diagonal element.
c
0

, c
1

are two constants.

Assumption (a) is not essential for the algorithm to work. It is only for technical
convenience in further analysis. With Assumption (a), each eigenvector is identifiable
up to a sign di↵erence. This is the reason of introducing sign matrix O . Schönemann
(1966) shows how the singular value decomposition gives the proper O that aligns
the empirical and population eigenvectors.

Next we use Theorem 5.5 to derive a bound on the mis-clustering rate of mRSC.
Definition 5.6 defines “mis-clustered”, it follows Qin and Rohe (2013). Recall that
the algorithm applies the k-means algorithm to the rows of F = [X⇤T ;Y ⇤T ]T , where
each row is a point in RK . Each row is assigned to one cluster, and each of these
clusters has a centroid from k-means. Define C

1

, . . . , Cn 2 RK such that Ci is
the centroid corresponding to the i’th row of F . Similarly, run k-means on the
rows of the population version F = [X ⇤;Y ⇤] and define the population centroids
C
1

, . . . , Cn 2 RK . In essence, we consider node i correctly clustered if Ci is closer to
Ci than it is to any other Cj for all j with Zj 6= Zi.

Definition 5.6. If CiO is closer to Ci than it is to any other CjO for j with Zj 6= Zi,
then we say that node i is correctly clustered. Define the set of mis-clustered nodes:

M = {i : 9j 6= i, s.t.kCiO � Cik2 > kCiO � Cjk2}. (5.6)

Here O is to adjust the sign di↵erence between each columns of F and F .
The next theorem bounds the mis-clustering rate |M |/N .

Theorem 5.7. (Main Theorem) Suppose G 2 {0, 1}N⇥N is an adjacency matrix of
a graph G(V,E) generated from the DC-SBM with K blocks and parameters {P, Z,⇥}.
Let V = VA [ VB, VA \ VB = ; be a partition of vertex set and |VA| = NA, |VB| =
NB chosen independent of G. Define M , the set of mis-clustered nodes, as in
Definition 5.6. Let �A, �B be the minimum expected degree of A and B. As NA ! 1
and NB ! 1, assume the following:

(a). There exists constant �, such that �̄i � �̄i+1

� �, i = 1, ..., K � 1 and �̄K � �,

(b). �A = !(lnNA),

(c). �B + ⌧ = !(lnNB),

then the mis-clustering rate of mRSC with regularization constant ⌧ is bounded,
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|M |
N

= Op

✓

NA

N
•KVmax lnNA

NA�2A
+
NB

N
•KVmax

�A�B
max

�(�B + ⌧) lnNA

�A�B
,
lnNB

�B

 

◆

(5.7)

Remark 1 (Interaction between A and B): Theorem 5.7 gives a general
bound on the misclustering rate of mRSC under the DC-SBM. The bound consists
of two parts, the first part bounds the misclustering rate within VA. This bound is
identical to the standard results for spectral clustering as stated in chapter 2. The
second part bounds the misclustering rate within VB. For the second part, notice the
denominator includes both the minimum expected degree of A and B. The quality
of the bound depends heavily on the interaction between expected degree density
of both A and B. When A is dense, the assumption on �B is weakened. If A is
sparse (�A ⇣ lnNA), then even of B is dense(�A ⇣ NA), weak consistency can not be
achieved.

Remark 2(Applying to standard SBM): We can further interpret the result
under the standard Stochastic Blockmodel by the following corollary.

Corollary 5.8. Under the SBM, if the condition number (V ) is bounded, where
V = diag[(ZT

A⇥AZA)P (ZT
A⇥AZA)1], then with the same assumption as in Theorem

5.7, the mis-clustering rate of mRSC with regularization constant ⌧ = 0 is bounded,

|M |
N

= Op

✓

NA

N
• lnNA

�A
+

NB

N
•max

�NA lnNA

�A�B
,
NA lnNB

�2B

 

◆

(5.8)

If NA ⇣ N↵,↵ 2 (0, 1] and �A/ lnN ! 1, then the bound is simplifies as

|M |
N

= Op

✓

max
�N↵ lnN

�A�B
,
N↵ lnN

�2B

 

◆

.

In order for weak consistency, it requires �A�B = !(N↵ lnN) and �B = !(
p
N↵ lnN).

Remark 3(regularization constant ⌧): It appears that ⌧ is on the numerator
and hence makes looser bound. However, it also appears in assumption (c). In fact,
regularization weakens the assumption on the minimum expected degree of B and
makes the bounded more general to those nodes with low degrees.
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5.5 Simulation Study

Experiment 1

This experiment compares di↵erent sampling schemes for the mRSC under the DC-
SBM: random sampling, weighted sampling, sampling with hard threshold. More
specifically, the five algorithms are:

1. mRSC random sample: random sample 10% nodes as VA.

2. mRSC weighted sample: sample 10% nodes as VA with weight proportional to
node degree.

3. mRSC degree threshold: VA = {i, Dii � quantile(D, 90%)}.

4. mRSC oracle: VA = {i,Dii � quantile(D , 90%)}.

5. Regularized spectral clustering(RSC). RSC replaces Graph Laplacian L with

L⌧ in spectral clustering. Ltau is defined as D�1/2
⌧ GD�1/2

⌧ where D⌧ = D + ⌧I.

Throughout the simulation section, tuning parameter ⌧ in RSC and mRSC are
both fixed to me 1. It is suggested by Qin and Rohe (2013), which states that the
RSC is not very sensitive to tuning parameter.

Networks with sizes ranging from 900 to 10800 are generated from the DC-SBM
with cluster number K = 3 and parameter ⇥ drawn from the power law distribution
with lower bound xmin = 1 and shape parameter � = 3. For each fixed size, 50
networks are generated. Define the signal to noise ratio to be the expected number
of in-block edges divided by the expected number of out-block edges. Throughout
the simulations, the SNR is set to four and the expected average degree is set to
8/900 ⇤N , where N is the network size.

The upper panel of Figure 1 plots network size against the mis-clustering rate
for the mRSC with four sampling scheme and the RSC. Each point is the average of
50 sampled networks. Each line represents one method. If a method assigns more
than 95% of the nodes into one block, then we consider all nodes to be mis-clustered.
The experiment shows that (1) sampling nodes with high degrees performs better
than random sampling and weighted sampling. Its performance is close to the oracle
method where we use information of expected degrees which is inaccessible in practice.
(2) RSC works best since it utilized full network while the mRSC uses 10% of the
information. (3). The lower panel plots on log scale of the mis-clustering rate. Under
log scale, mis-clustering rates of all five methods converges to zero at the same rate
but with di↵erent constants.
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Figure 5.1: Upper Panel: Comparison of Performance for RSC, mRSC random sample,
mRSC weighted sample, mRSC degree threshold, mRSC oracle for networks with
di↵erent size under the DC-SBM. Lower Panel: Same as left panel but with mis-
clustering rate in log scale.
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Experiment 2

The second simulation study the influence of degree heterogeneity on the per-
formance of mRSC. The ⇥ parameters (from the DC-SBM) are drawn from the
power law distribution with lower bound xmin = 1 and shape parameter � 2
{2, 2.25, 2.5, 2.75, 3, 3.25, 3.5}. A smaller � indicates to greater degree heterogeneity.
For each fixed �, fifty networks are sampled. In each sample, K = 3 and each block
contains 300 nodes (N = 900). The SNR is set to four and the expected average
degree is set to eight.

Three algorithms are compared: (1). mRSC 0.5: VA = {i, Dii � quantle(D, 50%)},
(2). mRSC 0.25: VA = {i, Dii � quantle(D, 75%)}, (3). RSC. Figure 2 plots � against
the mis-clustering rate for mRSC 0.5, mRSC 0.25 and RSC . Each point is the average
of 50 sampled networks with standard error.

It shows that (1) if the degrees are highly heterogeneous (�  2.5), mRSC is
more stable than RSC. (2) the performance of mRSC is not monotone in the level of
heterogeneity.
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Figure 5.2: Comparison of mRSC and RSC under di↵erent degree heterogeneity
levels.
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Experiment 3

This experiment compares mRSC with the naive Nyström algorithm and RSC under
the SBM with no degree heterogeneity. Networks with size from 3000 to 33000 are
generated from the SBM with in-block linkage probability p = 0.01 and between-block
linkage probability q = p/3 In this experiment, the average degree is 16/3000 ⇤ N .
For each setting, the results are averaged over 10 samples of the network.

Figure 3 shows (a) Even in networks with no degree heterogeneity, sampling
high degree nodes is still better than random sapling. (b) Proper regularization and
normalization makes mRSC perform better than the naive Nyström algorithm. (c).
RSC gives lowest mis-clustering rate, yet for large networks (N > 20000), RSC su↵ers
from memory limitation.
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Figure 5.3: Comparison of mRSC, RSC and Nyström methods under the SBM.
mRSC random: random sample 10% nodes as VA. mRSC threshold: VA =
{i, Dii � quantle(D, 90%)}. nystrom random: random sample 10% nodes as VA.
nystrom threshold: VA = {i, Dii � quantle(D, 90%)}.

5.6 Discussion

This chapter proposes a memory e�cient spectral algorithm for community detection
– mRSC. We further studies the algorithm under a parametric model DC-SBM
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that allows for degree heterogeneity. To account for the degree heterogeneity, our
algorithm requires several key steps of normalizing and regularizing, which distinguish
mRSC from previous related methods. Theorem 5.7 gives a general bound on the
misclustering rate of mRSC under DC-SBM and justifies the importance of normalizing
and regularizing.

The algorithm can be applied to online learning settings. Consider a fixed network
of size N , whose spectral decomposition and K cluster centers in the eigenspace have
been computed and stored. When a new node joins the network. We can apply step
3 in mRSC to compute Y ⇤

N+1

and assign it to cluster t i↵ Y ⇤
N+1

is closest to cluster
center Ct. Clustering the additional node requires time and space complexity O(N).

Finding a good partition is crucial for mRSC to perform well. Empirically,
for graphs with general degrees, their are two ways, (1) Set a degree threshold T ,
and assign nodes with degree greater than T to VA, the rest nodes forms VB. (2)
with probability proportional to D

iP
N

j

D
j

, assign node i to VA. Developing theoretical

guarantees of these sampling schemes under the DC-SBM for community detection is
a future research direction.
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Chapter 6

The Blessing of Transitivity in
Sparse and Stochastic Networks

6.1 Introduction

Advances in information technology have generated a barrage of data on highly
complex systems with interacting elements. Depending on the substantive area, these
interacting elements could be metabolites, people, or computers. Their interactions
could be represented in chemical reactions, friendship, or some type of communication.
Networks (or graphs) describe these relationships. Therefore, the questions about
the relationships in these data are questions regarding the structure of networks.
Several of these questions are more naturally phrased as questions of inference; they
are questions not just about the realized network, but about the mechanism that
generated the network. To study questions in graph inference, it is essential to study
algorithms under model parameterizations that reflect the fundamental features of
the network of interest.

Sparsity and transitivity are two fundamental and recurring features. In sparse
graphs, the number of edges in a network is orders of magnitude smaller than the
number of possible edges; the average element has 10s or 100s of relationships, even in
networks with millions of other elements. Transitivity describes the fact that friends of
friends are likely to be friends. The interaction of these simple and localized features
has profound implications for determining the set of realistic statistical models. They
imply that in large sparse graphs, there are local and dense regions. This is the
blessing of transitivity.

One essential inferential goal is the discovery of communities or clusters of highly
connected actors. These form essential feature in a multitude of empirical networks,
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and identifying these clusters helps answer vital scientific questions in many fields.
A terrorist cell is a cluster in the communication network of terrorists; web pages
that provide hyperlinks to each other form a community that might host discussions
of a similar topic; a cluster in the network of biochemical reactions might contain
metabolites with similar functions and activities. Several papers, that are briefly
reviewed below, have proved theoretical results for various graph clustering algorithms
under the Stochastic Blockmodel, a parametric model, where the model parameters
correspond to a true partition of the nodes. Often, these estimators are also studied
under the exchangeable random graph model, a non-parametric generalization of the
Stochastic Blockmodel. The overarching goal of this paper is to show (1) how sparse
and transitive models require a novel asymptotic regime and (2) how the blessing
of transitivity makes edges become more informative in the asymptote, allowing for
statistical inference even when cluster size and expected degrees do not grow with
the number of nodes.

The first part of this paper studies how sparsity and transitivity interact in the
Stochastic Blockmodel, and more generally, in the exchangeable random graph model.
Interestingly, if a Stochastic Blockmodel is both sparse and transitive, then it has
small blocks. The second part of this paper (1) introduces an intuitive and fast
local clustering technique to find small clusters; (2) proposes the local Stochastic
Blockmodel, which presumes a single stochastic block is embedded in a sparse and
potentially adversarially chosen network; and (3) proves that if the proposed local
clustering technique is initialized with any point in the stochastic block, then it
returns the block with high probability. Figure 6.1 illustrates the types of clusters
found by the proposed algorithm; in this case from a social network on epinions.com
containing over 76,000 people.
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Preliminaries

Networks, or graphs, are represented by a vertex set and an edge set, G = (V,E),
where V = {1, . . . , n} contains the actors and

E = {(i, j) : there is an edge from i to j}.

The edge set can be represented by the adjacency matrix A 2 {0, 1}n⇥n:

Aij =

⇢

1 if (i, j) 2 E
0 otherwise.

(6.1)

This paper only considers undirected graphs. That is, (i, j) 2 E ) (j, i) 2 E. The
adjacency matrix of such a graph is symmetric. Many of the results in the paper
have a simple extension to weighted graphs, where Aij � 0. For simplicity, we only
discuss unweighted graphs. For i 2 V , let di =

P

` Ai` denote the degree of node i.
Define Ni as the neighborhood of node i,

Ni = {j : (i, j) 2 E}.

Define the transitivity ratio of A as

trans(A) =
number of closed triplets in A

number of connected triples of vertices in A
.

Watts and Strogatz (1998) introduced an alternative measure of transitivity, the
clustering coe�cient. The local clustering coe�cient, C(i), is defined as the density
of the subgraph induced by Ni, that is the number of edges between nodes in Ni

divided by the total number of possible edges. The clustering coe�cient for the entire
network is the average of these values.

C =
1

n

X

i

C(i)

This is related to the triangles in the graph because an edge (j, k) between two nodes
in Ni makes a triangle with node i.
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Statistical models for random networks

Suppose A = {Aij : i, j � 1} is an infinite array that is binary, symmetric, and
random. If A is (jointly) exchangeable, that is

A
d
= A�,� = {A�(i),�(j) : i, j � 1},

for any arbitrary permutation �, then the Aldous-Hoover representation says there
exists i.i.d. random variables ⇠

1

, ⇠
2

, . . . and an additional independent random vari-
able ↵ such that conditional on these variables, the elements of A are statistically
independent (Hoover, 1979; Aldous, 1981; Kallenberg, 2005). The global parameter
↵ controls the edge density and for ease of notation, it is often dropped (Bickel et al.,
2011). One should think of this result as an extension of DeFinetti’s Theorem to
infinite exchangeable arrays.

While this representation has only been proven to be equivalent to exchangeability
for infinite arrays, it is convenient to adopt this representation for finite graphs.

Definition 6.1. Symmetric adjacency matrix A 2 {0, 1}n⇥n follows the exchange-

able random graph model if there exists i.i.d. random variables ⇠
1

, . . . , ⇠n such
that probability distribution of A satisfies

P (A|⇠
1

, . . . , ⇠n) =
Y

i<j

P (Aij|⇠i, ⇠j).

For brevity, we will sometimes refer to this as the exchangeable model.
Independently of the research on infinite exchangeable arrays, Ho↵ et al. (2002)

proposed the latent space model which assumes that (1) each person has a set of
latent characteristics (e.g. past schools, current employer, hobbies, etc.) and (2) it is
only these characteristics that produce the dependencies between edges. Specifically,
conditional on the latent space characteristics, the relationships (or lack thereof) are
independent. The Latent Space Model is equivalent to the exchangeable model in
Definition 6.1.

