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Kernel methods have achieved a lot of success in statistics and machine learning
where linear models are often not su�cient to capture the relations and patterns
in the data. For example, in smoothing spline models, a kernel is used to define
a non-parametric class of the function so that one can fit a smoothing curve or
surface to understand the relation between the response and predictors. Similarly,
in Gaussian process, a kernel is used to define the covariance matrix so that one can
understand the nonlinear trend of the data in a Bayesian manner. In support vector
machine, a kernel is used to define a non-linear map to transform the predictors
into a high-dimensional space so that one can find a hyperplane in the new space
to distinguish data from di�erent classes. All these methods over the past two
decades have been successful in applications for biomedical science, finance, pattern
recognition, and recommender systems.

In modern data analysis, we occasionally face a number of interesting chal-
lenges: our data may come from multiple heterogeneous sources, our data may be
spatiotemporal, have few samples but lie in high dimensions, or our data may have
a huge number of samples and require a method to understand the complex model.
These challenges require us to consider new developments in statistics and kernel
methods. In this work, we show how kernel methods can help us solve these chal-
lenges where our proposed solutions also involve other topics including domain
adaptation, regularized statistics, deep learning, and deep Gaussian processes.

In Chapter 2, we study the problem of analyzing data from multiple heteroge-
neous sources. We derive a framework with a graphical causal model and maximum
mean discrepancy to eliminate the biases between di�erent datasets and to com-
bine multiple datasets together in a systematic way for increased sample size and
for improved statistical power. We use the framework for a problem motivated
by Alzheimer’s Disease research and show that we can successfully combine two
datasets from di�erent research centers to derive more accurate and consistent
results.

In Chapter 3, we continue our study on the problem of the analysis of multiple
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heterogeneous datasets but with a di�erent focus. We derive new hypothesis tests
and theoretical analysis to understand when it is beneficial to combine multiple
datasets together, both in the low dimension setting and high dimension setting.
We find that the problem is a bias-variance trade-o�. When the reduction on the
variance, which may due to increased sample size, is more than the increase on the
bias from heterogeneous datasets, it is beneficial to combine di�erent datasets even
though they come from di�erent sources.

In Chapter 4, we study how to build a nonparametric model for spatiotemporal
data when the samples are few but the dimension is high. We apply the frame-
work on a Chicago crime dataset to understand the occurrence of crimes and it’s
transmission between various Chicago communities as time goes. The multiple
communities and nonparametric kernel class make our model lie in high dimension
but the limited crime events make our sample size small. We solve the problem
by adding regularizations for the kernel-based models and we build a solid theo-
retical foundation to understand the behavior of our models for high-dimensional
spatiotemporal data.

Finally, in Chapter 5, we propose a framework to understand the flow of the
information in deep probabilistic models, which includes Bayesian neural networks,
deep Gaussian processes, deep kernel learning, and others. On the one hand, we
show that we can understand the information flow in deep probabilistic models
using kernels and statistical structure assumptions and we show the relation be-
tween Bayesian neural networks and deep Gaussian processes through theoretical
analysis. On the other hand, our framework points out a way to extend additive
models, hierarchical models and other statistical models with structure assump-
tions to the deep structure so that we can use modern high computation power like
deep learning while maintaining the good properties of statistical models including
interpretability and uncertainty estimate.
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1.1 Kernel Methods

In statistics and machine learning, linear models are used to capture the relations
and patterns in the data. When the relation becomes complicated, linear models are
often not rich or expressive enough and we turn to kernel methods. In smoothing
spline models, a kernel is used to define a non-parametric class of the function.
Given samples with predictors {xi}

n

i=1 and responses {yi}
n

i=1, a linear model assumes
that

y = �x + ✏,

where� are coe�cients and ✏ ⇠ N(0,�2). Meanwhile, a smoothing spline model Wahba
(1990) considers that

y = f(x) + ✏,

where f(x) belongs to a function class determined by a kernel K and can be repre-
sented by f(x) =

P
n

i=1 ↵iK(x, xi), where ↵ are coe�cients. It helps us to capture
the non-linear relation between predictors and responses. Through smoothing
spline models, we can fit a smoothing curve or surface to understand the relation
between the response and predictors.

In Gaussian process Rasmussen (2003), we consider that the joint probability of
{(f(xi),yi)}ni=1 is

p({(f(xi),yi)}
n

i=1) = (
nY

i=1

p(yi|f(xi)))p({f(xi)}
n

i=1),

where p(yi|f(xi)) ⇠ N(f(xi),�2) and p(f(x1), · · · , f(xn)) ⇠ N(0,K({xn

i=1}, {xn

i=1})).
The kernel is used to define the covariance matrix for the Gaussian processes so
that one can understand the nonlinear trend of the data in a Bayesian manner.

In support vector machine Cortes and Vapnik (1995), a kernel is used to define
a non-linear map to transform the predictors x into a high-dimensional space as
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�(x), where the kernel is the inner product of the transformed features K(x, x 0) =

�(x)T�(x 0). Through using kernels in support vector machine, one can find a
hyperplane in the high dimensional space to distinguish data from di�erent classes.
All these models have been successful over the past two decades in applications for
biomedical science, finance, pattern recognition, and recommender systems.

In modern data analysis, we face a number of interesting challenges: our data
may come from multiple heterogeneous sources, our data may have few samples
but lie in high dimension and is spatiotemporal, and our data may have a huge
number of samples and require a method to understand the complex model. These
challenges require us to consider new developments in statistics and kernel methods.
In this work, we show how kernel methods can help us solve these challenges where
our proposed solutions also involve other topics including domain adaptation,
regularized statistics, deep learning, and deep Gaussian processes.

1.2 Data is from Multiple Heterogeneous Sources

In Chapter 2 Zhou et al. (2016, 2018a), we study the problem of analyzing data
from multiple heterogeneous sources. Many studies that involve human subjects
are constrained by the number of samples that can be obtained when the disease
population of interest is small, when the measurement of interest is di�cult to
obtain or when other logistic or financial constraints are present that prohibit
large scale studies Fortin and Currie (2013); Buerger et al. (2009). For example, in
Alzheimer’s Disease (AD) research, cerebrospinal fluid (CSF) measurements from
the lumbar puncture (LP) may be limited by participant willingness to undergo LP
and institutional capability to routinely perform the procedure in a research setting.
These issues are not restricted to biomedical studies, and variously manifest in
machine learning and computer vision where distinct datasets must be pooled, e.g.,
for training a statistical model. To solve these issues, one possible solution is to
identify and pool several similar datasets across multiple sites Carrillo et al. (2013b),
and the larger sample sizes of the pooled dataset will enable investigating potentially
interesting scientific questions that may not otherwise be possible with smaller
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single-site cohorts. However, the datasets from multiple heterogeneous sources
usually have di�erent distributions and their combination may mask the signal. For
example, the assays for proteins amyloid beta 1-42 and tau (the hallmark features of
AD pathology) are known to vary widely between assay product type, and within
a specific type of assay from di�erences in batch composition Vanderstichele et al.
(2012). That motivates us to derive a kernel-based framework to analyze data from
multiple heterogeneous sources in Chapter 2 Zhou et al. (2016, 2018a), that can
account and eliminate the biases between various datasets.

We find that kernel methods can be very useful in solving this problem. The
framework is built on a popular non-parametric quantity, maximum mean dis-
crepancy (MMD), which is the mean di�erence between two datasets in the kernel
space. The kernel space helps us to find a transformation that we can use to align
two datasets from di�erent sources and eliminate the biases between them. The
framework also uses the graphical causal model to deal with the practical situation
where the covariates for di�erent sites (or studies) are not exactly the same (e.g.,
age range of cohorts may vary). The work also includes consistency properties, an
identifiability condition and a hypothesis test to check model accuracy. In summary,
we derive a framework with maximum mean discrepancy and graphical causal
model to eliminate the biases between di�erent datasets and to combine multiple
datasets together in a systematic way for increased sample size and for improved
statistical power. We use the framework on Alzheimer’s Disease research and show
that we successfully combine two datasets from di�erent research centers to derive
more accurate and consistent results.

In Chapter 3 Zhou et al. (2017), we continue our analysis of multiple hetero-
geneous datasets but with a di�erent focus. We derive new hypothesis tests and
theoretical analysis to answer when it is beneficial to combine multiple datasets
together, both in the low dimension setting and high dimension setting. We find
that the problem is a bias-variance trade-o�. When the reduction on the variance,
which may due to increased sample size, is more than the increase on the bias from
heterogeneous datasets, it is beneficial to combine di�erent datasets even though
they come from di�erent sources.
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1.3 Data is Spatiotemporal and High-dimensional

In Chapter 4 Zhou and Raskutti (2019), we study how to build a nonparametric
model for spatiotemporal data when the samples are few but the dimension is
high. Multi-variate time series data (spatiotemporal data) arise in a number of
settings including neuroscience (Ding et al. (2011)), finance (Rydberg and Shephard
(1999)), social networks (Zhou et al. (2013)) and others. A fundamental question
associated with multi-variate time series data is to quantify influence between
di�erent players or nodes in the network (e.g. how do firing events in one region
of the brain trigger another, how does a change in stock price for one company
influence others). To address such a question requires estimation of an influence
network between the d players or nodes. Two challenges that arise in estimating
such an influence network are (i) developing a suitable network model; and (ii)
providing theoretical guarantees for estimating such a network model when the
number of nodes d is large.

Instead of using parametric approaches, we consider a non-parametric sparse
additive model Raskutti et al. (2012); Ravikumar et al. (2010) for spatiotemporal
data, which can capture non-linear e�ects such as saturation. In Chapter 4 Zhou
and Raskutti (2019), we consider samples generated from a non-parametric sparse
additive auto-regressive model, generated by the generalized linear model (GLM),

Xt+1,j|Xt ⇠ p

 

vj +
dX

k=1

f⇤
j,k(Xt,k)

!

, (1.1)

where f⇤
j,k is an unknown function belonging to a reproducing kernel Hilbert space

Hj,k, p(.) is an exponential family probability distribution including the Gaussian,
Poisson, Bernoulli and others to handle di�erent data types.

In summary, we find kernel methods are very useful in analyzing spatiotemporal
data. We provide a scalable non-parametric framework using technologies in sparse
additive models for high-dimensional time series models that capture non-linear,
non-parametric framework. Prior theoretical guarantees for sparse additive models
have focused on the setting where samples are independent. In this work, we
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analyze the convex penalized sparse and smooth estimator developed and analyzed
in Koltchinskii and Yuan (2010); Raskutti et al. (2012) under the dependent Markov
chain model (4.1). We demonstrate the flexibility and potential benefit of using the
non-parametric approach through both a simulation study and real data example
of Chicago crime dataset.

1.4 Data is Huge and Complex

Finally, in Chapter 5 Zhou et al. (2018b), we propose a framework to understand
the flow of the information in deep probabilistic models including Bayesian neural
networks, deep Gaussian processes, deep kernel learning, and others. We can
collect a huge dataset and successfully use deep neural networks (DNNs) to iden-
tify patterns in the data over the past decades for applications including pattern
recognition, documents translations, and recommender system. However, DNNs
lack interpretability and probabilistic explanation. That leads to problems in appli-
cations including self-driving cars, scientific analysis, and finance. For example,
when a car detects a person wrongly as a dog, it is important for us to understand
why the DNN model fails and fix it. When a patient is detected with a disease, the
doctor needs to tell the patient about the reason and how confident the result is.
When a DNN model is used to predict a stock change, the reason and confidence
for the prediction are very important. Should we buy a stock that may increase
$1 with 90% chance or a stock that may increase $100 with 5% chance? All these
issues require us to come up with a framework that can explain DNNs and provide
uncertainties.