The Stochastic Blockmodel is an exchangeable model that was first defined in
Holland and Leinhardt (1983).

Definition 6.2. The Stochastic Blockmodel is an exchangeable random graph
model with ⇠

1

, . . . , ⇠n 2 {1, . . . , K} and

P (Aij = 1|⇠i, ⇠j) = ⇥⇠
i

,⇠
j

for some ⇥ 2 [0, 1]K⇥K.
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In this model, the ⇠i correspond to group labels. The diagonal elements of ⇥
correspond to the probability of within-block connections. The o↵-diagonal elements
correspond to the probabilities of between-block connections. When the diagonal
elements are su�ciently larger than the o↵-diagonal elements, then the sampled
network will have clusters that correspond to the blocks in the model.

The next subsection briefly reviews the existing literature that examines the
consistency of various estimators for the partition created by the latent variables
⇠
1

, . . . , ⇠n in the Stochastic Blockmodel.

Previous research

This paper builds on an extensive body of literature examining various types of
statistical estimators for the latent partition ⇠

1

, . . . , ⇠n in the Stochastic Blockmodel.
These estimators fall into four di↵erent categories.1

1. Several have studied estimators that are solutions to discrete optimization
problems (e.g. Bickel and Chen (2009); Choi et al. (2012); Zhao et al. (2011b,a);
Flynn and Perry (2012)). These objective functions are the likelihood function
for the Stochastic Blockmodel or the Newman-Girvan modularity (Newman
and Girvan, 2004), a measure that corresponds to cluster quality.

2. Others have have studied various approximations to the likelihood that lead to
more computationally tractable estimators. For example, Celisse et al. (2011)
and Bickel et al. (2012) studied the variational approximation to the likelihood
function and Chen et al. (2012a) studied the maximum pseudo-likelihood
estimator.

3. Building on on spectral graph theoretic results (Donath and Ho↵man, 1973;
Fiedler, 1973), several researchers have studied the statistical performance of
spectral algorithms for estimating the partition in the Stochastic Blockmodel
(McSherry, 2001; Dasgupta et al., 2004; Giesen and Mitsche, 2005; Coja-Oghlan
and Lanka, 2009; Rohe et al., 2011; Rohe and Yu, 2012; Chaudhuri et al., 2012;
Jin, 2015; Sussman et al., 2012b; Fishkind et al., 2013). Others have studied
estimators that are solutions to semi-definite programs (Ames and Vavasis,
2010; Oymak and Hassibi, 2011; Chen et al., 2012b).

1
The works cited in this section give a sample of the previous literature on statistical inference

for the Stochastic Blockmodel; it is not meant to be an exhaustive list. In particular, there are

several highly relevant papers in the Computer Science literatures on (i) the planted partition model

and (ii) the planted clique problem. The curious reader should consult the references in Ames and

Vavasis (2010) and Chen et al. (2012b).
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4. More recently, Bickel et al. (2011); Channarond et al. (2011); Rohe and Yu
(2012) have developed methods to stitch together network motifs, or simple
“local” measurements on the network, in a way that estimates the partition in
the Stochastic Blockmodel. Bickel et al. (2011) draws a parallel between this
motif-type of estimator and method of moments estimation.

All of the previous results described above are sensitive to both (a) the population
of the smallest block and (b) the expected number of edges in the graph; larger blocks
and higher expected degrees lead to stronger conclusions. This limitation arrises
because the proofs rely on some form of concentration of measure for a function of
su�ciently many variables. Bigger blocks and more edges yield more variables, and
thus, more concentration. This paper shows how transitivity leads to a di↵erent
type of concentration of measure, where each edge becomes asymptotically more
informative. As such, the results in this paper extend to blocks of fixed sizes and
bounded expected degrees.

Section 6.3 proposes the LocalTrans algorithm that exploits the triangles built
by network transitivity. As such, it is most similar to motif-type estimators in bullet
(4). Our analysis of LocalTrans is the first to study whether a local algorithm (i.e.
initialized from a single node) can estimate a block in the Stochastic Blockmodel.
The emphasis on local structure aligns with the aims of network scan statistics; these
compute a “local” statistic on the subgraph induced by Ni for all i and then return the
maximum over all i. In the literature on network scan statistics, Rukhin and Priebe
(2012) and Wang et al. (2013) have previously studied the anomaly detection properties
under random graph models, including a version of the Stochastic Blockmodel.

6.2 Transitivity in sparse exchangeable random
graph models

In this section, Proposition 6.3 and Theorem 6.4 show that previous parameterizations
of the sparse exchangeable models and sparse Stochastic Blockmodels lack transitivity
in the asymptote. That is, the sampled networks are asymptotically sparse, but they
are not asymptotically transitive. Theorem 6.8 concludes the section by describing a
parameterizations that produce sparse and transitive networks.

Define
p
max

= max
⇠
i

,⇠
j

P (Aij = 1|⇠i, ⇠j) (6.2)

as the largest possible probability of an edge under the exchangeable model. In the
statistics literature, previous parameterizations of sparse Stochastic Blockmodels, and



69

sparse exchangeable models, have all ensured sparsity by sending p
max

! 0.
Define

p
�

= P (Auv = 1|Aiu = Aiv = 1) (6.3)

a population measure of the transitivity in the model. It is the probability of
completing a triangle, conditionally on already having two edges.

By sending p
max

to zero, a model removes transitivity.

Proposition 6.3. Under the exchangeable random graph model (6.1)

p
�

 p
max

,

where these probabilities are defined in equations (6.2) and (6.3).

The next theorem gives conditions that imply the transitivity ratio of the sampled
network converges to zero.

Theorem 6.4. Under the exchangeable random graph model (Definition 6.1), define
�n = E(di) as the expected node degree. If �n ! 1, �n = o(n), and

p
max

= o

✓

P (Aij = 1)

P (Aij = 1|Ai` = 1)

◆

, (6.4)

where p
max

is defined in (6.2), then trans(A)
P! 0.

A proof of this theorem can be found in the appendix.
The denominator on the right hand side of Equation (6.4) quantifies how many

edges are adjacent to the average edge, and thus controls how many 2-stars are in
the graph. It can be crudely bounded with the maximum expected degree over the
latent ⇠i. For

�max

n = max
⇠
i

E(di|⇠i),

it follows that
P (Aij = 1|Ai` = 1)  �max

n /n.

Corollary 6.5. Under the exchangeable random graph model (Definition 6.1), define
�n = E(di) as the expected node degree. If �n ! 1, �n = o(n), and

p
max

= o

✓

�n

�max

n

◆

,

then trans(A)
P! 0.
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So, ensuring sparsity by sending p
max

to zero removes transitivity both from
the model and from the sampled network. The next subsection investigates the
implications of restricting p

max

> ✏ > 0 in sparse networks.

Implications of non-vanishing p
max

in the Stochastic
Blockmodel

It is easiest to consider a simplified parameterization of the Stochastic Blockmodel.
The following parameterization is also called the planted partition model.

Definition 6.6. The four parameter Stochastic Blockmodel is a Stochastic
Blockmodel with K blocks, exactly s nodes in each block, ⇥ii = p, and ⇥ij = r for
i 6= j.

In this model, (1) n = Ks, (2) the “in-block” probabilities are equal to p, and (3)
the “out-of-block” probabilities equal to r. Moreover, the expected degree2 of each
node is

Expected degree under the four parameter model = sp+ (n� s)r. (6.5)

Define this quantity as �n. Under the four parameter model, p is analogous to p
max

.
Note that sp  �n and

n
p

�n

 K.

In sparse and transitive graphs, �n is bounded and p is non-vanishing. In this regime,
K grows proportionally to n. The following proposition states this fact in terms of s,
the population of each block.

Proposition 6.7. Under the four parameter Stochastic Blockmodel, if p is bounded
from below, then

s = O(�n)

where s is the population of each block and �n is the expected node degree.

The following Theorem shows that graphs sampled from this parameterization
are asymptotically transitive.

2
For ease of exposition, this formula allows self-loops.
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Theorem 6.8. Suppose that A is the adjacency matrix sampled from the four param-
eter Stochastic Blockmodel (Definition 6.6) with n nodes. If p > ✏ > 0, r = O(n�1),
and s � 3, then as n ! 1

trans(A)
P! c > 0,

where c is a constant which depends on p, r, s.

Remark: If r = c0
n
, for some constant c

0

, then

c ⇡ p3s2

p2s2 + c2
0

+ 2spc
0

.

The appendix contains the proof for Theorem 6.8.
The fixed block size asymptotics in Theorem 6.8 align with two pieces of previous

empirical research suggesting the “best” clusters in massive networks are small.
Leskovec et al. (2009) found that in a large corpus of empirical networks, the tightest
clusters (as judged by several popular clustering criteria) were no larger than 100
nodes, even though some of the networks had several million nodes. This result
is consistent with findings in Physical Anthropology. Dunbar (1992) took various
measurements of brain size in 38 di↵erent primates and found that the size of the
neocortex divided by the size of the rest of the brain had a log-linear relationship
with the size of the primates natural communities. In humans, the neocortex is
roughly four times larger than the rest of the brain. Extrapolating the log-linear
relationship estimated from the 38 other primates, Dunbar (1992) suggests that the
average human does not have the social intellect to maintain a stable community
larger than roughly 150 people (colloquially referred to as Dunbars number). Leskovec
et al. (2009) found a similar result in several other networks that were not composed
of humans. The research of Leskovec et al. (2009) and Dunbar (1992) suggests that
the block sizes in the Stochastic Blockmodel should not grow asymptotically. Rather,
block sizes should remain fixed (or grow very slowly).

Implications for the exchangeable model

The interaction between sparsity and transitivity also has surprising implications in
the more general exchangeable random graph model. To see this, note that in the
exchangeable model, it is su�cient to assume that ⇠

1

, . . . , ⇠n are i.i.d. Uniform(0, 1)
(Kallenberg, 2005). Then, the conditional density of ⇠i and ⇠j given Aij = 1 is

c(⇠i, ⇠j) =
P (Aij = 1|⇠i, ⇠j)

P (Aij = 1)
(6.6)
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When p
max

does not converge to zero, there exist values of ⇠⇤i and ⇠⇤j such that P (Aij =
1|⇠i, ⇠j) does not converge to zero. However, in a sparse graph, the edge density
P (Aij = 1) (in the denominator of Equation (6.6)) converges to zero. So, c(⇠⇤i , ⇠

⇤
j ) is

asymptotically unbounded. For example, in the popular P (Aij = 1) = O(1/n) limit,
c(⇠⇤i , ⇠

⇤
j ) is proportional to n. In a sense, as a sparse and transitive network grows,

each edge becomes more informative. This is the blessing of transitivity in sparse
and stochastic networks.

This asymptotic setting, where p
max

is bounded from below, makes for an entirely
di↵erent style of asymptotic proof; the asymptotic power comes from the fact that each
edge becomes increasingly informative in the asymptote. Previous consistency proofs
rely on concentration of measure for functions of several independent random variables
(i.e. several edges). In the sparse and transitive asymptotic setting, concentration
follows from the blessing of transitivity, allowing asymptotic results with fixed block
sizes and bounded degrees. For example, in Theorems 6.11 and 6.13 in the next
section, neither the block size nor node degree grows in the asymptote.

6.3 Local ( model + algorithm + results )

This section investigates clustering, or community detection, in sparse and transitive
networks. Following the results of the last section, sparse and transitive communities
are small. As such, this section is focused on finding small clusters of nodes. In
an attempt to strip away as many assumptions as possible from the Stochastic
Blockmodel, this section

1. proposes a “localized” model with a small and transitive cluster embedded in a
large and sparse graph (that could be chosen by an adversary),

2. introduces a novel local clustering algorithm that explicitly leverages the graphs
transitivity, and

3. shows that this local algorithm will discover the cluster in the localized model
with high probability.

Similarly to the last section, the interaction between sparsity and transitivity provides
for these results, enabling both the fast algorithm and the fixed block asymptotics.
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The local Stochastic Blockmodel

The “local” Stochastic Blockmodel (defined below) presumes that a small set of nodes
S⇤ constitute a single block and the model parameterizes how these nodes relate to
each other and how they relate to the rest of the network.

Definition 6.9. Suppose A 2 {0, 1}(n+s)⇥(n+s) is an adjacency matrix on n+s nodes.
If there is a set of nodes S⇤ with |S⇤| = s and

1. i, j 2 S⇤ implies P (Aij = 1) � pin,

2. i 2 S⇤ and j 2 Sc
⇤ implies P (Aij = 1)  pout,

3. the random variables {Aij : 8i 2 S⇤ and 8j} are both mutually independent and
also independent of the rest of the graph

then A follows the local Stochastic Blockmodel with parameters S⇤, pin, pout.

The only assumption that this definition makes about edges outside of S⇤ (that is,
(i, j) with i, j 62 S⇤) is that they are independent of the edges that connect to at least
one node in S⇤. So, the edges outside of S⇤ could be chosen by an adversary, as long
as the adversary does not observe the rest of the graph. The theorems below will add
an additional assumption that the average degree (within Sc

⇤) must be not too large
(i.e. it must be sparse).

Local clustering with transitivity

A local algorithm searches around a seed node for a tight community that includes
this seed node. Several papers have demonstrated the computational advantages of
local algorithms for massive networks (Priebe et al., 2005; Spielman and Teng, 2008).
In addition to fast running times and small memory requirements, the local results
are often more easily interpretable (Priebe et al., 2005) and yield what appear to
be “statistically regularized” results when compared to other, non-local techniques
(Leskovec et al., 2009; Clauset, 2005; Liao et al., 2009). Andersen et al. (2006);
Andersen and Chung (2007); Andersen and Peres (2009) have studied the running
times and given perturbation bounds showing that local algorithms can approximate
the graph conductance. With the exception of Rukhin and Priebe (2012) and Wang
et al. (2013), the previous literature has not addressed the statistical properties of
local graph algorithms under statistical models.

Given an adjacency matrix A and a seed node i, this section defines an algorithm
that finds a clusters around node i. This algorithm has a single tuning parameter
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cut that balances the size of the cluster with the tightness of the cluster. Smaller
values of cut return looser clusters. The algorithm initializes the cluster with the seed
node S = {i}. It then repeats the following step: For every edge between a node in
S (j 2 S) and a node not in S (` 2 Sc), add ` to S if there are at least cut nodes
that connect to both ` and j (this ensures that (i, j) is contained in at least cut-many
triangles). Stop the algorithm if all edges across the boundary of S are contained in
fewer than cut-many triangles.

Algorithm 6.1 LocalTrans(A, i, cut)
1. Initialize set S to contain node i.
2. For each edge (i, `) on the boundary of S (i 2 S and ` /2 S) calculate Ti`:

Ti` =
X

k

AikAk`.

3. If there exists any edge(s) (i, `) on the boundary of S with Ti` � cut, then add
the corresponding node(s) ` to S and return to step 2.
4. Return S.

Consider LocalTrans(A, j, ⌧) as a function that returns a set of nodes, then

i 2 LocalTrans(A, j, cut) =) j 2 LocalTrans(A, i, cut).

Moreover, if cut+ > cut then,

LocalTrans(A, i, cut+) ⇢ LocalTrans(A, i, cut).

This shows that the results of LocalTrans(A, i, cut), for every node i and every
parameter cut, can be arranged into a dendogram. LocalTrans only finds one branch
of the tree. A simple and fast algorithm can find the entire tree.

To compute the entire dendogram, apply single linkage hierarchical clustering3 to
the similarity matrix

T = (AA) · A, where · is element-wise multiplication. (6.7)

The computational bottleneck of this algorithm is computing T , which can be
computed in O(|E|3/2). Techniques using fast matrix multiplication can slightly

3
This is equivalent to finding the maximum spanning tree
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decrease this exponent (Alon et al., 1997).
When A contains no self loops, Tij equals the number of triangles that contain

both nodes i and j. We propose single linkage because it is the easiest to analyze
and it yields good theoretical results. However, in some simulation, average linkage
has performed better than single linkage. One could also state a local algorithm in
terms of average linkage.

Algorithm 6.2 GlobalTrans(A, ⌧)

1. Compute the similarity matrix T = [AA] · A, where · is element-wise multiplica-
tion.
2. Run single linkage hierarchical clustering on similarity matrix T , i.e. grow a
maximum spanning tree.
3. Cut the dendogram at level ⌧ , i.e. delete any edges in the spanning tree with
weight smaller than ⌧ .
4. Return the connected components.

Proposition 6.10. Viewing LocalTrans as a function that returns a set of nodes
and GlobalTrans as functions that returns a set of sets, LocalTrans(A, i, ⌧) ⇢
GlobalTrans(A, ⌧). Moreover,

[

i

LocalTrans(A, i, ⌧) = GlobalTrans(A, ⌧).

Proof. Nodes i and j are in the same cluster in both LocalTrans(A, i, ⌧) and
GlobalTrans(A, ⌧) if and only if there exists a path from i to j such that every
edge in the path is in at least ⌧ triangles.

Local Inference

The next theorem shows that LocalTrans estimates the local block in the Local
Stochastic Blockmodel with high probability.

Theorem 6.11. Under the local Stochastic Blockmodel (Definition 6.9), if

X

i,j2Sc

⇤

Aij  n�,

then
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1. cut = 1: for all i 2 S⇤, LocalTrans(A, i, cut = 1) = S⇤ with probability greater
than

1�
✓

1

2
s2(1� p2in)

s�2 +O(p2outns(s+ �))

◆

.

2. cut = 2: for all i 2 S⇤, LocalTrans(A, i, cut = 2) = S⇤ with probability greater
than

1�
�

s3(1� p2in)
s�3 +O(p3outns(s+ �)2)

�

.

See the appendix for the proof of this theorem.
For the local Stochastic Blockmodel to create a transitive block with bounded

expected degrees, it is necessary for pin to be bounded from below and for s to be
bounded from above. Then, pout = O(1/n) is a su�cient condition for bounded
expected degrees. However, because of the inequality in bullet (2) of Definition 6.9,
pout = O(1/n) is not a necessary condition for sparsity. As such, the restriction on
pout is particularly relevant. It is also fundamental to the bound in Theorem 6.11.

The approximation terms O(p2outns(s + �)) and O(p3outns(s + �)2) bound the
probability of a connection in T across the boundary of S⇤. The strength of these
terms come from the fact that a connection across the boundary requires cut + 1
simultaneous edges across the boundary of S⇤. Figure 6.2 gives a graphical explanation
for the “+1”. As such, pout is raised to the cut +1 power. When s and � are fixed,
then pout = o(n�1/2) and pout = o(n�1/3) make the approximation term asymptotically
negligible for the case cut = 1 and cut = 2, respectively. Both of these settings
allow the nodes in S⇤ have (potentially) large degrees. If pout = O(n�1), then the
approximation terms become O(n�1) and O(n�2) respectively.

Figure 6.2: This figure illustrates the two types of triangles that contain nodes in
both S⇤ and Sc

⇤. To make one triangle that crosses the boundary of S requires two
edges to cross the boundary.

Theorem 2 and the algorithms LocalTrans and GlobalTrans all leverage the
interaction between transitivity and sparsity, making the task of computing S and
estimating S⇤ both algorithmically tractable and statistically feasible.
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Preliminary Data Analysis

This section applies GlobalTrans to an online social network from the website
slashdot.org, demonstrating the shortcomings of the proposed algorithms with input
A and motivating the next section that uses the graph Laplacian as the input.
The slashdot network contains 77 360 nodes with an average degree of roughly 12
(Leskovec et al., 2009).4 This network is particularly interesting because it has a
smaller transitivity ratio (.024) than the typical social network.

Figure 6.3: This plots the number of nodes in the largest ten clusters (ignoring a single
giant cluster) found by GlobalTrans(A, cut) in the slashdot social network. These
clusters are very small, and probably too small for many applications. Moreover,
there are not that many of them.

Figure 6.3 plots the size of the ten largest clusters returned by GlobalTrans(A, cut)
as a function of cut (excluding the largest cluster that consists of the majority of
the graph). The values of cut range from 3 to 500 and they are plotted on the loge
scale. Over this range of cut, only two times does a cluster exceed ten nodes. While
we motivated the local techniques as searching for small clusters, these clusters are

4
This data can be downloaded at http://snap.stanford.edu/data/soc-Slashdot0811.html



78

perhaps too small. It suggests that there are no clusters that are adequately described
by the local Stochastic Blockmodel.

One potential reason for this failure is that under the Local Stochastic Blockmodel,
the probability of a connection between a node in S⇤ and a node in Sc

⇤ is uniformly
bounded by some value, pout. The slashdot social network, like many other empirical
networks, has a long tailed degree distribution. A more realistic model might allow
the nodes in S⇤ to be more highly connected to the high degree nodes in Sc

⇤. The next
subsection (1) proposes a “degree-corrected” local Stochastic Blockmodel, (2) proves
that LocalTrans with a simple adjustment can estimate S⇤ in the degree corrected
model, and (3) demonstrates how this new version of the algorithm improves the
results on the slashdot social network.

6.4 The Degree-corrected Local Stochastic
Blockmodel

Inspired by Karrer and Newman (2011), the degree-corrected model in Definition
6.12 makes the probability of a connection between a node i 2 S⇤ and a node j 62 S⇤
scale with the degree of node j on the subgraph induced by Sc

⇤.

d⇤j =
X

`2Sc

⇤

A`j (6.8)

For the following definition to make sense, we presume that d⇤j is fixed for all j 2 Sc
⇤.

Definition 6.12. Suppose A 2 {0, 1}(n+s)⇥(n+s) is an adjacency matrix and S⇤ is a
set of nodes with |S⇤| = s. For j 2 Sc

⇤, define d⇤j as in Equation (6.8). If

1. i 2 S⇤ and j 2 Sc
⇤ implies

P (Aij = 1) 
d⇤j
n
,

2. i, j 2 S⇤ implies P (Aij = 1) � pin,

3. {Aij : 8j and 8i 2 S⇤} are mutually independent

then A follows the local degree-corrected Stochastic Blockmodel with parame-
ters S⇤, pin.
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The fundamental di↵erence between the previous local model and this degree
corrected version is the assumption that if i 2 S⇤ and j 2 Sc

⇤, then

P (Aij = 1) 
d⇤j
n
.

In the previous model, P (Aij = 1)  pout. This new condition can be interpreted as
P (Aij = 1)  pout d⇤j for pout = 1/n. In this degree-corrected model, the nodes in S⇤
connect to more high degree nodes than they do under the previous local model.

The degree corrected model creates two types of problems for LocalTrans(A, i, ⌧ ).
Because the high degree nodes in Sc

⇤ create many connections to the nodes in S⇤, it
is more likely to create triangles with two nodes in S⇤. Additionally, by definition,
the high degree nodes outside of S⇤ have several neighbors outside of S⇤. As such,
it is more likely to create triangles with one node in S⇤ and two nodes outside of
S⇤. In essence, the high degree nodes create several triangles in the graph, washing
out the clusters that LocalTrans(A, i, ⌧) can detect. To confront this di�culty, it is
necessary to down weight the triangles that contain high degree nodes.

The graph Laplacian

Similarly to the adjacency matrix, the normalized graph Laplacian represents the
graph as a matrix. In both spectral graph theory and in spectral clustering, the
graph Laplacian o↵ers several advantages over the adjacency matrix (Chung, 1997;
Von Luxburg, 2007). The spectral clustering algorithm uses the eigenvectors of
the normalized graph Laplacian, not the adjacency matrix, because the normalized
Laplacian is robust to high degree nodes (Von Luxburg, 2007).

For adjacency matrix A, define the diagonal matrix D and the normalized graph
Laplacian L, both elements of Rn⇥n, in the following way

Dii = d(i)
Lij = [D�1/2AD�1/2]ij =

A
ijp

D
ii

D
jj

. (6.9)

Some readers may be more familiar defining L as I�D�1/2WD�1/2. For our purposes,
it is necessary to drop the I�.

The last section utilized the matrix T = [AA] · A to find the triangles in the
graph. To confront the degree corrected model, the next theorem uses [LL] ·L instead.
The interpretation of this matrix is similar to T . It di↵ers because it down weights
the contribution of each triangle by the inverse product of the node degrees. For
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example, where a triangle between nodes i, j, k would add 1 to element Tij, it would
add (d(i)d(j)d(k))�1 to the i, jth element of [LL] · L.

Some versions of spectral clustering use the random walk graph Laplacian, an
alternative form of the normalized graph Laplacian.

LRW = D�1A

While the algorithmic results from spectral clustering can be depend on the choice of
graph Laplacian, LocalTrans returns exactly the same results with L as it does with
LRW . To see this, first imagine that if the graph is directed, then A is asymmetric,
and for T to correspond to directed cycles of length three, it is necessary to take the
transpose of the final A, that is [AA] ·AT . Since LRW is asymmetric, it is reasonable
to use the additional transpose from the directed formulation. It is easy to show that

[LL] · L = [LRWLRW ] · LT
RW . (6.10)

Chaudhuri et al. (2012) and Chen et al. (2012a) have recently proposed a “regular-
ized” graph Laplacian. Chaudhuri et al. (2012) propose replacing D with D⌧ = D+⌧I,
where ⌧ > 0 is a regularization constant. They show that a spectral algorithm with

L⌧ = D�1/2
⌧ AD�1/2

⌧

has superior performance on sparse graphs. Similarly, it will help to use L⌧ with
LocalTrans. (Note that the equivalence in Equation (6.10) still holds with the
regularized versions of the Laplacians.)

The next theorem shows that under the local degree-corrected model — with the
regularized graph Laplacian, a specified choice of tuning parameter cut, and i 2 S⇤ —
the estimate LocalTrans(L⌧ , i, cut) = S⇤ with high probability. Importantly, using
L⌧ instead of A allows for reasonable results under the degree-corrected model.

Theorem 6.13. Let A come from the local degree-corrected Stochastic Blockmodel.
Define � such that

X

i,j2Sc

⇤

Aij  n�. (6.11)

Set cut = [2(s� 1)pin + 2�+ ⌧ ]�3. If

n � 3 (2(s� 1)pin + 2�+ ⌧)3/✏ ⌧�1/✏,



81

and s � 3, then for any i 2 S⇤,

LocalTrans(L⌧ , i, cut) = S⇤

with probability at least

1�
�

1/2 s2(1� p2in)
s�2 + s exp (�1/4 spin + �) +O(n3✏�1)

�

.

A proof of Theorem 6.13 can be found in the Appendix.
Because simple summary statistics (of sparsity and transitivity) on empirical

networks contradict the types of models studied in the literature, Theorem 6.13 tries
to minimizes the assumptions on the “global” structure of the graph. It only assumes
that the graph outside of S⇤, i.e. the induced subgraph on Sc

⇤, is sparse. There are
no other assumptions on this part of the graph.

This result is asymptotic in n = |Sc
⇤|, with S⇤ fixed and containing nodes with

bounded expected degree; the assumption in Equation 6.11 and the definition of d⇤j
imply that the nodes in S⇤ have expected degree less than s+ �.

Preliminary Data Analysis

Recall that Figure 6.3 illustrates how GlobalTrans(A, cut) fails to find any clusters
larger than twenty nodes in the slashdot social network. Figure 6.4 shows that using
L⌧ instead of A corrects for the problems observed in Figure 6.3. It plots the size of
the largest ten clusters in the slashdot social network found by GlobalTrans(L

12

, cut)
for values of cut between 3 ⇤ 10�6 and 500 ⇤ 10�6. It finds several clusters that exceed
twenty nodes. In this analysis, and all other analyses using L⌧ , the regularization
constant ⌧ is set equal to the average node degree (as suggested in Chaudhuri et al.
(2012)). In this case, ⌧ ⇡ 12.

Figure 6.5 shows some of the clusters from the slashdot social network. Specifically,
it plots twenty-four of the induced subgraphs from GlobalTrans(L⌧=12

, cut = 32 ⇤
10�6). Because the clusters are not so large, the sub-graphs are easily visualized and
it is easy to see how these clusters have several di↵erent structures. Some are nearly
planar; others appear as densely connected, “clique-like” sub-graphs; other clusters
are a collection of several smaller clusters, weakly strung together. Figure 6.1 in the
introduction gives a similar plot for the epinions social network. These visualizations
were created using the graph visualization tool in the igraph package in R (Csardi
and Nepusz, 2006).

Figure 6.6 illustrates how LocalTrans(L⌧=12

, i, cut) changes as a function of cut
for a certain node in the epinions social network. Each of the four panels displays the
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GlobalTrans(L) finds several reasonably sized clusters
in the slashdot network.
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Figure 6.4: A plot of the number of nodes in the largest ten clusters (ignoring one
very large cluster) found by GlobalTrans(L⌧ , cut) in the slashdot social network.
GlobalTrans with L⌧ instead of A finds much larger clusters.

network for cut = 58 ⇤ 10�6. In each of the four panels, solid nodes are the nodes that
are included in LocalTrans(L⌧=12

, i, cut) for four di↵erent values of cut. This seed
node was selected because the local cluster is slowly growing as cut decreases and
you can see in this in Figure 6.6.5 The left most panel displays the results for the
largest value of cut. This returns the smallest cluster and not surprisingly, the igraph
package plots these nodes in the center of the larger graph. Moving to the right, the
clusters grow larger and the additional nodes start to extend to the periphery of the
visualization. While the clusters for this node grow slowly, for many other nodes, the
transitions are abrupt. For example, the nodes that join the cluster in the last panel
in Figure 6.6 jump from cluster sizes of one or two into this bigger cluster. Then,
decreasing cut a little bit more, this cluster becomes part of a giant component.

5
In particular, it was chosen as the “slowest growing” from a randomly chosen set of 200 nodes.
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Figure 6.5: Twenty-four small clusters from the slashdot data set. Because
GlobalTrans discovers small clusters, one can easily plot and visualize the clus-
ters with a standard graph visualization tool (Csardi and Nepusz, 2006). The point
of this figure is to show the variability in cluster structures; some are tight, clique-like
clusters; others are small lattice-like clusters; others are “stringy” collections of three
or four tight clusters. This highlights the ease of visualizing the results of local
clustering.

6.5 Discussion

The tension between transitivity and sparsity in networks that implies that there are
local regions of the graph that are dense and transitive. This leads to the blessing
of dimensionality, which says that edges (in sparse and transitive graphs) become
asymptotically more informative. For example, under the exchangeable model, if the
model is sparse and transitive, then the conditional density of the latent variables
⇠i, ⇠j, given Aij = 1, is asymptotically unbounded, concentrating on the values of
⇠i, ⇠j that are consistent with the local structure in the model. This has important
implications for statistical models, methods, and estimation theory.

In sparse and non-transitive Stochastic Blockmodels, the block structure is not
revealed in the local structure of the network. Rather, the blocks are revealed by
comparing the edge density of various partitions. However, under transitive models,
the local structure of the network can reveal the block structure. As such, these
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Figure 6.6: Starting from a seed node, this figure demonstrates how
LocalTrans(L⌧=12

, i, cut) grows as cut decreases. In each panel, the graph is drawn
for the smallest value of cut, and the solid nodes correspond to the nodes returned
by LocalTrans(L⌧=12

, i, cut), where the value of cut is given above the graph in the
units 10�6. Moving from left to right, the clusters grow larger, and the additional
nodes start to extend to the periphery of the visualization.

blocks can be estimated by fast local algorithms. Theorems 6.11 and 6.13 show that
LocalTrans performs well under a local Stochastic Blockmodel that makes minimal
assumptions on the nodes outside of the true cluster; this is the first statistical result
to demonstrate how local clustering algorithms can be robust to vast regions of the
graph.