We find that kernel methods are very useful in solving this problem. Though
the probabilistic formulation of DNNs is an existing area of research, called deep
probabilistic models, it is unclear about how we can interpret these models and
understand the flow of information in them. In our work, we derive a framework
to understand the flow of information in deep probabilistic models and we show
that the kernel methods play an important role. Our framework also points out a
way to extend additive models, hierarchical models and other statistical models
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with structure assumptions to deep structure so that we can use modern high
computation power like deep learning while maintaining the good properties of
statistical models including interpretability and uncertainty estimate.
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2.1 Introduction

In this Chapter, we discuss how to pool and analyze datasets from multiple het-
erogeneous sources. Many studies that involve human subjects are constrained
by the number of samples that can be obtained when the disease population of
interest is small, when the measurement of interest is di�cult to obtain or when
other logistic or financial constraints are present that prohibit large scale studies
Fortin and Currie (2013); Buerger et al. (2009). For example, in Alzheimer’s Disease
(AD) research, cerebrospinal fluid (CSF) measurements from lumbar puncture
(LP) may be limited by participant willingness to undergo LP and institutional
capability to routinely perform the procedure in a research setting. The assays for
amyloid beta 1-42 and tau (the hallmark features of AD pathology) are known to
vary widely between assay product type, and within a specific type of assay from
di�erences in batch composition Vanderstichele et al. (2012). Similarly, the expense
of imaging exams may prohibit large scale investigations. While the sample sizes
may be su�cient to evaluate the primary hypotheses, researchers may want to
investigate secondary analyses focused on identifying subtle associations between
specific predictors and the response variable Dubois et al. (2010); Vanderstichele
et al. (2012). Such secondary analyses may be underpowered for the given sample
sizes. One possible solution is to identify and pool several similar datasets across
multiple sites Carrillo et al. (2013b). One hopes that the larger sample sizes of the
pooled dataset will enable investigating potentially interesting scientific questions
that may not otherwise be possible with smaller single site cohorts.

In practice, we find that direct pooling of already collected datasets in a post-
hoc manner across multiple sites can be problematic due to di�erences in the
distributions of one or more measures (or features) Verwey et al. (2009). In fact, even
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when data acquisition is harmonized across sites, we may still need to deal with site-
specific or method-specific e�ects on the measurements, such as the above noted
example with CSF Mattsson et al. (2011), before the analysis can proceed Klunk
et al. (2015); Carrillo et al. (2013a). For example, as discussed above, in AD studies,
cerebrospinal fluid (CSF) measurements Wang et al. (2012) may not be easily pooled
in the absence of gold standard reference materials that are common across assays
(or sites) Vanderstichele et al. (2012). Such issues also arise in combining cognitive
measures or transferring analysis results or models from one potentially large sized
dataset to another. For example, cohort studies may administer di�erent cognitive
tests that assess the same underlying cognitive domain; therefore, thresholds used
to categorize individuals into di�erent disease status groups may not be easily
transferred from one site to the other Carrillo et al. (2013b); Shaw et al. (2009). These
issues are not restricted to biomedical studies, and variously manifest in machine
learning and computer vision where distinct datasets must be pooled, e.g., for
training a statistical model. While the literature on addressing sample selection
bias and compensating for population characteristics di�erences is sizable Huang
et al. (2007a); Bareinboim and Pearl (2016), statistical frameworks for resolving
distributional shift to facilitate pooled analysis, essential in various applications, is
less developed in comparison.

Deriving scientific conclusions from a unified analysis spanning multiple in-
dividual datasets is often accomplished in practice via so-called meta analysis
approaches. Such an approach carefully collects research analyses/findings sepa-
rately performed on the datasets and then aggregates individual analysis results
through statistical models to come up with a final estimate of the parameters Lipsey
and Wilson (2001). However, various assumptions in meta-analysis schemes may
not always hold in practice and simple violations can lead to inaccurate scientific
conclusions Greco et al. (2013); Stegenga (2011). Alternatively, if access to the actual
data from individual studies is available, some pre-processing to harmonize the
data followed by statistical analysis of the pooled data may be preferable in many
cases. The pre-processing often utilizes methods that compensate (or correct) for
distributional shift, to the extent possible. For example, ideas related to domain
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shift in Baktashmotlagh et al. (2013); Ganin et al. (2016) and other results describe
sophisticated models to improve prediction accuracy by correcting domain shift.
What is less developed is a formal treatment explaining how confident we are that
the shift across datasets has been successfully corrected (and consequently, the
analysis can safely proceed), whether or not the correction can be improved if we
were able to acquire more samples, what mathematical assumptions are needed,
and whether the residual (say, after a correction step) is due to fewer than necessary
samples or other violations of the underlying assumptions. The primary goal of this
Chapter is to o�er a formal treatment of these problems and derive the theoretical
basis that can guide practical deployments.

In this Chapter, we present an in-depth theoretical study of distributional shift
correction across datasets. That includes consistency properties, an identifiability
condition and a hypothesis test to check model accuracy, using a discrepancy
measure popular in the domain adaptation literature Baktashmotlagh et al. (2013);
Ganin et al. (2016). We also provide an analysis based on a sub-sampling procedure,
showing how these ideas can be modified to deal with the practical situation where
the covariates for di�erent sites (or studies) are not exactly the same (e.g., age range
of cohorts may vary) — towards facilitating rigorous analysis of pooled datasets.

Our contributions.

i) give a precise condition to evaluate whether a distributional shift correction is
identifiable;

ii) derive a subsampling procedure to separate distributional shift from other
sources of variations such as sample selection bias and population characteris-
tics di�erences;

iii) propose an algorithm based on a non-parametric quantity, Maximum Mean
Discrepancy (MMD);

iv) present experiments showing how these ideas can facilitate Alzheimer’s Dis-
ease (AD) biomarker research.
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Figure 2.1: (a) shows the distributional shift ofA�1-42 across ADNI and W-ADRC. (b)
shows the distributional shift of hippocampus volume across ADNI and W-ADRC.

2.2 Problem Setting

Let us assume that we have data from two sites S and T , and the site-wise data
corresponds to p di�erent features. For presentation purposes, we will assume
that the features include 8 CSF protein levels, denoted as X, acquired from each
participant via a lumbar puncture. Since the absolute values of CSF measurements
vary as a function of the assay instrumentation, we are interested in correcting
the distributional shift to facilitate the analysis of the pooled dataset. But notice
that there are at least two other factors that can influence the correction. First, S
and T may have participants with age distributions that are not identical. It is
known that age influences protein level measurements and therefore will a�ect our
distributional shift correction. We denote the population characteristics which cause
di�erences in age distributions as EP (also called “transportability” in Bareinboim
and Pearl (2016)). Similarly, while site S may include an almost equal split of
individuals with and without disease, healthy individuals may be overrepresented
in site T . We denote this bias in sample selection between two datasets as EB, which
also influences X Bareinboim and Pearl (2016). Therefore, the actual distributions
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of observed CSF protein levels in the two datasets, XS and XT are P(XS|EP,EB) and
P(XT |EP,EB), respectively. If we only have access toXS andXT but no other variables
related to EP and EB, then correcting the distributional shift between XS and XT

is di�cult. However, the problem is identifiable when we have age and diagnosis
status relevant for the variables EP and EB. In fact, we can specify the condition
when the correction is identifiable. We briefly review some concepts related to
graphical causal model and d-separation rules, and then state the identifiability
condition.

Graphical causal model

A graphical causal model is represented by a directed acyclic graph (DAG), which
consists of three types of entities: variables (nodes), arrows (edges), and missing
arrows. DAGs are useful visual representations of a domain expert’s assumptions
regarding causal relationships explaining the data generation process Elwert (2013).
In Fig. 2.2(a), we show an example. Arrows in the graph represent possible direct
causal e�ects between pairs of variables. For example, the arrow from I to O1 means
that I exerts a direct causal influence on O1. The absence of an arrow represents
an assumption of no direct causal e�ect between the two variables Elwert (2013).
The missing arrow from I to J denotes the absence of a direct causal e�ect of I
on J. Fig. 2.2(b) shows an example for our data analysis task where the DAGs
depict causal relations between age, sex, CSF, diagnosis status and other variables.
Here, age, sex and other endogenous variables influence the CSF measurements X,
which influences the diagnosis status D. The population characteristic di�erence
EP only has a direct causal e�ect on age, whereas the sample selection bias EB is
only directly related to diagnosis status D for each specific study or site. Note that
a graphical causal model is nonparametric and makes no other assumptions about
the distribution of variables, the functional form of direct e�ects or the magnitude
of causal e�ects.

Next, we introduce a useful concept called d-separation Pearl (2014) using the
model in Fig. 2.2(a) as an example. If two variables I and J are d-separated by a
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set of variables Z, then they are conditionally independent, given Z. A path is a
sequential set of connected nodes, independent of the directionality of the arrows.
A “collider” on a path is a node with two arrows along the path pointing into it (see
O5 ! O3  O6 in Fig. 2.2(a)). Otherwise, the node is a noncollider on the path.

Definition 2.1 (d-separation (Pearl (2014))). A path p between two variables, I and J, is
said to be blocked by a set of variables Z if either: (1) p contains a noncollider that is in Z or
(2) p contains a collider node that is outside Z and has no descendant in Z. We say that I
and J are d-separated by Z if any path between them is “blocked” by Z.

For example, in Fig. 2.2(a), I and J are d-separated by Z = {O1,O2,O3}. First,
after including {O1,O3} in Z, all paths are blocked due to rule (1) except the path
pl : I O2  O5 ! O3  O6 ! O4 ! J. The path pl stays unblocked because (1)
no noncollider on that path is in Z and (2) the only collider O3 on pl is in Z. So, we
can include one of {O2,O5,O6,O4} on the path into Z to “block” it.

2.3 Identifiability Condition

We can now present a condition describing when distributional shift correction
across sites is identifiable, even with the concurrent influence of sample selection
bias and population characteristic di�erences on the measurements X.

Theorem 2.2. The distribution shift correction is identifiable if there exists a known set of
variables Z such that the following three conditions are all concurrently satisfied:
1) Z d-separatesX and EB (sample selection bias) and also d-separatesX and EP (population

characteristic di�erence);
2) The conditional probability P(X|Z), after appropriate transformations on X, is the same

across multiple participating sites (S and T );
3) The distribution of Z has a non-trivial overlap across multiple sites (S and T ), which

means that there exists an interval [a,b] such that P(a 6 Z 6 b) > 0.5 for all sites.

From Fig. 2.2(b) and Tab. 2.1, we can check that Z = {D,age} satisfies Thm.
2.2. Condition (1) is satisfied by noticing that Z d-separates X and the nodes
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Figure 2.2: Plot (a) is an example of a graphical causal model. The colored nodes
are an example of a d-separation rule where I and J are d-separated by {O1,O2,O3}.
Plot (b) is the graphical causal model for our CSF data analysis example. Here, the
population characteristics di�erence EP only has a direct causal e�ect on the age
distribution. The sample selection bias EB is only directly related to diagnosis status
D for each specific study. Nodes denoting age, sex influence the CSF measurements
denoted by X, which then influence the diagnosis status D. The CSF measurements
X and the nodes EP and EB are d-separated by diagnosis status D and age.

EP and EB. If all sites collect samples similarly, P(X|Z) will be the same (e.g.,
P(X|D = AD,age = 80)). From Fig. 2.2(b), variations denoted by EP and EB only
influence the marginal distributions of D and age but have no e�ect on the causal
relation/function among variables, e.g., P(X|Z). The distributional shift of X can be
corrected after some transformation, therefore, condition (2) holds. Finally, we will
see (e.g., Tab. 2.1) that the disease status and age distributions have a non-trivial
overlap across the two datasets, therefore, condition (3) also holds.

In practice, it is useful to seek a d-separating set of variables Z with the fewest
variables such that we can sacrifice (or leave out) the fewest samples to separate
distributional shift from the other variations EP and EB. Finding a minimal d-
separating set can be solved as a maximum flow problem Acid and De Campos
(1996). In practice, if the causal model is not too complicated, one may even find
a d-separating set Z manually. Then, it can be transformed into the problem of
“blocking” two nodes in an undirected graph with the fewest blocks Tian et al.
(1998).

The algorithm to find a minimal d-separating set. Before stating the algorithm,
we introduce some notations first. For any node set A, we define An(A) to be the
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Figure 2.3: In this graphical diagram, (a) represents the graphical causal model
for our AD study example. CSF X and other variations EP,EB are d-separated by
diagnosis information D and age age, whereas (b) represents the moral graph of
the subgraph on X,EP,EB and their ancestors, that is, mDAGAn(X[EP[EB).

ancestral set containing set A, that is, An(A) = A [ ([u2A{all ancestors of u}). We
call the directed subgraph composed only of nodes from An(A) as DAGAn(A). A
so-called moral graph is formed from a directed acyclic graph by adding edges
between all pairs of nodes that have a common child, and then making all edges in
the graph undirected. We denote the moral graph of DAGAn(A) as mDAGAn(A).