This paper studies small clusters because (1) they can create sparse and transitive
Stochastic Blockmodels, (2) they are relatively easy to find, both computationally
and statistically, and (3) they are easy to plot and visualize. In future research, we
will study how these ideas can be used to find large partitions in networks. Sparse
and transitive models do not preclude large partitions, as long as some type of local
structure exists within each partition. It is not yet clear how global algorithms like
spectral clustering might leverage this transitive structure in a stochastic model; this
is one area for future research.
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Appendix A

Appendix for Chapter 2

Proof of Lemma 3.3

Proof. Recall that Dii = ✓i[DB]z
i

and [⇥⌧ ]ii = ✓i
D

ii

D
ii

+⌧
. The ij’th element of L⌧ :

[L⌧ ]ij =
Aij

p

(Dii + ⌧)(Djj + ⌧)
=

✓i✓jBz
i

z
j

p

DiiDjj

s

Dii

Dii + ⌧

Djj

Djj + ⌧
=

Bz
i

z
j

p

[DB]z
i

[DB]z
j

⇤
q

[⇥⌧ ]ii[⇥⌧ ]jj.

Hence,

L⌧ = ⇥
1
2
⌧ ZBLZ

T⇥
1
2
⌧ .

Proof of Lemma 2.3

Proof. Let C = (ZT⇥⌧Z)1/2BL(ZT⇥⌧Z)1/2. If ✓i > 0, i = 1, ..., N , then C � 0 since
B � 0 by assumption. Let �

1

� ... � �K > 0 be the eigenvalues of C. Let ⇤ 2 RK⇥K

be a diagonal matrix with its ss’th element to be �s. Let U 2 RK⇥K be an orthogonal
matrix where its s’th column is the eigenvector of C corresponding �s, s = 1, ..., K.

By eigen-decomposition, we have C = U⇤UT . Define X⌧ = ⇥
1
2
⌧ Z(ZT⇥⌧Z)�1/2U ,

then
X T

⌧ X⌧ = UT (ZT⇥⌧Z)
�1/2(ZT⇥⌧Z)(Z

T⇥⌧Z)
�1/2U = UTU = I.

On the other hand,

X⌧⇤X T
⌧ = ⇥

1
2
⌧ Z(ZT⇥⌧Z)

�1/2C(ZT⇥⌧Z)
�1/2ZT⇥

1
2
⌧ = ⇥

1
2
⌧ ZBLZ

T⇥
1
2
⌧ = L⌧ .



86

Hence, �s, s = 1, ..., K are L⌧ ’s positive eigenvalues and X⌧ contains L⌧ ’s eigen-
vectors corresponding to its nonzero eigenvalues. For part 2, notice that ||X i

⌧ ||2 =
( [⇥

⌧

]

ii

[ZT

⇥

⌧

Z]

z

i

z

i

)1/2, then

[X ⇤
⌧ ]

i =
X i

⌧

||X i
⌧ ||2

=
( [⇥

⌧

]

ii

[ZT

⇥

⌧

Z]

z

i

z

i

)1/2ZiU

||X i
⌧ ||2

= ZiU.

Therefore, X ⇤
⌧ = ZU .

Proof of Theorem 2.4

Proof. We extend the proof of Theorem 2 in Chung and Radcli↵e (2011) to the

case of regularized graph laplacian. Let H = D�1/2
⌧ AD�1/2

⌧ . Then ||L⌧ � L⌧ || 
||H � L⌧ ||+ ||L⌧ �H||. We bound the two terms separately.

For the first term, we apply the concentration inequality for matrix:

Lemma A.1. Let X
1

, X
2

, ..., Xm be independent random N ⇥N Hermitian matrices.
Moreover, assunme that ||Xi � E(Xi)||  M for all i, and put v2 = ||

P

var(Xi)||.
Let X =

P

Xi. Then for any a > 0,

pr(||X � E(X)|| � a)  2N exp
�

� a2

2v2 + 2Ma/3

�

.

Notice that ||H � L⌧ || = D�1/2
⌧ (A � A )D�1/2

⌧ . Let Eij 2 RN⇥N be the matrix
with 1 in the ij and ji’th positions and 0 everywhere else. Let

Xij = D�1/2
⌧ ((Aij � pij)E

ij)D�1/2
⌧

=
Aij � pij

p

(Dii + ⌧)(Djj + ⌧)
Eij.

H � L⌧ =
P

Xij. Then we can apply the matrix concentration theorem on {Xij}.
By similar argument as in Chung and Radcli↵e (2011), we have

||Xij||  [(Dii + ⌧)(Djj + ⌧)]�1/2  1

� + ⌧
, v2 = ||

X

E(X2

ij)|| 
1

� + ⌧
.

Take a =
q

3 ln(4N/✏)
�+⌧

. By assumption � + ⌧ > 3 lnN + 3 ln(4/✏), it implies a < 1.
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Applying Lemma B.2, we have

pr(||H � L⌧ || � a)  2N exp

✓

�
3 ln(4N/✏)

�+⌧

2/(� + ⌧) + 2a/[3(� + ⌧)]

◆

 2N exp(�3 ln(4N/✏)

3
)

 ✏/2.

For the second term, first we apply the two sided concentration inequality for
each i, (see for example Chung and Lu (2006, chap. 2))

pr(|Dii � Dii| � �)  exp{� �2

2Dii

}+ exp{� �2

2Dii +
2

3

�
}

Let � = a(Dii + ⌧), where a is the same as in the first part.

pr(|Dii � Dii| � a(Dii + ⌧))  exp{�a2(Dii + ⌧)2

2Dii

}+ exp{� a2(Dii + ⌧)2

2Dii +
2

3

a(Dii + ⌧)
}

 2 exp{� a2(Dii + ⌧)2

(2 + 2

3

a)(Dii + ⌧)
}

 2 exp{�a2(Dii + ⌧)

3
}

 2 exp{� ln(4N/✏)
(Dii + ⌧)

� + ⌧
}

 2 exp{� ln(4N/✏)}
 ✏/2N.

||D�1/2
⌧ D1/2

⌧ � I|| = maxi|
r

Dii + ⌧

Dii + ⌧
� 1|  maxi|

Dii + ⌧

Dii + ⌧
� 1|.

pr(||D�1/2
⌧ D1/2

⌧ � I|| � a)  pr(maxi|
Dii + ⌧

Dii + ⌧
� 1| � a)

 pr([i{|(Dii + ⌧)� (Dii + ⌧)| � b(Dii + ⌧)})
 ✏/2.
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Note that ||L⌧ ||  1, therefore, with probability at least 1� ✏/2, we have

||L⌧ �H|| = ||D�1/2
⌧ AD�1/2

⌧ � D�1/2
⌧ AD�1/2

⌧ ||
= ||L⌧ � D�1/2

⌧ D1/2
⌧ L⌧D

1/2
⌧ D�1/2

⌧ ||
= ||(I � D�1/2

⌧ D1/2
⌧ )L⌧D

1/2
⌧ D�1/2

⌧ + L⌧ (I �D1/2
⌧ D�1/2

⌧ )||
 ||D�1/2

⌧ D1/2
⌧ � I||||D�1/2

⌧ D1/2
⌧ ||+ ||D�1/2

⌧ D1/2
⌧ � I||

 a2 + 2a.

Combining the two part, we have that with probability at least 1� ✏,

||L⌧ � L⌧ ||  a2 + 3a  4a,

where a =
q

3 ln(4N/✏)
�+⌧

.

Proof of Theorem 2.5

Proof. First we apply a lemma from McSherry (2001):

Lemma A.2. For any matrix A, let PA denotes the projection onto the span of A’s
first K left sigular vectors. Then PAA is the optimal rank K approximation to A in
the following sense. For any rank K matrix X, ||A� PAA||  ||L�X||. Further, for
any rank K matrix B,

||PAA� B||2F  8K||A� B||2. (A.1)

Let W 2 RK⇥K be a diagonal matrix that contains the K largest eigenvalues of L⌧ ,
w

1

� w
2

� ... � wK . Let ⇤ 2 RK⇥K be the diagonal matrix that contains all positive
eigenvalues of L⌧ . Take A = L⌧ and B = L⌧ in Lemma A.2. then PL

⌧

L⌧ = X⌧WXT
⌧

and the previous inequality can be rewritten as

||PL
⌧

L⌧ � L⌧ ||2F = ||X⌧WXT
⌧ � X⌧⇤X T

⌧ ||2F  8K||L⌧ � L⌧ ||2.

Then we apply a modified version of the Davis-Kahan theorem (Rohe et al. (2011))
to L⌧ .

Proposition A.3. Let S ⇢ R be an interval. Denote X⌧ as an orthonormal matrix
whose column space is equal to the eigenspace of L⌧ corresponding to the eigenvalues in
�S(L⌧ ) (more formally, the column space of X⌧ is the image of the spectral projection
of L⌧ induced by �S(L⌧ )). Denote by X⌧ the analogous quantity for PL

⌧

L⌧ . Define
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the distance between S and the spectrum of L⌧ outside of S as

� = min{|�� s|;� eigenvalue of L⌧ , � 62 S, s 2 S}.

if X⌧ and X⌧ are of the same dimension, then there is an orthogonal matrix O, that
depends on X⌧ and X⌧ , such that

||X⌧ � X⌧O||2F  2||PL
⌧

L⌧ � L⌧ ||2F
�2

.

Take S = (�K/2, 2), then � = �K/2. By assumption (a)
q

K ln(4N/✏)
�+⌧

 1

8

p
3

�K ,

we have that when N is su�ciently large, with probability at least 1� ✏,

|�K � wK |  ||L⌧ � L⌧ ||  4

r

3 ln(4N/✏)

� + ⌧
 �K/2.

Hence wK 2 S. X and X are of the same dimension.

||X⌧ � X⌧O||F 
p
2||PL

⌧

L⌧ � L⌧ ||F
�

 2
p
2||PL

⌧

L⌧ � L⌧ ||F
�K

 8
p
K||L⌧ � L⌧ ||

�K

 C

�K

r

K ln(4N/✏)

� + ⌧
.

holds for C = 32
p
3 with probability at least 1� ✏.

For part 2, note that for any i,

||[X⇤
⌧ ]

i � [X ⇤
⌧ ]

iO||
2

 2
||X i

⌧ � X i
⌧ O||

2

max{||X i
⌧ ||2, ||X i

⌧ ||2}
,

We have that

||X⇤
⌧ � X ⇤

⌧ O||F  ||X⌧ � X⌧O||F
m

,

where m = mini{||X i
⌧ ||2}.
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Proof of Theorem 2.7

Proof. Recall that the set of misclustered nodes is defined as:

M = {i : 9j 6= i, s.t.||CiO
T � Ci||2 > ||CiO

T � Cj||2}.

Note that Lemma 3.3 implies that the population centroid corresponding to i’th
row of X ⇤

⌧

Ci = ZiU.

Since all population centroids are of unit length and are orthogonal to each other, a
simple calculation gives a su�cient condition for one observed centroid to be closest
to the population centroid:

||CiO
T � Ci||2 < 1/

p
2 ) ||CiO

T � Ci||2 < ||CiO
T � Cj||2 8Zj 6= Zi.

Define the following set of nodes that do not satisfy the su�cient condition,

U = {i : ||CiO
T � Ci||2 � 1/

p
2}.

The mis-clustered nodes M 2 U .
Define Q 2 RN⇥K , where the i’th row of Q is Ci, the observed centroid of node i

from k-means. By definition of k-means, we have

||X⇤
⌧ �Q||

2

 ||X⇤
⌧ � X ⇤

⌧ O||
2

.

By triangle inequality,

||Q� ZUO||
2

= ||Q� X ⇤
⌧ O||

2

 ||X⇤
⌧ �Q||

2

+ ||X⇤
⌧ � X ⇤

⌧ O||
2

 2||X⇤
⌧ � X ⇤

⌧ O||
2

.



91

We have with probability at least 1� ✏,

|M |
N

 |U |
N

=
1

N

X

i2U

1

 2

N

X

i2U

||CiO
T � Ci||2

2

=
2

N

X

i2U

||Ci � ZiUO||2
2

 2

N
||Q� ZUO||2F

 8

N
||X⇤

⌧ � X ⇤
⌧ O||2F

 c
1

K ln(N/✏)

Nm2(� + ⌧)�2

K

.
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Appendix B

Appendix for Chapter 3

B.1 Convergence of Singular Vectors

The classical spectral clustering algorithm above can be divided into two steps: (1)
find the eigendecomposition of L and (2) run k-means. Several previous papers have
studied the estimation performance of the classical spectral clustering algorithm under
a standard social network model. However, due to the asymmetry of A, previous
proof techniques can not be directly applied to study the singular vectors for di-sim.
In this analysis, we (a) symmetrize the graph Laplacian, (b) apply modern matrix
concentration techniques to this symmetrized version of the graph Laplacian, and (c)
apply an updated version of the Davis-Kahn theorem to bound the distance between
the singular spaces of the empirical and population Laplacian.

For simplicity, from now on let L denote the regularized graph Laplacian.
Define the symmetrized version of L and L as

L̃ =

✓

0 L
LT 0

◆

, L̃ =

✓

0 L
L T 0

◆

.

The next theorem gives a sharp bound between L̃ and L̃ .

Theorem B.1. (Concentration of L) Let G be a random graph, with independent edges
and pr(vi ⇠ vj) = pij. Let � be the minimum expected row and column degree of G,
that is � = min(mini Oii,minj Pjj). For any ✏ > 0, if �+⌧ > 3 ln(Nr+Nc)+3 ln(4/✏),
then with probability at least 1� ✏,

kL̃� L̃ k  4

r

3 ln(4(Nr +Nc)/✏)

� + ⌧
. (B.1)
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Proof. Let C = P
� 1

2
⌧ AO

� 1
2

⌧ and define C̃ in the same way as L̃. Then kL̃� L̃ k 
kC̃ � L̃ k+ kL̃� C̃k. We bound the two terms separately.

For the first term, we apply the following concentration inequality for matrices,
see for example Chung and Radcli↵e (2011).

Lemma B.2. Let X
1

, X
2

, ..., Xm be independent random N ⇥N Hermitian matrices.
Moreover, assume that kXi � E(Xi)k  M for all i, and v2 = k

P

var(Xi)k. Let
X =

P

Xi. Then for any a > 0,

pr(kX � E(X)k � a)  2N exp

✓

� a2

2v2 + 2Ma/3

◆

.

Let Eij be the matrix with 1 in the i, j and j, i positions and 0 everywhere else.
Let pij = Aij. To use this inequality, express C̃ � L̃ as the sum of the matrices
Yi,m+j,

Yi,m+j =
1

p

(Oii + ⌧)(Pjj + ⌧)
(Aij � pij)E

i,m+j, i = 1, ...,m, j = 1, ..., n.

Note that

kC̃ � L̃ k = k
m
X

i=1

n
X

j=1

Yi,m+jk,

and

kYi,m+jk  1
p

(Oii + ⌧)(Pjj + ⌧)
 (� + ⌧)�1.