In order to find a minimal d-separating set Z for the measurements of interest X
and bias nodes EP and EB, we only need to consider this question on the undirected
graph (DAGAn(X[EP[EB)) instead of the full directed acyclic graph (as shown in
Tian et al. (1998)). We give an example for finding the minimal d-separating set
of the graph, which is shown in Fig. 2.3. Instead of using Fig. 2.3, the minimal
d-separating set can be found from Fig. 2.3(b), which represents mDAGAn(X[EP[EB).

The authors Tian et al. (1998) show that searching a d-separating set forX and the
bias nodes on the original DAG is equivalent to finding a node set that can block any
path betweenX and bias nodes in the moral graph of the DAG. Therefore, we can run
a Breadth First Search (BFS) algorithm on the undirected graph mDAGAn(X[EP[EB)

to check whether Z is the minimal d-separating set and adjust it if it is not. For our
example in Fig. 2.3, by using BFS we can see that Z = {D,age} will block any path
from X to the bias nodes EP and EB in Fig. 2.3(b).
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2.4 Tests for Correcting Distributional Shift

We now describe an algorithm to correct distributional shift if it is identifiable
(Thm. 2.2). We start our discussion by first assuming that the two to-be-pooled
datasets, S and T , only include a distributional shift in the features (e.g., due to
measurement or site-specific nuisance factors) and involve no other sampling biases
or confounds (i.e., EP andEB). Later, we present a subsampling framework to extend
the algorithm to the case when other variations co-occur and also contribute to the
shift. We calculate the distributional shift correction by identifying a parametric
transformation on the site-wise samples from S and T . We assume that site S

provides nS samples XS = (x1
S
, x2

S
, ..., xnS

S
), given by a distribution PS and T provides

nT samples XT with a distribution PT .
Let us denote the transformation on XS as h�(·) and the transformation on XT as

g✓(·), characterized by the unknown parameters � and ✓ respectively. For example,
if we choose h�(·) to be an a�ne transformation with parameters � := W, it maps
any value x to Wx; that is hW(·) : x!Wx . The algorithm seeks to find a pair of
transformations such that distributions of two datasets are matched (corrected)
after the transformations are applied. We use maximum mean discrepancy (MMD)
as a measure of di�erence between the two (transformed) distributions. The MMD
is expressed as a function of two distributions PS, PT as

MMD(PS,PT ) = kEX⇠PS
K(X, ·)- EX⇠PT

K(X, ·)kH

which is defined using a Reproducing Kernel Hilbert Space (RKHS) with norm
k · kH and kernel K. MMD can also be considered as the mean di�erence between
two distributions after kernel embedding, and has several desirable properties, for
example, it is zero if and only if two distributions are identical Gretton et al. (2012).
One requirement, however, is that the kernel has to be characteristic and specific
choices may be guided by the application Gretton et al. (2012). The empirical version
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of MMD can be calculated with samples XS,XT as

\MMD(XS,XT ) = k
1
nS

nSX

i=1

K(xi
S
, ·)- 1

nT

nTX

j=1

K(xj
T
, ·)kH

Recall that our algorithm is trying to match the two distributions after applying
the parametric transformations h�(·) and g✓(·). Therefore, we estimate parameters
� and ✓ using the empirical MMD by searching for a minimum value, e.g., using
stochastic gradient descent,

(�̂, ✓̂) = arg min
�2⌦�,✓2⌦✓

\MMD(h�(XS),g✓(XT )) (2.1)

The class of transformations we will choose for a specific application should be
informed by domain knowledge, but in general, simpler transformation classes are
preferable.

Optimization

We give a special case of the optimization problem when we set K to be a Gaussian
kernel, g�(.) as the identity and hW(x) = WTr(x) as a linear function for parameters
W. Here, Tr(x) is a known transformation on x, for example, Tr(x) = x2 relates to
the second order polynomial transformation. Recall that the general form of the
optimization is

(�̂, ✓̂) = arg min
�2⌦�,✓2⌦✓

k 1
nS

nSX

i=1

K(h(xi
S
)�, ·)- 1

nT

nTX

j=1

K(g(xj
T
)✓, ·)k2

H
(2.2)
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For our example case, the simplified objective can be written as

Ŵ = arg min
W2⌦W

F(W)

= arg min
W2⌦W

k 1
nS

nSX

i=1

K(WTr(x
i

S
), ·)- 1

nT

nTX

j=1

K(xj
T
, ·)k2

H

= arg min
W2⌦W

1
n2
S

nSX

i=1

nSX

j=1

K(WTr(x
i

S
),WTr(x

j

S
)) +

1
n2
T

nTX

i=1

nTX

j=1

K(xi
T
, xj

T
)

-
2

nSnT

nSX

i=1

nTX

j=1

K(WTr(x
i

S
), xj

T
)

= arg min
W2⌦W

1
n2
S

nSX

i=1

nSX

j=1

exp(kW(Tr(x
i

S
)- Tr(x

j

S
))k2

2)

-
2

nSnT

nSX

i=1

nTX

j=1

exp(kWTr(x
i

S
)- xj

T
k2

2)

(2.3)

This is a continuous optimization and its gradient with respect to F is:

rF(W) =
2
n2
S

nSX

i=1

nSX

j=1
exp(kW(Tr(x

i

S
)- Tr(x

j

S
))k22)tr(WTW, (Tr(xiS)- Tr(x

j

S
))(Tr(x

i

S
)- Tr(x

j

S
))T )

-
4

nSnT

nSX

i=1

nTX

j=1
exp(kWTr(x

i

S
)- xj

T
k22)(Tr(xiS)TWT )(WTr(x

i

S
)- xj

T
)

(2.4)
Since the objective is continuous, the optimization can be performed by gradient
descent or stochastic gradient descent. A useful prior based on some domain
knowledge can also help the optimization scheme since the objective is non-convex.

We now provide a result to setup a confidence region to choose a good initial
point for the optimization.

Lemma 2.3. Under H0, the identity g✓(.) with hW(x) = WTr(x), we have

⌦W :=

8
<

:W|
1

min(nS,nT )

min(nS,nT )X

i=1

kxi
T
-WTr(x

i

S
)k2

2 6 3tr(VAR(PT )) + ✏

9
=

; ,
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where VAR is the variance and tr(·) is the trace. For any ✏,↵ > 0 and a su�ciently large
sample size, a neighborhood of the true W0 is contained in ⌦W with probability at least
1 - ↵.

Hypothesis tests and consistency

We now show that the estimators �̂ and ✓̂ are consistent. First, we describe some
assumptions. We define the search region for � as⌦�which belongs toR

p� ; similarly,
the search region for ✓ is defined as⌦✓ 2 R

p✓ . In our results, we assume that⌦�,⌦✓
live in Euclidean space. The results, however, may be generalized to other spaces
with similar techniques.

Assumptions 2.4. We require three assumptions for the consistency results.
(1) The search regions⌦�,⌦✓ of �, ✓ are bounded.
(2) The kernel K of RKHS used for MMD is non-negative, characteristic and bounded by a
constant k.
(3a) kK(h�1(x), ·)-K(h�2(x), ·)kH 6 Lhk�1 - �2krh2 with constants Lh, rh, for any x in
the support of PS and 8�1, �2 2 ⌦�
(3b) kK(g✓1(x), ·)-K(g✓2(x), ·)kH 6 Lgk✓1 - ✓2krg with constants Lg, rg, for any x in
the support of PT and 8✓1, ✓2 2 ⌦✓

The Assumption 2.4 (2) is used for most consistency analyses based on MMD Gret-
ton et al. (2012). The Assumption 2.4 (3a) and (3b) are satisfied for a big class of
transformations with di�erentiable radial basis kernel. We have following su�cient
conditions to satisfy Assumptions 2.4 (3a) and (3b).

Lemma 2.5. If the following two conditions are satisfied, then Assumptions 2.4 (3a) and
(3b) hold.
(1) The kernel function K(kx- yk2) is a radial basis kernel where @K(.) is bounded in a
neighborhood of 0.
(2) The transformation h�(x) is Holder-continuous as a function of � with ratio rh for
any x in the support of PS. Similarly, the transformation g✓(x) is Holder-continuous as a
function of ✓ with ratio rg for any x in the support of PT .
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We now show that the estimators �̂ and ✓̂ are consistent.

Theorem 2.6. Under mild assumptions 2.4, if there is a �0, ✓0 such that h�0(XS) and
g✓0(XT ) have the same distribution, then

MMD(h�̂(XS),g✓̂(XT ))! 0

with the rate max(
p

log(nS)p
nS

,
p

log(nT )p
nT

). If �0, ✓0 are unique, then the estimators �̂, ✓̂ are
consistent.

Remark. In various applications (including our experiments), we may choose
one class of transformations h�(x) to be the identity transformation and transform
samples in the other dataset to match the reference dataset.

The foregoing discussion and the theorem assumes that the two distributions
can be matched via some unknown transformation. This may not always be true
and it is important, in practice, to identify when the datasets cannot be pooled, for
the specified class of transformations. Next, we provide a hypothesis test to answer
this question. Let us define

H0 : There exists �, ✓ such that h�(XS) and g✓(XT ) match
HA : There is no �, ✓ such that h�(XS) and g✓(XT ) match

The test statistics can be obtained by plugging �̂, ✓̂ into the empirical MMD calcula-
tion as,

\MMDbest = \MMD(h�̂(XS),g✓̂(XT ))

We can show that the hypothesis test is consistent.

Theorem 2.7. Given Assumptions 2.4, when H0 is true, with probability at least 1 - ↵,

\MMD(h�̂(XS),g✓̂(XT )) 6
s

2k(nS + nT ) log↵-1

nSnT

+ 2
r

k

nS

+ 2
r

k

nT
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When HA is true, with probability at least 1 - ↵,

|\MMD(h�̂(XS),g✓̂(XT ))- C⇤| 6
r

k

nS

(4 +

r
Ch,↵ +

d�
2rh

lognS) +

r
k

nT

(4 +

s

Cg,↵ +
d✓
2rg

lognT )

where C⇤ = min�,✓MMD(h�(PS),g✓(PT )) is a positive constant when HA holds Gretton
et al. (2012). Here, Ch,↵ = log(2|⌦�|) + log↵-1 + d�

rh
log Lhp

k
and Cg,✓ = log(2|⌦✓|) +

log↵-1 + d✓

rg
log Lgp

k

The test can provide guidance on whether the distributional shift has been
successfully corrected. If the test suggests the alternative hypothesis, one may
consider adjusting the transformation class h�(·) and g✓(·), other factors such as
sample selection bias and population attribute di�erence, or decide against pooling.

The threshold given in Thm. 2.7 can be used for performing hypothesis tests
when the sample size is large enough. But when the sample sizes are small to
moderate, a data-driven method may perform better. The same observation is
discussed in related papers Gretton et al. (2012) for the MMD-based two sample
test.

For the data-driven method, we require one transformation class to always be
the identity. In other words, we consider g✓(XT ) to always be XT itself and we
transform XS using h�̂(XS) to match XT . Before presenting the method, let us recall
our definition of the null and alternative hypotheses.

H0 : There exists a � such that h�(XS) matches XT

HA : There is no �which matches h�(XS) and XT

To test these hypotheses, we construct a bootstrap-type procedure here to calculate
p-values:
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Algorithm 1 Bootstrap-type hypothesis testing procedure
1: Define B to be the total number of bootstraps
2: for b in 1 : B do
3: Randomly generate nS and nT samples: X̃b

S
, X̃b

T
from empirical distribution

based on XT with replacement.
4: Calculate the empirical distance between two distribution, mmdb, by

mmdb = \MMD(X̃b

S
, X̃b

T
)

5: end for
6: Compute p-value given the test statistics \MMD(h�̂(XS),XT ) based on the em-

pirical distributions of (mmd1, ...,mmdB).