Moreover,

E[Yi,m+j] = 0 and E[Y 2

i,m+j] =
1

(Oii + ⌧)(Pjj + ⌧)
(pij � p2ij)(E

ii + Em+j,m+j).
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Then,

v2 = k
m
X

i=1

n
X

j=1

E[Y 2

i,m+j]k = k
m
X

i=1

n
X

j=1

1

(Oii + ⌧)(Pjj + ⌧)
(pij � p2ij)(E

ii + Em+j,m+j)k

= k
m
X

i=1

[
n
X

j=1

1

(Oii + ⌧)(Pjj + ⌧)
(pij � p2ij)]E

ii +
n
X

j=1

[
m
X

i=1

1

(Oii + ⌧)(Pjj + ⌧)
(pij � p2ij)]E

m+j,m+jk

= max

⇢

max
i=1,...,m

(
n
X

j=1

1

(Oii + ⌧)(Pjj + ⌧)
(pij � p2ij)), max

j=1,...,n
(

m
X

i=1

1

(Oii + ⌧)(Pjj + ⌧)
(pij � p2ij))

�

 max

⇢

max
i=1,...,m

1

� + ⌧

n
X

j=1

pij
Oii + ⌧

, max
j=1,...,n

1

� + ⌧

m
X

i=1

pij
Pjj + ⌧

�

= (� + ⌧)�1.

Take

a =

r

3 ln(4(Nr +Nc)/✏)

� + ⌧
.

By assumption, � + ⌧ > 3 ln(Nr +Nc) + 3 ln(4/✏). So a < 1. Applying Lemma B.2,

pr(kC̃ � L̃ k � a)  2(Nr +Nc) exp

✓

�
3 ln(4(N

r

+N
c

)/✏)
�+⌧

2/(� + ⌧) + 2a/[3(� + ⌧)]

◆

 2N exp(�3 ln(4(Nr +Nc)/✏)

3
)

 ✏/2.

For the second term kL̃� C̃k, define

D⌧ =

✓

O⌧ 0
0 P⌧

◆

, D⌧ =

✓

O⌧ 0
0 P⌧

◆

, D = D
0

, and D = D
0

.

Apply the two sided concentration inequality for each i, 1  i  Nr +Nc, (see for
example Chung and Lu (2006, chap. 2))

pr(|Dii � Dii| � �)  exp{� �2

2Dii

}+ exp{� �2

2Dii +
2

3

�
}.
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Let � = a(Dii + ⌧), where a is as before.

pr

✓

|Dii � Dii| � a(Dii + ⌧)

◆

 exp{�a2(Dii + ⌧)2

2Dii

}+ exp{� a2(Dii + ⌧)2

2Dii +
2

3

a(Dii + ⌧)
}

 2 exp{� a2(Dii + ⌧)2

(2 + 2

3

a)(Dii + ⌧)
}

 2 exp{�a2(Dii + ⌧)

3
}

 2 exp{� ln(4(Nr +Nc)/✏)
(Dii + ⌧)

� + ⌧
}

 2 exp{� ln(4(Nr +Nc)/✏)}
 ✏/2(Nr +Nc).

Because

kD� 1
2

⌧ D
1
2
⌧ � Ik = maxi

�

�

�

�

r

Dii + ⌧

Dii + ⌧
� 1

�

�

�

�

 maxi

�

�

�

�

Dii + ⌧

Dii + ⌧
� 1

�

�

�

�

,

It follows that

pr(kD� 1
2

⌧ D
1
2
⌧ � Ik � a)  pr(maxi

�

�

�

�

Dii + ⌧

Dii + ⌧
� 1

�

�

�

�

� a)

 pr([i{|(Dii + ⌧)� (Dii + ⌧)| � a(Dii + ⌧)})
 ✏/2.

Note that kL̃⌧k  1. Therefore, with probability at least 1� ✏/2,

kL̃⌧ � Ck = kD� 1
2

⌧ ÃD
� 1

2
⌧ � D

� 1
2

⌧ ÃD
� 1

2
⌧ k

= kL̃⌧ � D
� 1

2
⌧ D

1
2
⌧ L̃⌧D

1
2
⌧ D

� 1
2

⌧ k

= k(I � D
� 1

2
⌧ D

1
2
⌧ )L̃⌧D

1
2
⌧ D

� 1
2

⌧ + L̃⌧ (I �D
1
2
⌧ D

� 1
2

⌧ )k

 kD� 1
2

⌧ D
1
2
⌧ � IkkD� 1

2
⌧ D

1
2
⌧ k+ kD� 1

2
⌧ D

1
2
⌧ � Ik

 a2 + 2a.

Combining the two parts yields

kL̃⌧ � L̃⌧k  a2 + 3a  4a,
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with probability at least 1� ✏.

The next theorem bounds the di↵erence between the empirical and population
singular vectors in terms of the Frobenius norm.

Theorem B.3. (Concentration of Singular Space) Let A be the adjacency matrix
generated from the DC-ScBM with parameters {B, Y, Z,⇥Y ,⇥Z}. Let �1

� �
2

� ... �
�K > 0 be the positive singular values of L⌧ .

Let XL(XR) and XL(XR) contain the top K left(right) singular vectors of L⌧

and L⌧ respectively. For any ✏ > 0 and su�ciently large Nr and Nr, if � > 3 ln(Nr +
Nc) + 3 ln(4/✏), then with probability at least 1� ✏

kXL � XLRLkF  8
p
6

�K

r

K ln(4(Nr +Nc)/✏)

� + ⌧
(B.2)

and kXR � XRRRkF  8
p
6

�K

r

K ln(4(Nr +Nc)/✏)

� + ⌧
, (B.3)

for some orthogonal matrices RL,RR 2 RK⇥K.

Proof. Define

X̃ =
1p
2

✓

XL

XR

◆

.

A simple calculation shows that X̃ 2 R(N
r

+N
c

)⇥K contains the top K eigenvectors of
L̃ corresponding to its top K eigenvalues.

We apply an improved version of Davis Kahn theorem from ?). By a slightly
modified proof of Lemma 5.1 in ?), it can be shown that

kX̃X̃T � X̃ X̃ TkF 
p
2K

�K

kL̃⌧ � L̃⌧k.

Combining it with Theorem B.1 and its assumptions,

kX̃X̃T � X̃ X̃ TkF  4
p
6

�K

r

K ln(4(Nr +Nc)/✏)

� + ⌧
,
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with probability at lease 1� ✏. By definition of X̃ and X̃,

kX̃X̃T � X̃ X̃ TkF =

�

�

�

�

✓

1

2

(XLXT
L � XLX T

L ) 1

2

(XLXT
R � XLX T

R )
1

2

(XRXT
L � XRX T

L ) 1

2

(XRXT
R � XRXR)

◆

�

�

�

�

F

� 1

2
kXLX

T
L � XLX T

L kF

� 1

2
kXL � XLRLkF .

Similarly kX̃X̃T�X̃ X̃ TkF � 1

2

kXR�XRRRkF . This proves the above theorem.

B.2 Proof of Theorem 3.7

To rigorously discuss the asymptotic estimation properties of di-sim, the next sub-
sections examine the behavior of di-sim applied to a population version of the graph
Laplacian L , and compare this to di-sim applied to the observed graph Laplacian L.

The population version of di-sim

This subsection shows that di-sim applied to L can perfectly identify the blocks in
the Stochastic co-Blockmodel. Recall di-sim applied to L.

1. Find the left singular vectors XL 2 RN
r

⇥k
y .

2. Normalize each row of XL to have unit length. Denote the normalized rows of
XL as u

1

, . . . , uN
r

2 Rk
y with and kuik2 = 1.

3. Run (1 + ↵)-approximate k-means on u
1

, . . . , uN
r

with ky clusters.

4. Repeat steps (a), (b), and (c) for the the right singular vectors XR 2 RN
c

⇥k
y

with kz clusters.

k-means clusters points u
1

, . . . , un in Euclidean space by optimizing the following
objective function (Steinhaus (1956)),

min
{m1,...,m

k

y

}⇢Rk

y

X

i

min
g

kui �mgk2
2

. (B.4)

Define the centroids as the arguments m⇤
1

, . . . ,m⇤
k
y

that optimize (B.4). Finding
m⇤

1

, . . . ,m⇤
k
y

is NP-hard. di-sim uses a linear time algorithm, (1 + ↵)-approximate
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k-means (Kumar et al. (2004)). That is, the algorithm computes m̂
1

, . . . , m̂k
y

such
that

X

i

min
g

kui � m̂gk2
2

 (1 + ↵)
X

i

min
g

kui �m⇤
gk22.

To study di-sim applied to L , Lemma 3.3 gives an explicit form as a function of
the parameters of the DC-ScBM. Recall that A = E(A) and under the DC-ScBM,

A = ⇥yYBZT⇥z,

where Y 2 {0, 1}Nr

⇥k
y , Z 2 {0, 1}Nc

⇥k
z , and B 2 [0, 1]ky⇥k

z . Assume that ky  kz,
without loss of generality. Moreover, recall that the regularized population versions
of O, P , and L are defined as

Pjj =
P

k Akj

Oii =
P

k Aik

O⌧ = O + ⌧I, P⌧ = P + ⌧I

L = O
� 1

2
⌧ A P

� 1
2

⌧

(B.5)

where O⌧ and P⌧ are diagonal matrices.
The following proves Lemma 3.3.

Proof. Recall that Oii = ✓Yi [PB]y
i

y
i

and Pjj = ✓Zj [OB]z
j

z
j

. In addition,

[⇥Y,⌧ ]ii = ✓Yi
Oii

Oii + ⌧
and [⇥Z,⌧ ]jj = ✓Zj

Pjj

Pjj + ⌧
.

The ij’th element of L⌧ is

[L ]ij =
Aij

p

(Oii + ⌧)(Pjj + ⌧)
=

✓Yi ✓
Z
j By

i

z
j

p

OiiPjj

s

Oii

Oii + ⌧

Pjj

Pjj + ⌧
=

Bz
i

z
j

p

[PB]y
i

[OB]z
j

q

[⇥Y,⌧ ]ii[⇥Z,⌧ ]jj.

Hence,

L = ⇥
1
2
Y,⌧ZBLZ

T⇥
1
2
Z,⌧ ,

where BL is defined as
BL = O�1/2

B BP�1/2
B . (B.6)
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Recall that A = ⇥Y YBZT⇥Z . Lemma 3.3 demonstrates that L has a similarly
simple form that separates the block-related information (BL) and node specific
information (⇥Y and ⇥Z).

Assume that rank(BL) = K, 0 < K = ky  kz. RecallH = (Y T⇥Y,⌧Y )
1
2BL(ZT⇥Z,⌧Z)

1
2 .

Singular value decomposition of H gives

H = U⇤V T .

where U 2 Rk
y

⇥K/V 2 Rk
z

⇥K is the left/right singular vector of H and ⇤ 2 RK⇥K is
diagonal containing the positive singular values of H, �

1

� �
2

� ... � �K > 0. The
proof of the next lemma shows that H and L share the same nonzero singular values.

The next lemma gives the explicit form of the left and right population singular
vectors and further shows that their normalized versions are block constant.

Lemma B.4. (Singular value decomposition for L ) Under the DC-ScBM with
parameters {B, Y, Z,⇥Y ,⇥Z}, Let XL 2 RN

r

⇥K(XR 2 RN
c

⇥K) contain the left/right
singular vectors of L⌧ . Define X ⇤

L /X
⇤
R to be the row-normalized XL/XR. Then

1. XL = ⇥
1
2
Y,⌧Y (Y T⇥Y,⌧Y )�

1
2U ,

2. XR = ⇥
1
2
Z,⌧Z(Z

T⇥Z,⌧Z)�
1
2V .

3. X ⇤
L = Y U , Yi 6= Yj , YiU 6= YjU .

4. X ⇤
R = ZV ⇤, where V ⇤

j = Vj/kVjk2.

Proof. Recall that H = (Y T⇥Y,⌧Y )
1
2BL(ZT⇥Z,⌧Z)

1
2 and singular value decompositon

of H gives H = U⇤V T .

Define XL = ⇥
1
2
Y,⌧Y (Y T⇥Y,⌧Y )�

1
2U , and XR = ⇥

1
2
Z,⌧Z(Z

T⇥Z,⌧Z)�
1
2V . It is easy

to check that X T
L XL = I and X T

R XR = I.
On the other hand,

XL⇤X T
R = ⇥

1
2
Y,⌧Y BLZ

T⇥
1
2
Z,⌧ = L .

Hence, �s, s = 1, ..., r are L⌧ ’s nonzero singular values and XL/XR contains L⌧ ’s
left/right singular vectors corresponding to its nonzero singular values.

Let X i
L denote the i’th row of XL. For part (c), notice that

kX i
Lk2 = (

[⇥Y,⌧ ]ii
[Y T⇥Y,⌧Y ]y

i

y
i

)
1
2 .
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So,

[X ⇤
L ]

i =
X i

L

kX i
Lk2

= YiU.

Therefore, X ⇤
L = Y U . For (d), notice that

kX j
Rk2 = (

[⇥Z,⌧ ]jjkVZ
j

k2

[ZT⇥Z,⌧Z]z
j

z
j

)
1
2 .

Hence,

[X ⇤
R ]

j =
X j

R

kX j
Rk2

= ZjV
⇤.

Comparing the population and observed clusters

The first part of the section proves the bound of misclustering rate for row nodes.

Clustering for Y

Proof. Recall that the set of misclustered row nodes is defined as:

My =
�

i : kcLi � yiµ
yRLk2 > kcLi � yjµ

yRLk2 for any yj 6= yi
 

.

Let Ci denote yiµy. Note that Lemma B.4 implies that the population centroid
corresponding to the i’th row of X ⇤

L is

Ci = yiµ
y = yiU.

Since all population centroids are of unit length and are orthogonal to each other, a
simple calculation gives a su�cient condition for one observed centroid to be closest
to the population centroid:

kcLi RT
L � CL

i k2 < 1/
p
2 ) kcLi RT

L � CL
i k2 < kcLi RT

L � CL
j k2, 8j 6= i.

Define the following set of nodes that do not satisfy the su�cient condition,

By = {i : kcLi RT
L � CL

i k2 � 1/
p
2}.

The mis-clustered nodes My ⇢ By.
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Define CL 2 RN
r

⇥K , where the i’th row of CL is cLi , the observed centroid of
node i from the (1 + ↵)-approximate k-means. Define ML 2 RN

r

⇥K to be the global
solution of k-means. By definition,

kX⇤
L � CLkF  (1 + ↵)kX⇤

L �MLkF  (1 + ↵)kX⇤
L � X ⇤

L RLkF .

Further, by the triangle inequality,

kCL�Y URLkF = kCL�X ⇤
L RLkF  kX⇤

L�CLkF+kX⇤
L�X ⇤

L RLkF  (2+↵)kX⇤
L�X ⇤

L RLkF .

Thus,

|My|
Nr

 |By|
Nr

=
1

Nr

X

i2B
y

1

 2

Nr

X

i2B
y

kcLi RT
L � CL

i k22

=
2

Nr

kCL � Y URLk2F

 2(2 + ↵)2

Nr

kX⇤
L � X ⇤

L RLk2F

 8(2 + ↵)2

Nrm2

y

kXL � XLRLk2F .

The last inequality is due to the following fact.

Lemma B.5. For two non-zero vectors v
1

, v
2

of the same dimension, we have

k v
1

kv
1

k
2

� v
2

kv
2

k
2

k
2

 2
kv

1

� v
2

k
2

max(kv
1

k
2

, kv
2

k
2

)
.

By Theorem B.3, we have, with probability at least 1� ✏,

|My|
Nr

 c
0

(↵)
K ln(4(Nr +Nc)/✏)

Nr�2

Km
2

y(� + ⌧)
.

The second part proves the bound of the misclustering rate for column nodes.
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Clustering for Z

Because ky  kz, it is slightly more challenging to bound Mz.

Proof. Recall that H = (Y T⇥Y,⌧Y )
1
2BL(ZT⇥Z,⌧Z)

1
2 and H = U⇤V T . Left multiply

by ⇤�1UT , we have
V = HTU⇤�1.

Hence

kVi � Vjk2 �
1

�
1

kH·iU �H·jUk
2

� kH·i �H·jk2.