Remark. We can speed up the loop in Alg. 1 by computing distances between
nS + nT samples and permuting them for each iteration.
We now show that our procedure is a valid hypothesis test given the following
results:

Lemma 2.8. Given nS samples X̃S from PT , we have that (from Thm. 7 in Gretton et al.
(2012)) with probability at least 1 - ↵,

\MMD(X̃S,XT ) 6
s

2k(nS + nT ) log↵-1

nSnT

+ 2
r

k

nS

+ 2
r

k

nT

. (2.5)

Meanwhile, ifH0 is true: there exists a �0 such that h�0(XS) come from the same distribution
as the underlying distribution PT for XT . Therefore, \MMD(h�0(XS),XT ) is identically
distributed as \MMD(X̃S,XT ),

\MMD(h�0(XS),XT ) ⇠ \MMD(X̃S,XT ). (2.6)

[2.5] tells us that the bootstrap empirical distribution we construct is bounded
by some constants converging to 0 with probability at least 1-↵. Therefore, we can
reject the null hypothesis when HA holds because \MMD(h�̂(XS),XT ) converges to
a positive constant asymptotically with high probability from Thm. 2.7. Also, we
can control the type I error from our bootstrap procedure in the following way. For
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a critical value (related to a significance level ↵) calculated from the bootstrap em-
pirical distribution, when H0 is true, \MMD(h�0(XS),XT ) is smaller than the critical
value with probability at least 1 - ↵ because of [2.6]. Further \MMD(h�̂(XS),XT )

must be smaller than \MMD(h�0(XS),XT ) since the former quantity is the mini-
mum in the search region⌦�. Therefore, the type 1 error for our hypothesis test is
well-controlled.

Next, we introduce a subsampling scheme to correct distributional shift when
other contributors to the shift co-exist but the correction is still identifiable.

Subsampling framework

When the test chooses HA, one reason may be that one or more cohort-specific
factors contribute in significant ways to the observed distributional shift between XS

and XT . Recall that our earlier discussion suggests that the problem is identifiable
if we can find a Z satisfying the conditions in Thm. 2.2. Then a subsampling
procedure can potentially resolve the confound. The reason is that,

P(X|EP,EB) = EZ|EP ,EB
[P(X|Z,EP,EB)].

From Thm. 2.2, we know that P(X|Z,EP,EB) = P(X|Z) which remains the same
across sites after a suitable transformation. Therefore, simply by adjustingP(Z|EP,EB),
the e�ects of the other factors on X can be controlled, except distributional shift.
Such a sub-sampling scheme is widely used in addressing sample selection bias in
other applications Gong et al. (2013) (also see Wang et al. (2017) on the sub-sampling
scheme for reducing computational burden). In our setting, the motivation for us-
ing sub-sampling is similar, but it is used in the context of correcting distributional
shift — after subsampling. Separately, since subsampling has been used in bagging
to stabilize estimations and reduce variance (e.g., for random forests Wager et al.
(2014)) we can directly obtain stable estimators and calculate their variance.

Specifics of subsampling. We divide XS into d groups with sample sizes given as
(n1

S
, ...,nd

S
), i.e., XS = (x(1,1)

S
, ..., x(1,n1

S
)

S
, ..., x(d,1)

S
, ..., x(d,nd

S
)

S
). Similarly, XT is divided

into groups with sample sizes given as (n1
T
, ...,nd

T
), i.e., XT = (x(1,1)

T
, ..., x(1,n1

T
)

T
,
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..., x(d,1)
T

, ..., x(d,nd

T
)

T
). The sub-sample sizes are (s1, s2, ..., sd) where sj 6 min(nj

S
,nj

T
)

for any j = 1, ...,d. Then, we generate subsamples for XS and XT and apply (2.1)
sequentially. We run sub-sampling with replacement B times and denote each
iteration’s estimators as �̂b, ✓̂b. Then, our final transformation estimators are given
as �̂ = 1

B

P
B

b=1 �̂
b and ✓̂ = 1

B

P
B

b=1 ✓̂
b.

Infinitesimal Jackknife confidence interval

In most scientific studies, we also want to obtain a confidence interval for the cal-
culated transformations. In this case, however, there is no closed form solution
and so we employ a bootstrap type method. Since subsampling already involves
bootstrapping, using a simple bootstrap results in a product of bootstraps. Fortu-
nately, a similar issue was encountered in bagging and an infinitesimal Jackknife
method Efron (2014), was provided for random forests which works quite well
Wager et al. (2014); Wager and Athey (2017). Inspired by this result, we use the
infinitesimal Jackknife to estimate the variances of estimators �̂ and ✓̂. The method
cannot be directly applied here since it considers subsampling from one group
whereas we need subsampling from multiple groups. We therefore extend the
results to multiple groups.

Based on the subsampling scheme forXS andXT defined above, the multi-groups
infinitesimal Jackknife estimators (IJ estimator) of variance is given as

Theorem 2.9. Define gb

u(i,k) to be the number of appearances of x(i,k)u in iteration b. Define
COV(gu(i,k), �) = 1

B

P
B

b=1(�̂
b - �̂)(gb

u(i,k) -
si

ni
u

). The IJ estimator of variance for �̂ is

VARIJ(�̂) =
X

u2{S,T}

dX

i=1

n
i
uX

k=1

(COV(gu(i,k), �))2

The procedure for ✓̂ is identical.
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Algorithm 2 Subsampling-MMD algorithm (SSP)
1: Divide XS and XT separately into d groups by Z.
2: Decide subsample size (s1, s2, ..., sd).
3: for b = 1 to B do
4: Generate subsamples Xb

S
from d groups of XS.

5: Generate subsamples Xb

T
from d groups of XT .

6: (�̂b, ✓̂b) = arg min�2⌦�,✓2⌦✓
\MMD(h�(Xb

S
),g✓(Xb

T
))

7: Calculate and record gb

u(i,k) for all u, i, k.
8: end for
9: Set �̂ = 1

B

P
B

b=1 �̂
b, ✓̂ = 1

B

P
B

b=1 ✓̂
b, calculate VARIJ(�̂), VARIJ(✓̂).

2.5 Experiments

In this section, we show the application of our framework for synthetic data and
Alzheimer’s disease study.

Synthetic data

The first set of experiments were designed to check the e�cacy of the hypothesis
test whereas the second experiment evaluated the estimation consistency.

Simulation for the hypothesis tests

We generated samples from the standard normal distribution N(0, 1) to synthesize
the first dataset XS and use the normal distribution N(10, 2), with mean 10 and
standard deviation 2, to synthesize another dataset XT . Notice that, under the cor-
rect transformation class h(a,b)(XS) = aXS + b, we can correct the distribution shift
and we should accept H0. We consider two types of variations that can potentially
a�ect the correction and check whether the hypothesis test indeed rejects H0 with
high power.

1) In Fig. 2.4(a), we always choose the transformation class h(a,b)(XS) = aXS+b

and one dataset XT comprised of samples from N(10, 2). But we vary the generat-
ing distribution for the other dataset choosing between N(0, 1), Laplace(0, 1) and
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Figure 2.4: (a,b) Acceptance rate for our hypothesis test when H0 is true or false. (c)
Error of our estimators under two di�erent cases for generating distributions.

Exponential(1). We also vary the sample sizes. The hypothesis test with signifi-
cance level 0.05 is performed on 100 repetitions and the acceptance rate curves are
plotted. From Fig. 2.4(a) we see that our hypothesis test does accept H0 at a high
rate when it is true (red curve) and tends to reject H0 with an increase in power as
the sample size increases whenever the generating distributions are not Normal
(blue and black curves).

2) In Fig. 2.4(b), we always choose one dataset XT composed of samples from
N(10, 2) and the generating distribution for the other dataset XS is set to be N(0, 1).
Then, we vary the transformation class h(a,b,c)(XS) choosing between aX2

S
+bXS+c

and a log(|x|) + b. Here, note that aX2
S
+ bXS + c includes the true transformation

whereas a log(|x|) + b corresponds to an incorrect transformation class. Again,
we vary the sample sizes and repeat the hypothesis test 100 times and plot the
acceptance curves in Fig. 2.4(b). Similar to the first setting, we observe that our
hypothesis test accepts H0 at a high rate when it is true (red curve) and tends to
reject H0 with high power as the sample size increases in the setting where the
transformation class is wrong (blue curve).

Simulation for estimation consistency

In this simulation, we assume that the distributional shift is the only variation across
the datasets, XS and XT . We check the estimation consistency of the transformation
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hŴ(·) which minimizes the MMD distance between hŴ(XS) and XT .
In Fig. 2.4(c), we perform the experiments for two models. For model 1, the

generating distributions for two datasets are,

XS ⇠ N

  
0
0

!

,
 

1 0.5
0.5 1

!!

Xraw
T

⇠ N

  
0
0

!

,
 

1 0.5
0.5 1

!!

XT =

 
1 2 10
2 1 -20

! 
Xraw

T

1

!

In other words, we generate samples for XS and Xraw
T

, and we transform X raw
T

to get
XT . The transformation class we consider is

XT =

 
a11 a12 a13

a21 a22 a23

! 
XS

1

!

We define the quadratic mean of the estimation error for "Model 1, first row" in Fig.
2.4(c) as s

(a11 - 1)2 + (a12 - 2)2 + (a13 - 10)2

3
Similar, the quadratic mean of the estimation error is defined for the second row
(a21,a22,a23). The plot shows us that the estimation error is small and decreases
as the sample size increases. We also check this behavior under di�erent types of
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generating distributions, including

Xraw

T
⇠

 
N(0, 1)
�2

1

!

XS ⇠

 
N(0, 1)
�2

1

!

XT =

 
1 2 10
2 1 -20

! 
Xraw

T

1

!

We call this model 2 and observe a similar trend as model 1 as shown in Fig. 2.4(c).

Applications to Alzheimer’s disease study

We demonstrate the application of the framework to correct distributional shift
between two Alzheimer’s disease (AD) datasets and show how such a strategy can
lead to improved pooled data analysis. The two datasets come from the Alzheimer’s
Disease Neuroimage Initiative (ADNI) project and Wisconsin Alzheimer’s Disease
Research Center (W-ADRC). Both studies follow similar protocols for acquiring
CSF samples from participants and measuring protein levels Vanderstichele et al.
(2012). It is known that the CSF protein levels are indicative of neurofibrillary tan-
gles and amyloid plaques, characteristic of AD pathology. The distributions of the
protein measurements across the two datasets are di�erent due to various reasons
described in the literature Vanderstichele et al. (2012), which makes pooled analysis
and/or transferring results from one dataset to the other problematic. For example,
a threshold derived for the ADNI dataset may not be applicable to the W-ADRC
dataset. Both datasets included eight distinct CSF protein levels measured on seven
proteins (A�1-42 is measured by two methods), where the distributional shift needs
to be corrected. In both W-ADRC and ADNI, the measured proteins include A�1-38,
A�1-40, A�1-42, p-tau181, t-tau, NFL and neurogranin. While W-ADRC dataset pro-
vides 125 samples, ADNI includes 284 samples (see Table 2.1). After correcting
the distributional shift, we fit statistical models which include age, sex, and CSF
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Table 2.1: Variations of age and diagnosis status across datasets.

ADNI W-ADRC
Sample size 284 125

Age range (55 ⇠ 65/65 ⇠ 75/75 ⇠ 85) 11/43/46(%) 44/34/22(%)
Diagnosis status (CN/AD) 60/40(%) 76/24(%)

proteins as covariates. As a response variable, we use hippocampus volume or
diagnosis status. Here, besides correcting the CSF protein levels across the two
datasets, we also correct distribution shift of hippocampus volumes since they may
be calculated with di�erent image acquisition characteristics and potentially di�er-
ent software (Freesurfer in ADNI versus FIRST/FSL in W-ADRC). Our workflow
involves three tasks 1) correct distributional shift across the datasets for CSF protein
levels, 2) transform thresholds in ADNI to W-ADRC, 3) pool the data together
to predict the response variable (hippocampus volume, diagnosis status) within
regression or classification.

Correct distributional shift of CSF

Table 2.1 shows that the age distributions as well as the proportion of participants
who are healthy (CN) and diseased (AD) in the two datasets are not exactly the
same, which makes directly attempting a distributional shift correction in the
CSF measures not very meaningful. But when other variations (confounders)
co-exist together with distributional shift, as discussed earlier, we should check
whether there exists a set of variables Z satisfying conditions given in Thm. 2.2. We
previously described how choosing Z = {D, age} satisfies Thm.2.2. Such a Z is also
the minimal d-separating set. To proceed with the analysis, we divide our samples
in d = 6 groups based on all possible combinations of diagnosis status (AD/CN)
and age ranges (55 ⇠ 65/65 ⇠ 75/75 ⇠ 85). We can now run the subsampling-MMD
algorithm (SSP) with Z = {D, age} (iterations B = 2000) to correct the distributional
shift in X. We show two representative results in Fig. 2.5. For each plot in Fig.
2.5, depending on the subsamples randomly collected from 10 iterations, we plot
the distributions of protein levels and a protein ratio measure (widely used in the
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Figure 2.5: The plots of (a) A�1-42 and (b) p-tau/A�1-42 show the empirical distri-
butions of W-ADRC samples (blue), ADNI samples (red) and transformed ADNI
samples (brown). W-ADRC samples are nicely matched with transformed ADNI
samples.

aging/AD literature) in ADNI before/after correction (red/brown) with respect to
W-ADRC baseline (blue). We see that the distributions of raw measures are very
di�erent between ADNI (using the AlzBio3 xMAP assay) and W-ADRC (using the
ELISA INNOTEST assay). After our correction, the distributions are matched for all
8 CSF protein measurements and both protein ratios that are relevant in AD research
(p-tau/A�1-42 and t-tau/A�1-42). We randomly select one iteration and apply the
hypothesis test, which accepts the transformations with high p-values. We also use
the infinitesimal Jackknife to estimate the standard deviations of parameters and
report them in Fig. 2.5.

Transferring thresholds for disease staging across datasets

After performing our correction, CSF protein measurements across the two datasets
can be analyzed together. We can evaluate the e�ect of using models (or thresholds)
derived for the ADNI dataset on W-ADRC by transferring the criteria directly.
For example, five CSF based biomarker signature (thresholds) developed for AD
using ADNI participants Shaw et al. (2009) can now be transferred to the W-ADRC
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Table 2.2: The performance of thresholds in ADNI and W-ADRC.

W-ADRC t-tau A�1-42 p-tau t-tau
A�1-42

p-tau
A�1-42

Threshold 568.08 629.39 48.86 0.77 0.07
Sensitivity(%) 75.86 89.66 82.75 93.10 93.10
Specificity(%) 92.23 69.90 67.96 86.41 79.61

ADNI t-tau A�1-42 p-tau t-tau
A�1-42

p-tau
A�1-42

Threshold 93.00 192.00 23.00 0.39 0.10
Sensitivity(%) 69.6 96.4 67.9 85.7 91.1
Specificity(%) 92.3 76.9 73.1 84.6 71.2

The W-ADRC thresholds are derived from corresponding ADNI thresholds re-
ported in the literature Shaw et al. (2009) using Algorithm 2.

dataset. Given a threshold for any specific CSF protein, we can evaluate a sample
in W-ADRC by comparing the corresponding measurements with the transformed
threshold. The procedure produces sensitivity and specificity (for detection of AD)
for each of the 8 CSF protein measurements and the 2 derived ratios. Our final
thresholds, sensitivities and specificities based on the experiments are shown in
Tab. 2.2. The accuracy estimates suggest that all derived thresholds work well —
we find that the sensitivity and specificity are competitive with the results reported
for ADNI Shaw et al. (2009) (cf. Table 4), and show how results/models from one
dataset may be transferable to another dataset using our proposal.

Pooling and analyzing the two datasets together

For the final experiment, we evaluate whether predictors from both datasets can
be pooled for predicting hippocampus volume and diagnosis status (response
variables) within regression and classification. We build a linear regression model
based on age, sex and CSF proteins (after distributional shift correction) to identify
associations with hippocampus volume. In order to evaluate the accuracy of the
model, we randomly choose 25 samples (20%) from W-ADRC data to serve as the
test set. For evaluation purposes, we generate three di�erent types of training
datasets: using W-ADRC samples only, W-ADRC plus raw (uncorrected) ADNI
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samples and W-ADRC plus transformed ADNI samples. Note that the data used
to generate the training set is based on all 284 ADNI samples and the remaining
100 W-ADRC samples. To obtain prediction errors for each of the three schemes
with respect to varying training sample sizes, we vary the training sample size by
choosing b% samples from each of the two datasets and then change b from 30% to
90% in 10% increments. To avoid performance variation due to random choice of
samples, after the test set is chosen, we run 5 bootstraps to select training set and fit
the model. Finally, we run 80 bootstraps to generate multiple test sets and evaluate
the model performance. In this way, based on 400 bootstraps, we are able to obtain
a more stable prediction error and are able to calculate the standard deviation. The
square root of mean squared prediction error (MSPE) scaled by a constant is shown
in Fig. 2.6(a). We can see that the prediction errors decrease as training sample size
increases, while the W-ADRC plus transformed ADNI data consistently o�ers the
best performance.

Next, the same setup is used to predict AD status with a Support Vector Machine
(SVM) classifier. Because the ratio of AD and CN is biased in the test set from W-
ADRC, we set a uniform prior in SVM and separately report the classification
accuracy for participants with AD and without AD in Fig. 2.6(b).

2.6 Discussion

There is growing interest in the design of infrastructure and platforms that allow
scientists across di�erent sites and even continents to contribute scientific data and
explore scientific hypotheses that cannot be evaluated on smaller datasets. Such
e�orts can be facilitated via the availability of theory and algorithms to identify
whether pooling is meaningful, how the data should be harmonized and later, how
statistically meaningful and reproducible scientific conclusions can be obtained.
We described a statistical framework that addresses some of the natural issues that
arise in this regime, in particular, providing conditions where distributional shift
between data sets can be corrected. The experimental results suggest promising
potential applications of this idea in aging and Alzheimer’s disease (AD) studies.
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Figure 2.6: Plot (a) shows the trend of mean squared prediction error (MSPE) for
hippocampus volume as the sample size increases using 400 bootstraps. The bar
plot covers the prediction error for three types of training set as depicted in the
legend, including using W-ADRC only (red), W-ADRC plus ADNI (green) and
W-ADRC plus transformed ADNI (blue). The third model continues to perform
the best. Plot (b) shows the trend of classification accuracy with respect to patients
with AD (solid line) and healthy patients (dotted line) as sample size increases
using 400 bootstraps. An SVM model is used and three types of training set are
shown in the legend. For samples with AD, the three methods converge to the same
accuracy as the training sample size increases. For healthy controls, the W-ADRC
plus the transformed ADNI dataset is always better than the other two schemes.
It is interesting to see that W-ADRC plus the raw ADNI data also performs better
than W-ADRC alone, possibly because only 25(24%) subjects from W-ADRC are
diagnosed with AD – with few AD samples, even the uncorrected ADNI data nicely
informs the classification model.

We presented the framework for pooling and analyzing datasets from multiple
heterogeneous sources. For an almost ideal framework, the biases across multiple
datasets may decrease but continue to exist. That leads to the question that how
we can decide whether the pooling is beneficial or not. In the next Chapter, we
are going to discuss hypothesis tests and theory on when it is beneficial to pool
multi-source datasets.
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� ���������� ����� ��� ����������� �������� �� ����
������� �����-������ �������� �� ����������

3.1 Introduction

In this Chapter, we discuss the hypothesis tests and theory on when pooling multi-
source datasets in beneficial. In the last two decades, statistical machine learning
algorithms for processing massive datasets have been intensively studied for a
wide-range of applications in computer vision, biology, chemistry and healthcare
Murdoch and Detsky (2013); Tarca et al. (2007). While the challenges posed by
large scale datasets are compelling, we pointed out in Chapter 2 that one is often
faced with a fairly distinct set of technical issues for studies in biological and
health sciences. The statistical analyses in these studies are often underpowered
for the sample sizes available, and necessitates e�orts to identify similar datasets
elsewhere so that the combined sample size of the “pooled” dataset is enough
to determine significant associations between a response and a set of predictors,
e.g., within linear regression. In Chapter 2, we presented a framework to combine
multiple heterogeneous datasets together. However, there might exist other biases
between two datasets beyond what we considered, and there might exist a few
remaining biases after we transform the datasets by our framework. In this Chapter,
we consider the problem whether it is beneficial to combine multiple datasets
when biases exist. This raises several fundamental technical questions. When is it
meaningful to pool datasets for estimating a simple statistical model (e.g., linear
regression)? When can we guarantee improvements in statistical power, and when
are such pooling e�orts not worth it? Can we give a hypothesis test and obtain p-
values to inform our policies/decisions? While related problems have been studied
in machine learning from an algorithm design perspective, even simple hypothesis
tests which can be deployed by a researcher in practice, are currently unavailable.
Our goal is to remove this significant limitation.

The realization that “similar” datasets from multiple sites can be pooled to
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potentially improve statistical power is not new. With varying empirical success,
models tailored to perform regression in multi-site studies Group (2002), Haase et al.
(2009), Klunk et al. (2015) have been proposed, where due to operational reasons, re-
cruitment and data acquisition are distributed over multiple sites, or even countries.
When the pooling is being performed retrospectively (i.e., after the data has been
collected), resolving site-specific confounds, such as distributional shifts or biases
in measurements, is essential before estimation/inference of a statistical model.
We will not develop new algorithms for estimating the distributional mismatch or
for performing multi-site regression — rather, our primary goal is to identify the
regimes (and give easily computable checks) where this regression task on a pooled
dataset is statistically meaningful, assuming that good pre-processing schemes
are available. We will present a rigorous yet simple to implement hypothesis test,
analyze its behavior, and show extensive experimental evidence (for an important
scientific problem). The practitioner is free to use his/her preferred procedure for
the “before step” (estimating the distributional shifts).

Our contributions.

i) Our main result is a hypothesis test to evaluate whether pooling data across
multiple sites for regression (before or after correcting for site-specific dis-
tributional shifts) can improve the estimation (mean squared error) of the
relevant coe�cients (while permitting an influence from a set of confounding
variables).

ii) We derive analogous results in the high-dimensional setting by leveraging a
di�erent set of analysis techniques. Using an existing sparse multi-task Lasso
model, we show how the utility of pooling can be evaluated even when the
support set of the features (predictors) is not exactly the same across sites using
ideas broadly related to high dimensional simultaneous inference Dezeure
et al. (2015). We show `2-consistency rate, which supports the use of sparse
multi-task Lasso when sparsity patterns are not totally identical.
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iii) On an important scientific problem of analyzing early Alzheimer’s disease (AD)
individuals, we provide compelling experimental results showing consistent
acceptance rate and statistical power. Via a package in CRAN/R, this will
directly facilitate many multi-site regression analysis e�orts in the short to
medium term future.

Related work

Meta-analysis approaches. If datasets at multiple di�erent sites cannot be shared
or pooled, the task of deriving meaningful scientific conclusions from results of
multiple independently conducted analyses generally falls under the umbrella term of
“meta analysis”. The literature provides various strategies to cumulate the general
findings from analyses on di�erent datasets. But even experts believe that, minor
violations of assumptions can lead to misleading scientific conclusions Greco et al.
(2013), and substantial personal judgment (and expertise) is needed to conduct
them. It is widely accepted that when the ability to pool the data is an option,
simpler schemes may perform better.

Domain adaptation/shift. Separately, the idea of addressing “shift” within
datasets has been rigorously studied within statistical machine learning, see Patel
et al. (2015); Li (2012). For example, domain adaptation, including dataset and
covariate shift, seeks to align (the distributions of) multiple datasets to enable
follow-up processing Ben-David and Schuller (2003). Typically, such algorithms
assume a bias in the sampling process, and adopt re-weighting as the solution
Huang et al. (2007b); Gong et al. (2013). Alternatively, a family of such methods
assume that sites (or datasets) di�er due to feature distortions (e.g., calibration error),
which are resolved, in general, by minimizing some distance measure between
appropriate distributions Baktashmotlagh et al. (2013); Pan et al. (2011); Long et al.
(2015). In general, these approaches have nice theoretical properties Ben-David
et al. (2010); Cortes and Mohri (2011); Zhou et al. (2016). However, it is important to
note that the domain adaptation literature focuses on the algorithm itself – to resolve
the distributional site-wise di�erences. It does not address the issue of whether
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pooling the datasets, after applying the calculated adaptation (i.e., transformation),
is beneficial. Our goal in this Chapter is to assess whether multiple datasets can be
pooled — either before or usually after applying the best domain adaptation methods
— for improving our estimation of the relevant coe�cients within linear regression.
We propose a hypothesis test to directly address this question.