The second inequality is due to the facts that �
1

 1 and U is an orthogonal matrix.
Recall that

�z = min
i 6=j

kH·i �H·jk2 + (1� ),

where  = maxi,j kVik2/kVjk2. We have that, 8i 6= j,

kV ⇤
i � V ⇤

j k2 � �z.

This is because

kV ⇤
i � V ⇤

j k2 = kVi � Vj

kVjk2
+ Vi(

1

kVik2
� 1

kVjk2
)k

2

� kVi � Vjk2 + 1� kVik2
kVjk2

� kH·i �H·jk2 + (1� )

� �z.

Recall that the set of misclustered row nodes is defined as:

Mz =
�

i : kcRi � ziµ
zRRk2 > kcRi � zjµ

zRRk2 for any zj 6= zi
 

.

Let CR
i denote ziµz. Note that Lemma B.4 implies that the population centroid

corresponding to the i’th row of X ⇤
R is

CR
i = ziµ

z = ZiV
⇤.

Define the following set of column nodes,

Bz = {i : kcRi RT
R � CR

i k2 � �z/2}.
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It is straightforward to show that Mz 2 Bz.
Define CR 2 RN

c

⇥K , where the i’th row of M is cRi , the observed centroid of
column node i from (1 + ↵)-approximate k-means. Define MR 2 RN

r

⇥K to be the
global solution of k-means. By definition, we have

kX⇤
R � CRkF  (1 + ↵)kX⇤

R �MRkF  (1 + ↵)kX⇤
R � X ⇤

RRRkF .

Further, by the triangle inequality,

kCR�ZV ⇤RRkF = kCR�X ⇤
RRRkF  kX⇤

R�CRkF+kX⇤
R�X ⇤

RRRkF  (2+↵)kX⇤
R�X ⇤

RRRkF .

Putting all of these pieces together,

|Mz|
Nc

 |Bz|
Nc

=
1

Nc

X

i2B
z

1

 4

Nc�2

z

X

i2B
y

kcRi RR
L � CR

i k22

=
4

Nc�2

z

kCR � ZV ⇤RRk2F

 4(2 + ↵)2

Nc�2

z

kX⇤
R � X ⇤

RRRk2F

 16(2 + ↵)2

Nc�2

zm
2

z

kXR � XRRRk2F .

By Theorem B.3, we have with probability at least 1� ✏,

|Mz|
Nc

 c
1

(↵)
K ln(4(Nr +Nc))/✏)

Nr�2

Km
2

z�
2

z (� + ⌧)
.

The following is a proof of Corollary 3.9.

Proof. Under the four parameter ScBM, presume that ✓i = 1/s for all i. From the
proof of Lemma B.4, L has the same singular values as

H = (Y T⇥Y,⌧=0

Y )
1
2BL(Z

T⇥Z,⌧=0

Z)
1
2 = BL = O

� 1
2

B BP
� 1

2
B =

1

s2(Kr + p)
(s2pIK+s2r1K1

T
K).
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By inspection, the constant vector is an eigenvector of this matrix. It has eigenvalue

�
1

=
p+Kr

Kr + p
= 1.

Any vector orthogonal to a constant vector is also an eigenvector. These eigenvectors
have eigenvalue

�k =
p

Kr + p
=

1

K(r/p) + 1
.

The result follows from using m2

y = K/n (see discussion after Theorem 3.7) and
� / N .
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Appendix C

Appendix for Chapter 4

Proof of Theorem 4.4

The proof requires some additional definitions. After giving these definitions, we will
outline the proof.

Define the expectation of ✓̂
(z)

and ✓̂
R,(z)

to be ✓̄
(z)

and ✓̄
R,(z)

. Define the expecta-
tion of L(A; z,✓) to be

L̄P (z,✓) = E[L(A; z,✓)] =
X

i<j

{Pij log ✓z
i

z
j

+ (1� Pij) log(1� ✓z
i

z
j

)}.

Let L̄P (z) to be the maximizer of L̄P (z,✓) over ⇥, and let L̄R
P (z) to be the maximizer

of L̄P (z,✓) over ⇥R. That is,

L̄P (z) = L̄P (z, ✓̄
(z)
) = sup

✓2⇥
L̄P (z,✓), (C.1)

L̄R
P (z) = L̄P (z, ✓̄

R,(z)
) = sup

✓2⇥R

L̄P (z,✓). (C.2)

The proof of the main theorem is divided into five lemmas. The first step is to
bound the di↵erence between L̄P (z̃) and L̄R

P (ẑ
R) (Lemma C.3). Lemma C.1 and

Lemma C.2 are two building blocks of Lemma C.3 . Lemma C.1 establishes a union
bound of |LR(A; z)� L̄R

P (z)| for any partition z. Lemma 2 shows that under the true
partition z̃, the expectation of regularized likelihood is close to the expectation of the
ordinary likelihood. Lemma C.3 divides L̄P (z̃)� L̄R

P (ẑ
R) into three parts and controls

them respectively. We can see this as a bias-variance tradeo↵; we sacrifice some bias
L̄P (z̃)� L̄R

P (z̃) to decrease the variance maxz |LR(A; z)� L̄R
P (z)|. After Lemma C.3,
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it is necessary to develop the concept of regularized refinement, an extension of the
refinement idea proposed in Choi et al. (2012). Using the concept of regularized
refinement, we can bound the error rate Ne(ẑR)/N with a function of L̄P (z̃)� L̄R

P (ẑ
R).

Lemma C.5 and Lemma C.6 use a new concept of regularized refinement to connect
the bounds on the log-likelihood with the error rate Ne(ẑR)/N . From here on, we
write ✓̂ and ✓̄ instead of ✓̂(z) and ✓̄(z) when the choice of z is understood.

Lemma C.1. Let M to be the total expected degree of A. That is, M =
P

i<j EAij.

max
z

|LR(A; z)� L̄R
P (z)| = op(M). (C.3)

This proof follows a similar argument made in Choi, Wolfe, and Airoldi (2012).

Proof. Let H(p) = �p log p� (1� p) log(1� p), which is the entropy of a Bernoulli
random variable with parameter p. Define X =

P

i<j Aij log{✓̄z
i

z
j

/(1� ✓̄z
i

z
j

)}. Let
nab denote the maximum number of possible edges between all di↵erent blocks.

LR(A; z)� L̄R
P (z) = �

K
X

a=1

naa(H(✓̂aa)�H(✓̄aa))� nout(H(r̂)�H(r̄))

=
K
X

a=1

naaD(✓̂aak✓̄aa) + noutD(r̂kr̄) +X � E(X).

For the first part
PK

a=1

naaD(✓̂aak✓̄aa) + noutD(r̂kr̄), by similar argument as in

Choi et al. (2012), we have that for every regularized estimator ✓̂R:

pr(✓̂R)  exp

⇢

�
K
X

a=1

naaD(✓̂aak✓̄aa)� noutD(r̂kr̄)
�

.

Let ⇥̂ denote the range of ✓̂R for fixed z. Then the total number of sets of values ✓̂R

can take is |⇥̂| = (nout + 1) ·⇧K
a=1

(naa + 1). Notice that
P

a=1

(naa + 1) + (nout + 1) =
N(N�1)

2

+K + 1, we have |⇥̂|  (N(N�1)

2(K�1)

+ 1)K+1  (N
2

2K
)(K+1). Then 8✏ > 0,

pr

⇢ K
X

a=1

naaD(✓̂aak✓̄aa) + noutD(r̂kr̄) > ✏

�

 |⇥̂|e�✏  (
N2

2K
)(K+1)e�✏

 exp

⇢

2(K + 1) logN � (K + 1) log(2K)� ✏

�

.
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For the second part X � E(X), each Xij = Aij log{✓̄z
i

z
j

/(1� ✓̄z
i

z
j

)} is bounded
in magnitude by C = 2 logN . By the following concentration inequality:

pr{|X � E(X)| � ✏}  2 exp

⇢

� ✏2

2
P

i<j E(X2

ij) + (2/3)C✏

�

.

Here
P

i<j E(X2

ij)  4M log2 N . Finally, by a union bound inequality over all
partition z, we have:

pr{max
z

|LR(A; z)� L̄R
P (z)| � 2✏M}  exp{N logK + 2(K + 1) logN � (K + 1) log(2K)�M✏}

+ 2 exp

⇢

N logK � ✏2M

8 log2 N + (4/3)✏ logN

�

.

Notice that in this asymptotic setting , the total expected degreeM = !(N(logN)3+�).
Then, maxz |LR(A; z)� L̄R

P (z)| = op(M).

Lemma C.2. Under the true partition z̃, L̄P (z̃)� L̄R
P (z̃) = o(M).

Proof. When N is su�ciently large,

L̄P (z̃)� L̄R
P (z̃) =

X

a<b

nabD(✓abkr̄) =
X

a<b,{a,b}2Q

nabD(✓abkr̄) +
X

a<b,{a,b}/2Q

nabD(✓abkr̄)

 |Q|C
1

+ (N(N � 1)/2�
K
X

a=1

naa � |Q|)Cf(N)

N
(log(CNf(N)))

 |Q|C
1

+N2

Cf(N)

N
(logN + logCf(N)) = o(M).

Here C
1

> 0 is some constant. The last equality is due to the fact that M = ⌦(Ns),
which is directly implied by Definition 2.2.

Lemma C.3. Under the true partition z̃ and the RMLE ẑR, L̄P (z̃)�L̄R
P (ẑ

R) = op(M).

Proof. First notice that the left hand side is a nonnegative value since z̃ maximizes
L̄P (·) and L̄P (ẑR) � L̄R

P (ẑ
R).

By adding another positive term, and using Lemma C.1 and Lemma C.2:
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L̄P (z̃)� L̄R
P (ẑ

R)  L̄P (z̃)� L̄R
P (ẑ

R) + LR(A; ẑR)� LR(A, z̃)

 |L̄P (z̃)� LR(A, z̃)|+ |L̄R
P (ẑ

R)� LR(A; ẑR)|
 |L̄P (z̃)� L̄R

P (z̃)|+ |L̄R
P (z̃)� LR(A, z̃)|+ |L̄R

P (ẑ
R)� LR(A; ẑR)|

= op(M).

To make Ne(z) mathematically tractable, Choi, Wolfe, and Airoldi (2012) intro-
duced the concept of block refinements. The next paragraphs first reintroduce the
definition. We then extend this definition to the regularized block refinement.

Partitions and refinements

The refinement is the key concept to connect L̄P (z̃) � L̄R
P (ẑ

R) with the error rate
Ne(ẑR)/N . For this subsection, we first review the concept of partition and refinement.
Then, we give its regularized version. Second, we state the fact that a refinement’s
log-likelihood is no less than the original partition’s log-likelihood. Then, the distance
between log-likehood of its (regularized) refinement and log-likelihood of true z̃ can be
bounded by the distance between (regularized) log-likelihood of arbitrary z partitions
and log-likelihood true z̃. Finally, the connection between (regularized) refinement
log-likelihood and the error rate is established (Lemma C.6.)

For positive integer N , define [N ] as the set {1, . . . , N}. The partition log-
likelihood L̄⇤

P is defined for any partition ⇧ of the indices of a lower triangular
matrix,

⇧ : {(i, j)}i2[N ],j2[N ],i<j ! (1, . . . , L).

Define

S` = {(i, j) : ⇧(i, j) = ` and i < j} and ✓̄` = |S`|�1

X

i<j:⇧(i,j)=`

Pij.

The partition log-likelihood is defined as

L̄⇤
P (⇧) =

X

i<j

{Pij log ✓̄⇧(i,j) + (1� Pij) log(1� ✓̄
⇧(i,j))}.
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Notice that any class assignment z induces a corresponding partition ⇧z,

⇧z(i, j) = `, where ` = zi + (zj � 1) ·K.

It is straightforward to show that L̄⇤
P (⇧

z) = L̄P (z).
A refinement ⇧0 of partition ⇧ further divides the partitions in ⇧ into subgroups.

Formally,

Definition C.4. A refinement ⇧0 of partition ⇧ satisfies the following condition.

⇧0(i
1

, j
1

) = ⇧0(i
2

, j
2

) =) ⇧(i
1

, j
1

) = ⇧(i
2

, j
2

), for any i
1

< j
1

and i
2

< j
2

.

From Lemma A2 in Choi et al. (2012),

L̄⇤
P (⇧)  L̄⇤

P (⇧
0) (C.4)

This will be essential for for Lemma C.6.
To define ⇧⇤, a specific refinement of partition ⇧z, we first need to define a set of

triples T . The following construction comes directly from Choi et al. (2012):

“For a given membership class under z, partition the corresponding set
of nodes into subclasses according to the true class assignment z̃ of each
node. Then remove one node from each of the two largest subclasses so
obtained, and group them together as a pair; continue this pairing process
until no more than one nonempty subclass remains. Then, terminate. If
pair (i, j) is chosen from the above procedure, then zi = zj and z̃i 6= z̃j.”

Define C
1

as the number of (i, j) pairs selected by the above routine. Notice that
at least one of i or j is misclustered. In fact, Ne(z)/2  C

1

 Ne(z). This will be
important for Lemma C.5 which connects the error rate Ne(z)/N with the refinement.

Define the set T to contain the triple (i, j, k) if the pair (i, j) was tallied in C
1

,
and k 2 [N ] satisfies

D

✓

Pikk
Pik + Pjk

2

◆

+D

✓

Pjkk
Pik + Pjk

2

◆

� C
MK

N2

.

From assuming Equation 4.3 , if (i, j) is tallied in C
1

, then there exists at least one
such k. Further, if zk = z`, then (i, j, `) is also in T . The set T is essential to defining
the refinement partition ⇧⇤ and later the refined regularized partition ⇧⇤R.
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For each (i, j, k) 2 T , remove (i, k) and (j, k) from their previous subset under
⇧z, and place them into their own, distinct two-element set. Define the resulting
partition as ⇧⇤. Notice that it is a refinement of ⇧z.

Regularized partition and regularized refinement

To extend the analysis to the RMLE, we will define the regularized partition ⇧zR and
the associated refinement partition ⇧⇤R. ⇧zR partitions the nodes into K + 1 groups;
if zi = zj, then ⇧zR(i, j) = zi and if zi 6= zj, then ⇧zR(i, j) = K + 1. It follows from
the definition of L̄⇤

p that L̄R
p (z) = L̄⇤

p(⇧
zR).

Construct ⇧⇤R in the following way: For each (i, j, k) 2 T , remove (i, k) and
(j, k) from their previous subset under ⇧zR, and place them into their own, distinct
two-element set. Define the resulting partition as ⇧⇤R. Notice that ⇧⇤R is constructed
from ⇧zR in the same way that ⇧⇤ is constructed from ⇧z. Define R as the set of
elements in the o↵-diagonal block partition that where not removed by the set T ,

R =
�

(q, k) 2 [N ]⇥ [N ] : zq 6= zk, (q, x, k) 62 T, (x, q, k) 62 T, for any x 2 [N ]
 

.

Notice that R is one group in ⇧⇤R. Make a refinement ⇧0 by subdividing R into
�

K
2

�

new groups:

For u < v, u 2 [K], v 2 [K], define Guv = {(i, j) 2 R : zi = u, zj = v or zi = v, zj = u} .

It follows that ⇧0 = ⇧⇤. So, ⇧⇤ is a refinement of ⇧⇤R and ⇧⇤R is a refinement for
⇧zR.

Lemma C.5. (Theorem 3 in Choi, Wolfe, and Airoldi (2012)) For any partition z
and ⇧⇤ being its refinement, if the size of the smallest block s = ⌦(MK

N2 ), and for any
distinct class pairs (a, b), there exists a class c such that Equation 4.3 holds, then

L̄P (z̃)� L̄⇤
P (⇧

⇤) =
Ne(z)

N
⌦(M). (C.5)

Proof.