The high-dimensional case. Neuroimaging scenarios, in general, involve pre-
dicting a response (e.g., cognitive score) from high dimensional predictors such as
imaging scans and genetic data, which in general, entails Lasso-type formulations
unlike the classical regression models. Putting multi-task representation learning
Maurer et al. (2016),Ando and Zhang (2005),Maurer et al. (2013) together with a
sparsity regularizer, we get multi-task Lasso model Liu et al. (2009); Kim and Xing
(2010). Although this seems like a suitable model Chen et al. (2012), it assumes that
multiple tasks (sites here) have an identical active set of predictors. Instead, we
find that sparse multi-task Lasso Lee et al. (2010), roughly, a multi-task version of
sparse group Lasso Simon et al. (2013); Lee et al. (2010) is a better starting point.
There is no theoretical analysis in Simon et al. (2013); although a `2-consistency
for sparse group lasso is derived in Chatterjee et al. (2012) using a general proof
procedure for M-estimators, it does not take into account the specific sparse group
Lasso properties, thereby, making the result non-informative for sparse group
Lasso (much less, sparse multi-task Lasso). Specifically, as we will see shortly, in
sparse multi-task Lasso, the joint e�ects of two penalties induces a special type of
asymmetric structure. We show a new result, in the style of Lasso Meinshausen and
Yu (2009); Liu and Zhang (2009), for `2 convergence rate for this model. It matches
with results known for Lasso and group Lasso, and identifies regimes where the
sparse multi-task (multi-site) setting is advantageous.

Simultaneous High dimensional Inference. Simultaneous high dimensional
inference models such as multi sample-splitting and de-biased Lasso is an active
research topic in statistics Dezeure et al. (2015). Multi sample-splitting use half of
the dataset for variable selection and the rest for calculating p-values. De-biased
Lasso chooses one feature as a response and the others as predictors to estimate a
Lasso model; this procedure is repeated for each feature. Estimators from De-biased
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Lasso asymptotically follow the multi-normal distribution Dezeure et al. (2016),
and using Bonferroni-Holm adjustment produces simultaneous p-values. Such
ideas together with the `2-convergence results for sparse multitask Lasso, will help
extend our analysis to the high dimensional setting.

3.2 Hypothesis Test for Multi-Site Regression

We first describe a simple setting where one seeks to apply standard linear regres-
sion to data pooled from multiple sites. For presentation purposes, we will deal
with variable selection issues later. Within this setup, we will introduce our main
result — a hypothesis test to evaluate statistical power improvements (e.g., mean
squared error) when running a regression model on a pooled dataset. We will see
that the proposed test is transparent to the use of adaptation algorithms, if any,
to pre-process the multi-site data. In later sections, we will present convergence
analysis and extensions to the large p setting. Matrices (vectors/scalars) are upper
case (and lower case). k.k⇤ is the nuclear norm.

We first introduce the single-site regression model. Let X 2 R
n⇥p and y 2 R

n⇥1

denote the feature matrix of predictors and the response vector respectively. If �
corresponds to the coe�cient vector (i.e., predictor weights), then the regression
model is

min
�

1
n
ky- X�k2

2 (3.1)

where y = X�⇤ + ✏ and ✏ ⇠ N(0,�2) �.�.�. if �⇤ is the true coe�cient vector from
which y is generated. The mean-squared error (MSE) and `2-consistency of re-
gression is well-known. The mean-squared error (MSE) of (3.1) is Ek�̂ - �⇤k2

2 =

r̃
�
(XTX)-1��2. If k denotes the number of sites, then one may first apply a domain

adaptation scheme to account for the distributional shifts between the k di�erent
predictors {Xi}

k

i=1, and then run a regression model. If the underlying “concept”
(i.e., predictors and responses relationship) can be assumed to be the same across
the di�erent sites, then it is reasonable to impose the same� for all sites. For instance,
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as discussed in Section 3.1, the influence of protein measurements on cognitive
scores of an individual is assumed to be invariant to demographics. Nonetheless, if
the distributional mismatch correction is imperfect, we may define ��i = �i - �⇤

where i 2 {1, . . . ,k} as the residual di�erence between the site-specific coe�cients
and the true shared coe�cient vector (in the ideal case, we have ��i = 0). In the
multi-site setting, we can write

min
�

kX

i=1

⌧2
i
kyi - Xi�k2

2 (3.2)

where for each site i we have yi = Xi�
⇤ +Xi��i + ✏i and ✏i ⇠ N(0,�2

i
) �.�.�. Here,

⌧i is a weighting parameter for each site, if such information is available.
Our main goal is to test if the combined regression improves the estimation

for a single site. We can pose this question in terms of improvements in the mean
squared error (MSE). Hence, �.�.�.�. using site 1 as the reference, we have the
following reduced objective by setting �1 = �⇤ and ⌧1 = 1 in (3.2),

min
�

ky1 - X1�k2
2 +

kX

i=2

⌧2
i
kyi - Xi�k2

2 (3.3)

�1 �2

�̂

Figure 3.1: �1
and �2 are 1st

and 2nd site
coe�cients.
After combi-
nation, �1’s
bias increases
but variance
reduces, result-
ing in a smaller
MSE.

Clearly, when the sample size is not large enough, the multi-site
formulation in (3.3) may reduce variance significantly, because
of the averaging e�ect in the objective function, while increasing
the bias by a little. This reduces the Mean Squared Error (MSE),
see Figure 3.1. Note that while traditionally, the unbiasedness
property was desirable, an extensive body of literature on ridge
regression suggests that the quantity of interest should really
be Ek�̂ - �⇤k2

2. These ideas are nicely studied within papers
devoted to the “bias-variance” trade-o�. Similar to these results,
we will focus on the mean squared error because the asymptotic
consistency properties that come with an unbiased estimator are
not meaningful here anyway — the key reason we want to pool
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datasets in the first place is because of small sample sizes. We now
provide a result showing how the tuning parameters ⌧2, . . . , ⌧k
can be chosen.

Theorem 3.1. ⌧i = �1
�i

achieve the smallest variance in �̂.

Remarks: This result follows from observing that the each site’s contribution is
inversely proportional to site-specific noise level, �i. We will show that this choice
of ⌧is also leads to a simple mechanism to setup a hypothesis test.

Sharing all �s

In the specification above, the estimates of �i across all k sites are restricted to be
the same. Without this constraint, (3.3) is equivalent to fitting a regression separately
on each site. So, a natural question is whether this constraint improves estimation.
To evaluate whether MSE is reduced, we first need to quantify the change in the
bias and variance of (3.3) compared to (3.1). To do so, we introduce a few notations.
Let ni be the sample size of site i, and let �̂i denote the regression estimate from
a specific site i. We have ��̂i = �̂i - �̂1. We define the length kp vector ��T as
��T = (��T

2 , ...,��T

k
) (similarly for ��̂T ). We use ⌃̂i to give the sample covariance

matrix of data (predictors) from the site i and G 2 R
(k-1)p⇥(k-1)p is the covariance

matrix of ��̂, where Gii = (n1⌃̂1)-1 + (ni⌧
2
i
⌃̂i)-1 and Gij = (n1⌃̂1)-1 whenever

i 6= j.
Let the di�erence in bias and variance between the single site model in (3.1) and

the multi-site model in (3.3) be Bias� and Var� respectively. Let ⌃̂k

2 =
P

k

i=2 ni⌧
2
i
⌃̂i

and ⌃̂k

1 = n1⌃̂1 + ⌃̂k

2 . We have,

Lemma 3.2. For model (3.3), we have

kBias�k2
2

kG-1/2��k2
2
6 k(⌃̂k

1 )
-2(⌃̂k

2 (n1⌃̂1)
-1⌃̂k

2 + ⌃̂k

2 )k⇤, (3.4)

Var� = �2
1
��(n1⌃̂1)

-1 - (n1⌃̂1 + ⌃̂
k

2 )
-1��

⇤ . (3.5)



40

Remarks: The above result bounds the increase in bias and the reduction in variance
(see discussion of Figure 3.1). Since our goal is to test MSE reduction — in principle,
we can use bootstrapping to calculate MSE approximately. This procedure has a
significant computational footprint. Instead, (3.4) (which comes from a one-step
Cauchy-Schwartz), gives a su�cient condition for MSE reduction as shown below.

Theorem 3.3. a) Model (3.3) has smaller MSE of �̂ than model (3.1) whenever

H0 : kG-1/2��k2
2 6 �2

1. (3.6)

b) Further, we have the following test statistic,

�����
G-1/2��̂

�1

�����

2

2

⇠ �2
(k-1)⇤p

 ����
G-1/2��

�1

����
2

2

!

, (3.7)

where kG-1/2��/�1k2 is called a “condition value”.

Remarks: This is our main test result. Although �i is typically unknown, it can
be easily replaced using its site-specific estimation. Theorem 3.3 implies that we
can conduct a non-central �2 distribution test based on the statistic. Also, (3.6)
shows that the non-central �2 distribution, which the test statistics will follow, has
a non-central parameter smaller than 1 when the su�cient condition H0 holds.
Meanwhile, in obtaining the (surprisingly simple) su�cient condition H0, no other
arbitrary assumption is needed except the application of Cauchy-Schwartz. From
a practical perspective, Theorem 3.3 implies that the sites, in fact, do not even
need to share the whole dataset to assess whether pooling will be useful. Instead,
the test only requires very high-level information such as �̂i, ⌃̂i, �i and ni for all
participating sites – which can be transferred very cheaply with no additional cost
of data storage, or privacy implications. The following result deals with the special
case where we have two participating sites.

Corollary 3.4. For the case where we have two participating sites, the condition (3.6) from
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Theorem 3.3 reduces to

H0 : ��
T ((n1⌃̂1)

-1 + (n2⌧
2
2⌃̂2)

-1)-1�� 6 �2
1. (3.8)

Remarks: The left side above relates to the Mahalanobis distance between �1, �2

with covariance (n1⌃̂1)-1 + (n2⌧
2
2⌃̂2)-1, implying that the test statistic is a type of a

normalized metric between the two regression models.

Sharing a subset of �s

In numerous pooling scenarios, we are faced with certain systemic di�erences
in the way predictors and responses associate across sites. For example, socio-
economic status may (or may not) have a significant association with a health
outcome (response) depending on the country of the study (e.g., due to insurance
coverage policies). Unlike in Section 3.2, we now relax the restriction that all
coe�cients are same across sites, see Figure 3.2. The model in (3.3) will now include
another design matrix of predictors Z 2 Rn⇥q and a corresponding coe�cients �i

for each site i,

min
�,�

kX

i=1

⌧2
i
kyi - Xi�- Zi�ik2

2 (3.9)

yi = Xi�
⇤ + Xi��i + Zi�

⇤
i
+ ✏i, ⌧1 = 1 (3.10)

Our goal is still to evaluate whether the MSE of � reduces. We do not take into

Y1

X1

Z1

Y2

X2

Z2

�

�1

�

�2

Figure 3.2: X and Z influence the response Y. After adjustment, X1 and X2 may be
close requiring same �. However, Z1 and Z2 may di�er a lot, and we need di�erent
�1 and �2.
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account the MSE change in � because they correspond to site-specific variables. For
estimating them, �̂ can first be computed from (3.9). Treating it as fixed entity now,
�̂i can be computed using yi and Zi on each site independently. Clearly, if �̂ is close
to the “true” �⇤, it will also enable a better estimation of site-specific variables. It
turns out that, if ⌃̂is are replaced by the conditional covariance, the analysis from
Section 3.2 still holds for this case. Specifically, let ⌃̂abi

be the sample covariance
matrix between features a and b from some site i. We have,

Theorem 3.5. Analysis in Section 3.2 holds for � in (3.9) by replacing ⌃̂i with ⌃̃i =

⌃̂xxi
- ⌃̂xzi

(⌃̂zzi
)-1⌃̂zxi

Remarks: The test now allows evaluating statistical power improvements focused on
the subset of the coe�cient vector that is shared and permits site-specific confounds,
enabling much flexibility in practice. For example, we can test which subset of
parameters might benefit from parameter estimation on pooled data from multiple
sites.