L̄p(z̃)� L̄⇤
p(⇧

⇤) =
X

i<j

D(Pij||✓̄⇧(i,j)) = C
1

⌦

✓

s
MK

N2

◆

=
Ne(z)

N
⌦(M)
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Lemma C.6. Let ⇧ẑR be the partition corresponding to ẑR (the regularized block
estimator). Let ⇧0 be the refinement of ⇧ẑR, and let ⇧0R be the regularized refinement
of ⇧ẑR.

L̄P (z̃)� L̄R
P (ẑ

R) � L̄P (z̃)� L̄⇤
P (⇧

0R) � L̄P (z̃)� L̄⇤
P (⇧

0). (C.6)

Proof. Recall that taking a refinement increases the partition log-likelihood. The
first inequality is due to the fact that ⇧0R is a refinement of the partition ⇧ẑR . The
second inequality follows from the fact that ⇧0 is a refinement of ⇧0R.

Hence Theorem 4.4 can be proved as below: The conditions in Lemma C.5 are
satisfied by the highest dimensional asymptotic setting assumption. By Lemma C.3,
C.5, C.6, we have:

op(M) = L̄P (z̃)�L̄R
P (ẑ

R) � L̄P (z̃)�L̄⇤
P (⇧

0) =
Ne(ẑR)

N
⌦(M). Hence

Ne(ẑR)

N
= op(1).

Reseeding

Section 4.4 describe a reseeding technique that ensures the pseudo-likelihood imple-
mentation of the RMLE returns an estimated partition with the desired number of
non-empty sets. This section compares the implementation with reseeding (reseed)
to the implementation without reseeding (no.reseed). Overall, reseed never attains
a smaller likelihood score and often attains a larger likelihood scores. Moreover,
reseed is more stable over di↵erent initializations.

In the following simulation, K = 30, n = 600, ✓ii = 8/20 for all i, and ✓ij = 10/580
for all i 6= j. So, in expectation, each node connects to 8 nodes in the same block and
10 nodes in other blocks. For each simulated adjacency matrix A, both reseed and
no.reseed are both initialized 50 times with spectral clustering; due to the k-means
step in spectral clustering, not all initializations are equivalent. The simulations in
Section 4.4 reseeds whenever a block contains either zero nodes or a single node. In
the simulation that follows, blocks are reseeded whenever they have fewer than five
nodes. This is to demonstrate the robustness of this block culling step.

There are 175 adjacency matrices A simulated from this model. For the ith
simulated adjacency matrix, let ẑireseed be the partition that attains the largest
likelihood over all 50 initializations of reseed. Similarly, let ẑino.reseed be the same
partition for no.reseed. Over the 175 simulated adjacency matrices,

LR(A; ẑireseed) > LR(A; ẑino.reseed)
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on 22% of the simulations. In the remaining simulations, they find the same maximum.
Never does ẑino.reseed attain a larger likelihood score. Moreover, on each initialization,
the reseed was much more likely to find the maximum (72 % compared to 14 %).



113

Appendix D

Appendix for Chapter 5

Proof of Lemma 5.2

Proof. First notice that under the DC-SBM, the population adjacency matrix has
the following form,

A = ⇥AZAPZT
A⇥A.

Simply algebra reveals that the population graph laplacian has similar simply presen-
tation:

LA = D�1/2
A A D�1/2

A = ⇥1/2
A ZAD

�1/2
P PD�1/2

P ZT
A⇥

1/2
A ,

where DP = diag(PZT
A⇥A1). Define matrix C 2 RK⇥K ,

C = (ZT
A⇥AZA)

1/2D�1/2
P PD�1/2

P (ZT
A⇥AZA)

1/2.

By assumption, P is positive definite, hence C is also positive definite given DP and
(ZT

A⇥AZA)1/2 are both diagonal and positive matrices. Spectral decomposition of C
gives C = U ⇤̄UT , where U 2 RK⇥K contains eigenvectors of C in its columns and
⇤̄ = diag(�̄

1

, ..., �̄K), �̄1

� �̄
2

, ...,� �̄K > 0 Define X̃ := ⇥1/2
A ZA(ZT

A⇥AZA)�1/2U . It
is easy to check that X̃ TX̃ = I and X̃ ⇤̄X̃ T = LA . Hence, X̃ contains top K
eigenvectors of LA and ⇤̄ contains top K positive eigenvalues of LA .

Recall that X = D�1/2
A X̃ and [DA ]ii = [⇥A]ii[PZT

A⇥A1][Z
A

]

i

, we have

X = D�1/2
A X̃ = ZAD

�1/2
P (ZT

A⇥AZA)
�1/2U.

Notice the fact that ZT
A⇥A1 = ZT

A⇥AZA1. Also recall the definition of V , V =
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diag[(ZT
A⇥AZA)P (ZT

A⇥AZA)1]. Hence we have

X = ZAdiag(PZT
A⇥AZA1)

�1/2(ZT
A⇥AZA)

�1/2U = ZAV
�1/2U.

X ⇤ projects each row of X on the unit sphere, it is straight forward to show that
Y ⇤ = ZAU .

Proof of Lemma 5.3

Proof. By definition,

Y = (DB + ⌧I)�1BX ⇤̄�1

= (DB + ⌧I)�1DBD�1

B BX ⇤̄�1

= (DB + ⌧I)�1DBZBD
�1

P PZT
A⇥AX ⇤̄�1

X is also eigenvectors of the random walk graph laplacian,

D�1

A A X = X ⇤̄.

Plugging in the definition of A and X ,

D�1

A A X = ZAD
�1

P PZT
A⇥AX

) ZAD
�1

P PZT
A⇥AX ⇤̄�1 = ZAV

�1/2U.

This indicates that D�1

P PZT
A⇥AX ⇤̄�1 = V �1/2U . Hence ZBD

�1

P PZT
A⇥AX ⇤̄�1 =

ZBV �1/2U , and
Y = (DB + ⌧I)�1DBZBV

�1/2U.

Y ⇤ projects each row of Y on the unit sphere, it is straight forward to show that
Y ⇤ = ZBU .

Proof of Theorem 5.5

Proof.
kF � Fk2F = kX⇤ � X ⇤k2F + kY ⇤ � Y ⇤k2F .

The first part bounds kX⇤ � X ⇤k2F :
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By applying an improved version of Davis Kahn theorem from ?) and Lemma
5.4, we have,

kX̃ � X̃ kF  2
p
2K

�̄K

kL� LA k  4
p
6

s

K ln(4NA/✏)

�̄2

K�A
, (D.1)

with probability greater than 1� ✏.

Lemma D.1. For two non-zero vectors v
1

, v
2

of the same dimension, we have

k v
1

kv
1

k
2

� v
2

kv
2

k
2

k
2

 2
kv

1

� v
2

k
2

max(kv
1

k
2

, kv
2

k
2

)
.

Let Vmax = maxiVii, which is the maximum expected volume of K clusters within
A. Recall that kXik = V �1/2

z
i

, by Lemma D.1 and some algebra,

kX⇤ � X ⇤kF  2

r

Vmax

�A
kX̃ � X̃ kF . (D.2)

Combining this with equation (D.1) gives:

kX⇤ � X ⇤kF  8
p
6

p

KVmax ln(4NA/✏)

�A�̄K

, (D.3)

with probability greater than 1� ✏.

Lemma D.2. For any 0 < ✏ < 1, if �A � 3 ln(4NA/✏), with probability at least 1� ✏,

kD�1/2
A � D�1/2

A k 
2
p

3 ln(4NA/✏)

�A
.

By triangle inequality,

kX � X kF = kD�1/2
A X̃ � D�1/2

A X̃ kF (D.4)

 k(D�1/2
A � D�1/2

A )X̃kF + kD�1/2
A (X̃ � X̃ )kF (D.5)


p
Kk(D�1/2

A � D�1/2
A )k+ ��1/2

A kX̃ � X̃ kF (D.6)

 8
p
6

p

K ln(4NA/✏)

�A�̄K

(D.7)

Next part bounds kY ⇤ � Y ⇤k2F with high probability.
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For brevity, Let Di(Di) denote the ii’th element of DB(DB). For any 1  i  NB,
By triangle inequality,

kYi � Yik = k(Di + ⌧)�1BiX⇤�1 � (Di + ⌧)�1BiX ⇤̄�1k (D.8)

 k(Di + ⌧)�1BikkX⇤�1 � X ⇤̄�1kF + k(Di + ⌧)�1BiX ⇤̄�1 � (Di + ⌧)�1BiX ⇤̄�1k
(D.9)

For the first part:

k(Di + ⌧)�1BikkX⇤�1 � X ⇤̄�1kF 
p
Di

Di + ⌧
kX⇤�1 � X ⇤̄�1kF

 1p
Di + ⌧

�

kX⇤�1 � X ⇤�1kF + kX ⇤�1 � X ⇤̄�1kF
�

 1p
Di + ⌧

� 1

�K

kX � X k+ 1p
�A

p
Kk⇤�1 � ⇤̄�1k

�

 1p
Di + ⌧

� 2

�̄K

kX � X k+
4
p

3K ln(4NA/✏)

�̄2

K�A

�

.

The first inequality follows because kBik =
p
Di.

Following equation equation D.4 and the next lemma, we have

k(Di + ⌧)�1BikkX⇤�1 � X ⇤̄�1kF  C

p

K ln(4NA/✏)p
�B + ⌧�A�̄2

K

, (D.10)

for all i 2 VB with probability at least 1� ✏.

Lemma D.3. Let X
1

, ..., Xn be independent 0/1 random variables and ⌧ � 0, and
X =

P

Xi. If EX + ⌧ � 32

9

ln(1/✏), then with probability at lease 1� ✏,

X + ⌧ � 1

4
(EX + ⌧).

For the second part:

k(Di + ⌧)�1BiX ⇤̄�1 � (Di + ⌧)�1BiX ⇤̄�1k 
1

�̄K

k(Di + ⌧)�1BiX � (Di + ⌧)�1BiX k+ 1

�̄K(Di + ⌧)
kBiX � BiX k
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k(Di + ⌧)�1BiX � (Di + ⌧)�1BiX k 
�

�

1

Di + ⌧
� 1

Di + ⌧

�

�kBikkX k


�

�

1

Di + ⌧
� 1

Di + ⌧

�

�

p

DikX k

 |Di � Di|
(Di + ⌧)(Di + ⌧)

p

DikX k

 |Di � Di|p
Di + ⌧(Di + ⌧)

kX k

 |Di � Di|
Di + ⌧

2
p
Kp

�B + ⌧
p
�A

 2
p
3p

�A(�B + ⌧)

p

K ln(4NB/✏).

Hence,

1

�̄K

k(Di + ⌧)�1BiX � (Di + ⌧)�1BiX k  2
p
3

�̄K

p
�A(�B + ⌧)

p

K ln(4NB/✏) (D.11)

holds with probability greater than 1� ✏ for all i 2 VB.
To bound the last part 1

¯�
K

(D
i

+⌧)
kBiX �BiX k, we use the following lemma from

Chaudhuri et al. (2012):

Lemma D.4. Let X
1

, ..., Xn be independent 0/1 random variables, and X =
P

↵iXi.
Let k↵k2 =

P

↵2

i . With probability at lease 1� 2✏,

|X � E[X]| 
r

k↵k2 ln(1/✏)
2

.

The proof of lemma D.4 comes directly from Hoe↵ding’s inequality.
Note that kBiX � BiX k2 =

PK
j=1

kBiX.j � BiX.jk2, by lemma D.4,

kBiX.j � BiX.jk2 
kX.jk2 ln(1/✏)

2
.

Recall that X.j = D�1/2
A X̃.j and kX̃.jk = 1 for all j by definition of eigenvector.

Simple algebra gives kX.jk2  1

�
A

. Hence,

kBiX � BiX k2  K ln(NB/✏)

2�A
,
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with probability at least 1� 2✏
N

B

.
Applying union bound over i 2 VB gives

1

�̄K(Di + ⌧)
kBiX � BiX k  1

2�̄K

p
�A(�B + ⌧)

p

K ln(4NB/✏) (D.12)

with probability at least 1�2✏ for all i 2 VB. Combining equation (D.10),equation (D.11)
and equation D.12, finally we have

kYi � Yik  c
1

2
max

�

p

K lnNA/✏

�A
p
�B + ⌧ �̄2

K

,

p

K lnNB/✏p
�A(�B + ⌧)�̄K

 

, 8i 2 VB. (D.13)

Recall that Yi =
D

i

D
i

+⌧
[ZB]iV �1/2U and hence kYik � D

i

D
i

+⌧
V �1/2
max � �

B

�
B

+⌧
V �1/2
max . Ap-

plying lemma D.1 gives

kY ⇤
i � Y ⇤

i k  c
1

max
�

p

(�B + ⌧)KVmax lnNA/✏

�A�B�̄2

K

,

p

KVmax lnNB/✏p
�A�B�̄K

 

, 8i 2 VB,

with probability at least 1 � ✏. Combining all rows in Y � Y reveals the desired
result.

Proof of Theorem 5.7

Proof. Recall that the set of misclustered nodes is defined as:

M = {i : 9j 6= i, s.t.kCi � Cik2 > kCi � Cjk2}.

Note that Lemma 5.2 and Lemma 5.3 implies that the population centroid corre-
sponding to i’th row of F ,

Ci = ZiU.

Since all population centroids are of unit length and are orthogonal to each other, a
simple calculation gives a su�cient condition for one observed centroid to be closest
to the population centroid:

kCi � Cik2 < 1/
p
2 ) kCi � Cik2 < kCi � Cjk2 8Zj 6= Zi.

Define the following set of nodes that do not satisfy the su�cient condition,

U = {i : kCi � Cik2 � 1/
p
2}.
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The mis-clustered nodes M 2 U .
Define Q 2 RN⇥K , where the i’th row of Q is Ci, the observed centroid of node i

from k-means. By definition of k-means, we have

kF �Qk
2

 kF � Fk
2

.

By triangle inequality,

kQ� ZUk
2

= kQ� Fk
2

 kX⇤
⌧ �Qk

2

+ kF � Fk
2

 2kF � Fk
2

.

The misclustering rate is bounded as follows,

|M |
N

 |U |
N

=
1

N

X

i2U

1

 2

N

X

i2U

kCi � ZiUk2
2

 2

N
kQ� ZUk2F

 8

N
(kX⇤ � X ⇤k2F + kY ⇤ � Y ⇤k2F )

Finally, applying the result from Theorem 5.5 and the assumption that �̄K is
bounded below by positive constant, we have

|M |
N

= Op

✓

NA

N
•KVmax lnNA

NA�2A
+
NB

N
•max

�(�B + ⌧)KVmax lnNA

�2A�
2

B

,
KVmax lnNB

�A�2B

 

◆

.
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Appendix E

Appendix for Chapter 6

Proof of Theorem 6.4

Proof. Recall that the transitivity ratio of A is

trans(A) =
number of closed triplets in A

number of connected triples of vertices in A
.

Both the numerator and the denominator of the transitivity ratio have other formula-
tions that suggest how they can be computed.

number of closed triplets in A = 6⇥ Number of triangles in A

= trace(AAA)

number of connected triples of vertices in A = 2⇥ Number of 2-stars in A

= 2
X

j

✓

dj
2

◆

=
X

j

d2j � dj.

For ease of notation, defineXn = trace(AAA) and Yn =
P

i d
2

i�di. So, trans(A) =
Xn/Yn. To show that transitivity converges to zero, use

P

✓

Xn

Yn

> ✏

◆

 E(Xn/Yn)

✏

and the following Lemma.
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Lemma E.1. If �n = o(n), then there exists a sequence fn such that E(Xn) = o(fn)
and

P (Yn � fn) ! 1.

Using Lemma E.1 and fact that Xn/Yn  1 a.s.,

E
Xn

Yn

 E

✓

Xn

fn
1{Yn > fn}+ 1{Yn < fn}

◆

 E(Xn)

fn
+ P (Yn < fn)

! 0.

Now, to prove Lemma E.1. For ease of notation, define d =
P

i di. From Bickel,

Levina, Chen, define ⇢̂ = d
2n(n�1)

. They show that ⇢̂/⇢n
P! 1, where ⇢n = P (A

12

= 1).
So, this converges to zero:

P

✓

d

2n(n� 1)⇢n
< 1/2

◆

= P (d < n(n� 1)⇢n)

Define Mn = n(n� 1)⇢n. Then, P (d > Mn) ! 1. Define fn = M2

n/n�Mn. Notice
that

minP
i

d
i

=m

X

i

d2i � di � n((m/n)2 �m/n) = m2/n�m.

Putting these pieces together,

P (Yn � fn) =

Z

⌦

1{Yn � fn}dP

�
Z

d>M
n

1{
X

i

d2i � d � fn}dP

=
X

m>M
n

Z

d=m

1{
X

i

d2i � d � fn}dP

�
X

m>M
n

Z

d=m

1{m2/n�m � fn}dP

=
X

m>M
n

Z

d=m

dP

= P (d > Mn) ! 1.
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The last piece is to show that E(Xn) = o(fn). From the definition of fn and the
fact that ⇢n = �n/n,

fn =
(n(n� 1)⇢n)

2

n
� n(n� 1)⇢n

= n(n� 1)2(�n/n)
2 � n(n� 1)�n/n

= �n(n� 1)

✓

n� 1

n
�n � 1

◆

! �2

nn

Define
S
12

=
X

i

Ai1A2i

as the number of two stars with nodes 1 and 2 as end points. Then, under the
assumption that

p
max

= o

✓

P (A
13

= 1)

P (A
13

= 1|A
23

= 1)

◆

,

it follows that

E(Xn) = pctn(n� 1)E(S
12

)

 p
max

n2(nE(A
13

A
23

))

= p
max

n3E(A
13

|A
23

= 1)E(A
23

= 1)

= o(⇢2nn
3)

= o(fn).

Proof of Theorem 6.8:

Proof. Let r = c
0

/n and let p be fixed.
Number of triangles: Let �n denote the number of triangles. Notice that there

are three types of triangles: (1) let �i denote the number of triangles with all nodes
in block i; (2) let �

21

denote the number of triangles with 2 nodes in the same block
and one node in a separate block; (3) let �

111

denote the number of triangles with
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nodes in three separate blocks.

E(�
21

) = K(K � 1)

✓

s

2

◆

spr2 = K(K � 1)

✓

s

2

◆

spc2
0

/(s2K2)  p(s� 1)/2,

E(�
111

) =

✓

K

3

◆

s3r3  K3s3c3
0

/(6s3K3) = c3
0

/6.

By the Markov inequality, �
21

/K
P! 0,�

111

/K
P! 0. Finally, �i are iid. So, by

LLN, their average converges in probability to their expectation. Putting these pieces
together with Slutsky’s theorem, the number of triangles over K is,

1

K
�n

P! E(�i) =

✓

s

3

◆

p3.

Number of two stars: Let Sn be the number of two-stars. Define the events
B = {|Sn � E(Sn)| > t} and A = {Maximum Degree  M}

P (B) = P (BA) + P (BAc)  P (BA) + P (Ac)

Apply the bounded di↵erence inequality within the set BA. Define Ai 2 {0, 1}n�i for
i = 1, . . . , n� 1 as the ith row of the upper triangle of the adjacency matrix A. To
bound the bounded di↵erence constant, first notice that c

1

� ci for all i. Moreover,
we have

c
1

 3M2.

This is because node 1 belongs to at most 3
�

M
2

�

triplets. By changing the edges of

node 1, Sn can increase or decrease by at most 3
�

M
2

�

. By the bounded di↵erence
inequality,

P (BA)  2 exp

✓

� t2

n9M4

◆

.

Choose M = log n and t = K✏ for any ✏ > 0, we have P (BA) ! 0. More over, by
concentration inequality,

P (Ac) = P ([i{di � M})  nP (d
1

� M) ! 0

Therefore, we have

Sn/K
P! E(Sn)/K.

Notice that E(Sn)/K is equal to the expected number of two-stars whose center is in
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the first block. So,

E(Sn)/K = s

✓✓

s� 1

2

◆

p2 + (s� 1)(n� s)pr +

✓

n� s

2

◆

r2
◆

! s

✓✓

s� 1

2

◆

p2 + (s� 1)pc
0

+ c2
0

/2

◆

Finally,

TranRatio(A) =
3⇥ number of triangles

number of 2-stars
P�! 3E�n

ESn

.

Proof of Theorem 6.11:

Proof. Define the following events

B↵ = {S⇤ and Sc
⇤ are separated with cutting level ↵},

C↵ = {S⇤ is clustered within one block with cutting level ↵},
D↵ = {Every pair of nodes in S⇤ have at least ↵ common neighbor.}

If both events B↵ and C↵ are satisfied, then for any i 2 S⇤, LocalTrans(A, i,↵)
recovers block S⇤ correctly. Events D↵ implies that S⇤ is clustered within one block
with cutting level ↵, that is D↵ 2 C↵. To see this, assume the contrary, then
there exists a partition S⇤ = S

1

[ S
2

, such that for any j 2 S
1

, k 2 S
2

, T (j, k) < ↵.
However, D↵ implies that S⇤ is connected, hence there exists u 2 S

1

, v 2 S
2

, such that
A(u, v) = 1. Moreover, D↵ also implies that u, v have at least ↵ common neighbors.
Hence, T (u, v) � ↵. This is a contradiction.

The following lemma leads to the desired results.

Lemma E.2. Under the conditions above,

P (Bc
1

) = O(p2outns(s+ �)),

P (Bc
2

) = O(p3outns(s+ �)2),

P (Dc
↵)  1

2
s2

↵�1

X

k=0

✓

s� 2

k

◆

(1� p2in)
s�2�k

.
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By Lemma E.2, we have

P (correctly clustering S⇤ with cutting level 1) � P (B
1

\ C
1

)

= 1� P (Bc
1

[ Cc
1

)

� 1� P (Bc
1

) + P (Cc
1

)

� 1� P (Bc
1

) + P (Dc
1

)

= 1�
✓

1

2
s2(1� p2in)

s�2 +O(p2outns(s+ �))

◆

P (correctly clustering S⇤ with cutting level 2) � P (B
2

\ C
2

)

= 1� P (Bc
2

[ Cc
2

)

� 1� P (Bc
2

) + P (Cc
2

)

� 1� P (Bc
2

) + P (Dc
2

)

= 1�
�

s3(1� p2in)
s�3 +O(p3outns(s+ �)2)

�

Proof of Lemma E.2:

Proof.

P (Bc
1

) = P (There exists at least two nodes i 2 S⇤ and j 2 Sc
⇤, such that Tij � 1)

= P (
[

i2S⇤

[

j2Sc

⇤

[

k2S⇤[Sc

⇤,k 6=i,j

{AijAjkAki = 1})

 sn[P (
[

k2S⇤

{AijAjkAki = 1}) + P (
[

k2Sc

⇤

{AijAjkAki = 1})]

 sn(sp2out + np2out
�

n
)

= O(p2outns(s+ �))
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P (Bc
2

) = P (There exists at least two nodes i 2 S⇤ and j 2 Sc
⇤, such that Tij � 2)

= P (
[

i2S⇤

[

j2Sc

⇤

[

k<l2S⇤[Sc

⇤,k,l 6=i,j

{AijAjkAkiAjlAli = 1})

 snP (
[

k,l2S⇤

[
[

k2S⇤,l2Sc

⇤

[
[

k,l2Sc

⇤

{AijAjkAkiAjlAli = 1})

 sn(
1

2
s2p3out +

1

2
n2p3out(

�

n
)
2

+ nsp3out
�

n
)

= O(p3outns(s+ �)2)

P (Dc
�) = P (There exists at least two nodes i, j 2 S⇤, such that i and j has less than ↵ neighbors)

= P

 

[

i,j2S⇤

{i and j has less than ↵ neighbors}
!

 1

2
s2

↵�1

X

k=0

✓

s� 2

k

◆

(1� p2in)
s�2�k

Proof of Theorem 6.13:

Proof. In the proof, we assume that i, j 2 S⇤, P (Aij = 1) = pin. The proof
can be easily extended to the case where P (Aij = 1) � pin. First, we prove
that P (maxi2S⇤ Dii � 2ED

11

) is well bounded with some non-vanishing probability.
8i 2 S⇤,

EDii = ED
11

=
X

j2S⇤,j 6=i

EAij +
X

j2Sc

⇤

EAij = (s� 1)pin + �.

8i 2 S⇤, 8✏ > 0,

P (Dii � EDii + ✏)  exp

⇢

� ✏

2(EDii + ✏/3)

�

.

Take ✏ = ED
11

, and take union bound for all i 2 S⇤, we have

P (max
i2S⇤

Dii � 2ED
11

)  s exp

⇢

�3

8
ED

11

�

= s exp{�3

8
[(s� 1)pin + �]}.
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Let O denote the set {Dii  2ED
11

, 8i 2 S⇤}. Then within the set O, by the
same argument from the proof of Theorem 3, we have that with probability at least
1

2

s2(1 � p2in)
s�2, S⇤ is clustered within one block by LocalTrans(L⌧ , i, cut) for any

i 2 S⇤ with cut

cut = (2ED
11

+ ⌧)�3 = (2(s� 1)pin + 2�+ ⌧)�3 .

Second part proves that 8i 2 S⇤, j 2 Sc
⇤, P (Tij � cut) is o(1). Notice that for any

j 2 Sc
⇤, the (j, j)th element of D⌧ (denote as D⌧

jj) is d
⇤
j +

P

i2S⇤
Aij + ⌧ , so we have

D⌧
jj � d⇤j + ⌧, 8j 2 Sc

⇤

For any i 2 S⇤, we have
D⌧

ii � ⌧, 8i 2 S⇤

8i 2 S⇤, j 2 Sc
⇤,

P (Tij � cut) 
d⇤j
n
P (Tij � cut|Aij = 1)

=
d⇤j
n
P

 

1

D⌧
iiD

⌧
jj

n
X

k=1

AikAkj

D⌧
kk

� cut

!


d⇤j
n
P

 

1

⌧(d⇤j + ⌧)

n
X

k=1

AikAkj

D⌧
kk

� cut

!


d⇤j
n

"

P

 

X

k2S⇤

AikAkj � ⌧ 2(d⇤j + ⌧)cut/2

!

+

P

0

@

X

k2Sc

⇤

AikAkj

dk + ⌧
� ⌧(d⇤j + ⌧)cut/2

1

A

3

5

For the first term, when n large,

P (
X

k2S⇤

AikAkj � ⌧ 2(d⇤j + ⌧)cut/2)  P (
X

k2S⇤,k 6=i

AikAkj > 0)

 1� (1� pin
d⇤j
n
)s�1

 pin(s� 1)
d⇤j
n
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On the other hand, notice that {AikAkj, k 2 S⇤/{i}} are independent random variables

with AikAkj ⇠ Ber(pin
d⇤
j

n
) by the assumption. E[

P

k2S⇤,k 6=i AikAkj] = pin(s � 1)
d⇤
j

n
.

By concentration inequality, when n is su�ciently large (independent of j), we have

P (
X

k2S⇤

AikAkj � ⌧ 2(d⇤j + ⌧)cut/2)  P

 

X

k2S⇤

AikAkj � pin(s� 1)
d⇤j
n
+

d⇤j

✓

⌧ 2cut/2� pin(s� 1)

n

◆◆

 exp

✓

�
c2
1

(d⇤j)
2

2c
2

d⇤j/n+ 2c
1

d⇤j/3

◆

= exp(�c
1

d⇤j)

where c
1

= ⌧ 2cut/3.
For the second term, without loss of generality, assume that A

1j = A
2j = ... =

Ad⇤
j

,j = 1, Ak,j = 0, 8k > d⇤j . Notice that {Aik, k = 1, 2, ..., n, k 6= i} are independent

random variables with Aik ⇠ Ber(
d⇤
k

n
). Applying concentration inequality on the

sequence {Aik, k = 1, 2, ..., d⇤j}, with ak = 1

d⇤
k

. Define X =
Pd⇤

j

k=1

akAik, then EX =
d⇤
j

n
,

and

v =

d⇤
j

X

k=1

a2kEAik =
1

n

d⇤
j

X

k=1

1

d⇤j


d⇤j
n
.

When n is su�ciently large, we have,

P

0

@

X

k2Sc

⇤

AikAkj

dk + ⌧
� ⌧(d⇤j + ⌧)cut/2

1

A  P

0

@

d⇤
j

X

k=1

Aik

dk
� ⌧(d⇤j + ⌧)cut/2

1

A

 P

✓

d⇤
j

X

k=1

Aik

dk
�

d⇤j
n

+ d⇤j(⌧cut/2�
1

n
)

◆

 exp

✓

�
c2(d⇤j)

2

2(v + cd⇤j/3)

◆

 exp

✓

�
c2(d⇤j)

2

2(d⇤j/n+ cd⇤j/3)

◆

= exp(�cd⇤j)
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where c = ⌧cut/3.
On the other hand,

P

0

@

X

k2Sc

⇤

AikAkj

dk + ⌧
� ⌧(d⇤j + ⌧)cut/2

1

A  P

0

@

d⇤
j

X

k=1

Aik

dk + ⌧
� ⌧(d⇤j + ⌧)cut/2

1

A

 P

0

@

d⇤
j

X

k=1

Aik > 0

1

A

 1�
✓

1�
d⇤j
n

◆d⇤
j


(d⇤j)

2

n

To sum up,when n is su�ciently large, we have that 8i 2 S⇤, j 2 Sc
⇤

P (Tij � cut) 
d⇤j
n

min

⇢

(d⇤j)
2

n
+ pin(s� 1)

d⇤j
n
, 2e�cd⇤

j

�

.

where cut = (2ED
11

+ ⌧)�3 = (2(s� 1)pin + 2�+ ⌧)�3, and c = ⌧cut/3.
Next we show that, for any i 2 S⇤, j /2 S⇤, P (Tij � cut) = O(n3✏�2), where

✏ > logn(
1

c
).

Case 1: d⇤j < n✏.

nP (Tij � cut)  min

⇢

(d⇤j)
3

n
+ pins

(d⇤j)
2

n
, 2d⇤je

�cd⇤
j

�


(d⇤j)

3

n
+ pins

(d⇤j)
2

n

 n3✏

n
+ pins

n2✏

n
= O(n3✏�1)

Case 2: d⇤j � n✏. Notice that the derivate of u(x) = 2d⇤j exp(�cd⇤j) is (1 �
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cx) exp(�cx). So, if n✏ > 1/c then u(d⇤j)  u(n✏) = 2n✏ exp(�cn✏).

nP (Tij � cut)  min

⇢

(d⇤j)
3

n
+ pins

(d⇤j)
2

n
, 2d⇤j exp(�cd⇤j)

�

 2d⇤j exp(�cd⇤j)

 2n✏ exp(�cn✏)

= o(n�1)

So, independent of d⇤j ,
P (Tij � cut) = O(n3✏�2)

Putting the pieces together,

P (S⇤ and Sc
⇤ are not separated )  s

X

j2Sc

⇤

d⇤j
n

min

⇢

(d⇤j)
2

n
+ pins

d⇤j
n
, 2e�cd⇤

j

�

 snO(n3✏�2)

= O(n3✏�1)

Finally, recall that O = {Dii  2ED
11

, 8i 2 S⇤}, we have that for any i 2 S⇤,

P ({LocalTrans(L⌧ , i, cut) returns S⇤}) � 1� 1

2
s2(1� p2in)

s�2 �O(n3✏�1)� P (Oc)

� 1�
✓

1

2
s2(1� p2in)

s�2 +

s exp{�3

8
[(s� 1)pin + �)}+O(n3✏�1)

◆

.
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