3.3 Pooling in High Dimensional Regression

We now describe our analysis of pooling multi-site data in the high-dimensional
setting where p � n. The key challenge here is that variable section has to be a
first order concern. In classical regression, the `2 consistency properties are well
known and so our focus in Section 3.2 was devoted entirely to deriving su�cient
conditions for the hypothesis test. In other words, imposing the same � across sites
works in (3.3) because we understand its consistency. In contrast, here, one cannot
enforce a shared � for all sites before the active set of predictors within each site are
selected — directly imposing the same � leads to a serious loss of `2-consistency,
making follow-up analysis problematic. Therefore, once a suitable model for high-
dimensional multi-site regression is chosen, the first requirement is to characterize
its consistency.

We start with the multi-task Lasso (a special case of group Lasso) Liu et al.
(2009), where the authors show that the strategy selects better explanatory features
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compared to separately fitting Lasso on each site. But this algorithm underperforms
when the sparsity pattern of the predictors is not identical across sites, so we
use a recent variant called sparse multi-task Lasso Lee et al. (2010) – essentially
substituting “sites” for “tasks”. The sparse multi-site Lasso in p� n setting (p is
the number of predictors) is given as

B̂� = arg min
�

kX

i=1

kyi - Xi�ik2
2 + �⇤(B) (3.11)

⇤(B) = ↵
pX

j=1

k�jk1 + (1 - ↵)
p
k

pX

j=1

k�jk2, (3.12)

where � is the Lasso regularization parameter. Here, B 2 Rk⇥p is a matrix where
the ith row corresponds to the coe�cients from ith site (k sites in total). Also, �i

with subscript denotes the ith row (site) of B, we use �j with superscript to give
the j-th column (coe�cients) of B. The hyper-parameter ↵ 2 [0, 1] balances the two
penalties; a larger ↵ weighs the `1 penalty more and a smaller ↵ puts more weight
on the grouping. This will play an important role for the remainder of this section.
Similar to a Lasso-based regularization parameter, � here will produce a solution
path (to select coe�cients) for a given ↵. We first address the consistency behavior
of the sparse multi-site Lasso in (3.11), which was not known in the literature.

`2 consistency

Our analysis of (3.11) is related to known results for Lasso Meinshausen and Yu
(2009) and the group Lasso Liu and Zhang (2009). Recall that X1, . . . ,Xk are the data
matrices from k sites. We define n̄ = maxk

i=1{ni} and C = n̄-1����(XT

1 X1, ...,XT

k
Xk)

where ����(A,B) corresponds to constructing a block-diagonal matrix with A and
B as blocks on the diagonal. We require the following useful properties of C (k·k0

denotes `0-norm).

Definition 3.6. Them-sparse minimal and maximal eigenvalues ofC, denoted by�min(m)
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and �max(m), are

min
⌫:k⌫k06dme

⌫TC⌫

⌫T⌫
and max

⌫:k⌫k06dme

⌫TC⌫

⌫T⌫
(3.13)

Let us call a feature “active” if its coe�cient is non-zero. We know that each site
may have di�erent active features: let sh 6 kp be the sum of the number of active
features over all sites. Similarly, sp is the cardinality of the union of features that
are active in at least one site (sh 6 ksp, sp 6 p). Recall that when ↵ 6= 0, we add the
Lasso penalty to the multi-site Lasso penalty. Whenever the sparsity patterns are
assumed to be similar across all sites, ↵ is small. On the other hand, to encourage
site-specific sparsity patterns, we may set ↵ to be large. The following two technical
results analyze these cases independently.

Theorem 3.7. Let 0 6 ↵ 6 0.4. Assume there exist constants 0 6 ⇢min 6 ⇢max 6 1
such that

lim inf
n!1

�min

 

sp log n̄

✓
1 +

2↵
1 - 2↵

◆2
!

> ⇢min

lim sup
n!1

�max(sp + min{
kX

i=1

ni,kp}) 6 ⇢max.
(3.14)

Then, for � / �
p

n̄ log(kp), there exists a constant ! > 0 such that, with probability
converging to 1 for n!1,

1
k
kB̂� - B⇤k2

F
6 !�2 s̄ log(kp)

n̄
, (3.15)

where s̄ = {(1 - ↵)
p
sp + ↵

p
sh/k}

2, � is the noise level.

Remarks: The above result agrees with known results for multi-task Lasso Liu
et al. (2009); Liu and Zhang (2009) when the sparsity patterns are the same across
sites. The simplest way to interpret Theorem 3.7 is via the ratio r = sh

sp
. Here,

r = k when the sparsity patterns are the same across sites. As r decreases, the
sparsity patterns across sites start to di�er, in turn, the sparse multi-site Lasso from
(3.11) will provide stronger consistency compared to the multi-site Lasso (which
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corresponds to ↵ = 0). In other words, whenever we expect site-specific active
features, the `2 consistency of (3.11) will improve as one includes an additional
`1-penalty together with multi-site Lasso.

Observe that for the non-sparse �j, we can verify that k�jk1 and
p
kk�jk2 have

the same scale. On the other hand, for sparse �j, k�jk1 has the same scale as k�jk2,
i.e., with no

p
k penalization. Unlike Theorem 3.7 where the sparsity patterns

across sites are similar, due to this scaling issue, the parameters ↵ and � need to be
‘corrected’ for the setting where sparsity patterns have little overlap. We denote
this corrected versions by ↵̃ = ↵

(1-↵)
p
k+↵

and �̃ = ((1 - ↵)
p
k+ ↵)�.

Theorem 3.8. Let 0.4 6 ↵̃ 6 1. Assume there exist constants 0 6 ⇢min 6 ⇢max 6 1
such that

lim inf
n!1

�min

 

sh log n̄

✓
1 +

(1 - ↵̃)

↵̃

◆2
!

> ⇢min

lim sup
n!1

�max(sh + min{
kX

i=1

ni,kp}) 6 ⇢max.
(3.16)

Then, for �̃ / �
p

n̄ log(kp), there exists! > 0 such that, with probability converging to
1 for n!1, we have (3.15) with s̃ = {(1 - ↵̃)

p
sp/k+ ↵̃

p
sh/k}

2 instead of s̄.

Remarks: This result agrees with known results for Lasso Meinshausen and Yu
(2009) when the sparsity patterns are completely di�erent across sites. In this case
(i.e., ↵ is large), the sparse multi-site Lasso has stronger consistency compared
to Lasso (↵ = 1). The sparse multi-site Lasso is preferable as r = sh

sp
increases.

Note that although ↵̃ and �̃ are used for the technical results instead of ↵ and �,
in practice, one can simply scale the chosen ↵s appropriately. For instance, with
k = 100, we see that ↵ ⇡ 0.99 corresponds to a ↵̃ = 0.95. We do not penalize byp
k when the sparsity patterns across sites share few of the features. To see this,

first observe that when sparsity patterns are similar, most of the groups we have
are non-sparse, and the e�ects of

p
kk�jk2 and k�jk1 have the same scale. This is

simply because,
p
k
p

a2
1 + ... + a2

k
is close to |a1|+ ...+ |ak| whenever |a1|, ..., |ak| are

close. However when sparsity patterns across sites share few features only, most of
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the groups are going to be sparse. For these groups, we should use k�jk2, because
in this setting

p
a2

1 + 0 + ... + 0 is close to |a1|+ 0 + ... + 0.

Performing hypothesis tests. Theorems 3.7 and 3.8 show consistency of sparse
multi-site Lasso estimation. Hence, if the hyper-parameters ↵ and � are known, we
can estimate the coe�cients B⇤. This variable selection phase can be followed by a
hypothesis test, similar to Theorem 3.3 from Section 3.2. The only remaining issue
is the choice of ↵ and existing methods suggest a heuristic. They set it to 0.05 when
it is known that sparsity patterns are similar across sites and 0.95 otherwise Simon
et al. (2013). Joint cross-validation for ↵ and � is shown to perform worse Simon
et al. (2013). Below, we instead provide a data-driven alternative that works well in
practice.

Choosing ↵ using simultaneous inference. Our theoretical results in Thm. 3.7
(and Thm. 3.8 resp.) seem to suggest that increasing (and decreasing resp.) ↵
will always improve consistency; however, this ends up requiring much stronger
m-sparsity conditions. We now describe a procedure to choose ↵. First, recall that
an active feature corresponds to a variable with non-zero coe�cient. We call a
feature (or predictor) “site-active” if it is active at a site, an “always-active” feature
is active at all k sites. The proposed solution involves three steps. (1) First, we
apply simultaneous inference (like multi sample-splitting or de-biased Lasso) using
all features at each of the k sites with FWER control. This step yields “site-active”
features for each site, and therefore, gives the set of always-active features and
the sparsity patterns. (2) Then, each site runs a Lasso and chooses a �i based on
cross-validation. We then set �multi-site to be the minimum among the best �’s from
each site. Using �multi-site, we can vary ↵ to fit various sparse multi-site Lasso models
– each run will select some number of always-active features. We plot ↵ versus the
number of always-active features. (3) Finally, based on the sparsity patterns from
the site-active set, we can estimate whether the sparsity patterns across sites are
similar or di�erent (i.e., share few active features). Then, based on the plot from
step (2), if the sparsity patterns from the site-active sets are di�erent (similar) across
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sites, then the smallest (largest) value of ↵ that selects the minimum (maximum)
number of always-active features is chosen.

3.4 Experiments

Our experiments are two-fold. First we perform simulations evaluating the hy-
pothesis test from Section 3.2 and the sparse multi-site Lasso from Section 3.3.
We then conduct an experiment to pool two Alzheimer’s disease (AD) datasets
coming from di�erent ongoing studies to evaluate improvements in power, and
checking whether the proposed tests provide insights into the regimes when pool-
ing is beneficial for regression, thereby yielding tangible statistical benefits, in
neuroscience/neuroimaging research.

Power and Type I error of Theorem 3.3. The first set of simulations evaluate the
setting from Section 3.2 where the coe�cients are same across two di�erent sites.
The inputs for the two sites are set as X1, X2(2 R

n⇥3) ⇠ N(0,⌃) with ⌃ = 0.5(I+ E)

(where I is identity and E is a 3⇥ 3 matrix of 1s). The true coe�cients are given by
�1 ⇠ U(0, 4I) and �2 = �1 + 0.1 (where U(·) is multivariate uniform), and the noise
corresponds to ✏1 ⇠ N(0, 3I) and ✏2 ⇠ N(0, 0.5I) for the two sites respectively. With
this, the responses are set as y1 = X1�1 + ✏1 and y2 = X2�2 + ✏2. Using {X1,y1} and
{X2,y2}, the shared �̂ are estimated. The simulation is repeated 100 times with 9
di�erent sample sizes (n = 2b with b = 4, . . . , 12) for each repetition. Figure 3.3(a)
shows the MSE of two-site (blue bars) and a baseline single-site (red bars) model
computed using the corresponding �̂s on first site. Although both MSEs decrease
as n increases, the two-sites model consistently produces smaller MSE – with large
gains for small sample sizes (left-end of Figure 3.3(a)). Figure 3.3(d) shows the
acceptance rates of our proposed hypothesis test (from (3.6) and (3.8)) with 0.05
significance level. The purple solid line is the su�cient condition from Theorem
3.3, while the dotted line is where the MSE of the baseline single-site model starts
to decrease below that of two-site model. The trend in Figure 3.3(d) implies that
as n increases, the test tends to reject pooling the multi-site data with power! 1.
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Further, the type I error is well-controlled to the left of the solid line, and is low
between the two lines.

Power and Type I error of Theorem 3.5. The second set of simulations evaluate
the confounding variables setup from Section 3.2. Similar to Section 3.4, here we

have (X1,Z1), (X2,Z2) ⇠ N(0,⌃)with⌃ =

 
0.5I3⇥3 + 0.5E3⇥3, 0.2E3⇥5

0.2E5⇥3, 0.8I5⇥5 + 0.2E5⇥5

!

.

�1 and �2 are the same as earlier. �1 = (1, 1, 2, 2, 2)T and �2 = (2, 2, 2, 1, 1)T are the
coe�cients for Z1 and Z2 respectively. The new responses y1 and y2 will have the
extra terms Z1�1 and Z2�2 respectively. Figure 3.3(b,e) shows the results. All the
observations from Figure 3.3(a,d) hold here as well. For small n, MSE of two-site
model is much smaller than baseline, and as sample size increases this di�erence
reduces. The test accepts with high probability for small n, and as sample size
increases it rejects with high power. The regimes of low type I error and high power
in Figure 3.3(e) are similar to those from Figure 3.3(d).

Sparse multi-sites Lasso `2-consistency

We now use 4 sites with n = 150 samples each and p = 400 features to test the
sparse multi-site model from Section 3.3. We set the design matrices Xi (i = 1, . . . , 4)
⇠ N(0,⌃) with ⌃ = 0.8Ip⇥p + 0.2Ep⇥p. The two cases where sparsity patterns are
shared, and not shared, are considered separately.

Few sparsity patterns shared. 6 shared features and 14 site-specific features (out
of the 400) are set to be active in 4 sites. Each of shared features is sampled from
U(0, 4) for first two sites and U(0, 0.5) for the rest. All the site-specific features are
⇠ U(0, 4). The noise ✏i ⇠ N(0, 1), and the responses are yi = Xi�i + ✏i. Figure
3.3(c) shows the 10-fold cross validation error as � changes (i.e., solution path) for
di�erent ↵ settings, including the value from our proposed selection procedure
(from Section 3.3), Lasso (↵ = 1), group Lasso (↵ = 0) and arbitrary values ↵ = 0.05,
0.95 (as suggested by Simon et al. (2013)). Our chosen ↵ = 0.97 (the blue curve
in Figure 3.3(c)) has smallest error, across all the �s, thereby implying a better `2
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Figure 3.3: (a,d) �̂’s MSE and the acceptance rate, (b,e) MSE of �̂ and �̂1, and the
acceptance rate. These use 100 bootstrap repetitions. Solid line in (d,e) is when
the condition from Theorem 3.3 is 1. Dotted line is when MSE of single-site and
multi-site models are the same. (c) � solution path when sparsity patterns are
dissimilar across sites, (f) The alternate regime where sparsity patters are similar

consistency. We show that ↵ = 0.97 discovers more always-active features, while
preserving the ratio of correctly discovered active features to all the discovered
ones.

Most sparsity patterns shared. Unlike the earlier case, here we set 16 shared and
4 site-specific features (both ⇠ U(0, 4)) to be active among all the 400 features. The
result, shown in Figure 3.3(f), is similar to Figure 3.3(c). The proposed choice of
↵ = 0.25 competes favorably with alternate choices while preserving the correctly
discovered number of always-active features. Unlike the previous case, the ratio of
correctly discovered active features to all discovered ones increases here.
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Figure 3.4: (a,c) MPE for the pooled regression model (green) compared to baselines
plotted against training subset size of ADNI. x-axis is number/fraction of ADNI
labeled samples used in training (apart from ADlocal). (b,d) show the acceptance
rates for (a,c). Unlike in (a), (c) restricts same training data size for ADNI and
ADlocal.

Combining AD datasets from multiple sites

We now evaluate whether two AD datasets acquired at di�erent sites – a Alzheimer’s
Disease Neuroimage Initiative (ADNI) dataset and a local dataset (ADlocal) – can
be combined. The two datasets we use are – an open-source Alzheimer’s Disease
Neuroimage Initiative (ADNI) dataset, and a local dataset (ADlocal). ADNI is an
open consortium with the goal of understanding AD related cognitive decline, and
in the process, develop clinical interventions aimed at delaying the disease onset.
ADlocal corresponds to a recent (smaller) initiative local study for the AD related
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decline. We used 318 samples from ADNI and 156 samples from ADlocal. The
input variables are 8 Cerebrospinal fluid (CSF) protein levels, and the response is
hippocampus volume. The CSF proteins are “1-38-Tr", “1-40-Tr", “1-42-Tr", “NFL",
"AB42", “htau", “ptau181", and “Neurogranin". The two datasets have di�erent age
and diagnosis distributions, and hence, we subsample 81 samples from either of sites
to control age and diagnosis variation. Using these 81 samples from each dataset,
we perform domain adaptation (using a maximum mean discrepancy objective as a
measure of distance between the two marginals) and transform CSF proteins from
ADlocal to match ADNI. The transformed data is then used to evaluate whether
adding ADlocal data to ADNI will improve the regression performed on the ADNI
data. This is done by training a regression model on the ‘transformed’ ADlocal
and a subset of ADNI data, and then testing the resulting model on the remaining
ADNI samples. We use two baseline models each of which are trained using –
ADNI data alone; and non-transformed ADlocal (with ADNI subset).

Figure 3.4(a,b) show the resulting mean prediction error (MPE) scaled by the
estimated noise level in ADNI responses, and the corresponding acceptance rate
(with significance level 0.05) respectively. The x-axis in Figure 3.4(a,b) represents the
size of ADNI subset used for training. As expected, the MPE reduces as this subset
size increases. Most importantly, pooling after transformation (green bars) seems
to be the most beneficial in terms of MPE reduction. As shown in Figure 3.4(a),
to the left of purple line where the subset size is smaller than ADlocal datasize,
pooling the datasets improves estimation. This is the small sample size regime
which necessitates pooling e�orts in general. As the dataset size increases (to the
right of x-axis in Figure 3.4(a)) the resulting MPE for the pooled model is close to
what we will achieve using the ADNI data by itself.

Since pooling after transformation is at least as good as using ADNI data alone,
our proposed hypothesis test accepts the combination with high rate (⇡ 95%) as can
be seen from Figure 3.4(b). The test rejects the pooling strategy with high power for
combining before domain adaptation (see Figure 3.4(b)), as one would expect. This
rejection power increases rapidly as sample size increases as pointed out on the red
curve in Figure 3.4(b). The results in Figure 3.4(c,d) show the setting where one
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cannot change the dataset sizes at the sites i.e., the training set uses an equal number
of labeled samples from both the ADNI and ADlocal (x-axis in Figure 3.4(c)), and
the testing set always corresponds to 20% of ADNI data. This is a more interesting
scenario for a practitioner compared to Figure 3.4(a,b), because in Figure 3.4(c,d)
we use the same sample sizes for both datasets. The trends in Figure 3.4(c,d) are
the same as Figure 3.4(a,b).

Extra experiments on synthetic data

We present the hypothesis test simulation when p = 6 in Fig. 3.5, which is similar
to the simulations done in Fig. 3.3. However, here the dimension p of � is 6 instead
of 3.

Table 3.1: Add multi-sites Lasso on Lasso.

↵ 0 0.05 0.95 0.97 (our) 1
CDR 0.1423 0.1463 0.2747 0.2863 0.2955
CDV 78 78 75 75 73
CDG 5 5 3 3 1

Table 3.2: Add Lasso on multi-sites Lasso.

↵ 0 0.05 0.25 (our) 0.95 1
CDR 0.2292 0.2381 0.2453 0.2841 0.2885
CDV 80 80 79 75 73
CDG 16 16 15 11 11

For sparse multi-Sites lasso simulation, we report correctly discovered number
of active variables (CDV), ratio of CDV and total number of discovered variables
(CDR), and correctly discovered number of always-active features (CDG).
From Table3.1 and Table 3.2 we see that our chosen ↵ helps sparse multi-sites
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Figure 3.5: The figure is similar to the simulations done in Figure 3.3. However,
here the dimension p of � is 6 instead of 3. (a,c) are MSE of �̂ and the corresponding
acceptance rate of our hypothesis test (from Section2.1). (b,d) are MSE of �̂ and
�̂1 and the corresponding acceptance rate (from Section2.2). These are based on
100 bootstrap repetitions. The solid line in (c,d) represents the point where the
condition from Theorem 3.3 is equal to 1. The dotted line is when MSE of �̂ is the
same for single-site and multi-site models.

Lasso to discover more or preserve always-active features. The number and rate
of correctly discovered number of active variables given by our chosen ↵ are also
among the best.

We show an example for choosing ↵ in Fig. 3.6. We here point out a caveat
about our choice of ↵ when sparsity patterns share few features and always-active
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Figure 3.6: These plots show that site-active set from simultaneous inference pro-
vides information of always-active features (which is then used to choose the
hyper-parameters ↵ an �). In (a), we add Lasso on multi-sties Lasso, and ↵ = 0.25 is
chosen. Similarly, in (b), we add multi-sites Lasso on Lasso, and ↵ = 0.97 is chosen.

features exist. In this setting, we do want to discover more always-active features.
Hence, we decrease ↵ from 1 and stop at the point where we just select one more
always-active feature.

3.5 Discussion

In this work, we present a hypothesis test to answer the question of whether pooling
multiple datasets acquired from di�erent sites is guaranteed to increase statistical
power for regression models. For both low and high dimensional linear regression,
we precisely identify regimes where such pooling is sensible, and show how such
policy decisions can be made via simple checks executable on each site before any
data transfer ever happens. We also show empirical results by combining two
Alzheimer’s disease datasets in the context of di�erent regimes proposed by our
analysis, and showing that the regression fit improves as suggested by the theory.

We show the hypothesis tests and theory on when pooling multi-source datasets
is beneficial. It the next Chapter, we study a di�erent problem and consider that
data is spatio-temporal, limited and lie in high dimension.
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4.1 Introduction

In this Chapter, we consider data is spatio-temporal ,limited and lie in high di-
mension. We derive a non-parametric sparse additive auto-regressive network
model and study it’s theoretical behavior. Multi-variate time series data arise in a
number of settings including neuroscience (Brown et al. (2004); Ding et al. (2011)),
finance (Rydberg and Shephard (1999)), social networks (Chavez-Demoulin and
McGill (2012); Aït-Sahalia et al. (2010); Zhou et al. (2013)) and others (Heinen (2003);
Matteson et al. (2011); Ogata (1999)). A fundamental question associated with
multi-variate time series data is to quantify influence between di�erent players or
nodes in the network (e.g. how do firing events in one region of the brain trigger
another, how does a change in stock price for one company influence others, e.t.c).
To address such a question requires estimation of an influence network between the d

players or nodes. Two challenges that arise in estimating such an influence network
are (i) developing a suitable network model; and (ii) providing theoretical guaran-
tees for estimating such a network model when the number of nodes d is large.

Prior approaches for addressing these challenges involve parametric approaches
(Fokianos and Tj�stheim (2011); Fokianos et al. (2009); Hall et al. (2016)). In particu-
lar, Hall et al. (2016) use a generalized linear model framework for estimating the
high-dimensional influence network. More concretely, consider samples (Xt)Tt=0

where Xt 2 R
d for every t which could represent continuous data, count data,

binary data or others. We define p(.) to be an exponential family probability distri-
bution, which includes, for example, the Gaussian, Poisson, Bernoulli and others
to handle di�erent data types. Specifically, x ⇠ p(✓) means that the distribution of
the scalar x is associated with the density p(x|✓) = h(x)exp['(x)✓- Z(✓)], where
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Z(✓) is the so-called log partition function, '(x) is the su�cient statistic of the data,
and h(x) is the base measure of the distribution. For the prior parametric approach
in Hall et al. (2016), the jth time series observation of Xt+1 has the following model:

Xt+1,j|Xt ⇠ p

 

vj +
dX

k=1

A⇤
j,kXt,k

!

,

where A⇤ 2 R
d⇥d is the network parameter of interest. Theoretical guarantees for

estimating A⇤ are provided in Hall et al. (2016). One of the limitations of para-
metric models is that they do not capture non-linear e�ects such as saturation.
Non-parametric approaches are more flexible and apply to broader network model
classes but su�er severely from the curse of dimensionality (see e.g. Stone (1985)).

To overcome the curse of dimensionality, the sparse additive models (SpAM)
framework was developed (see e.g. Koltchinskii and Yuan (2010); Meier et al. (2009);
Raskutti et al. (2012); Ravikumar et al. (2010)). Prior approaches based on the
SpAM framework have been applied in the regression setting. In this Chapter,
we consider samples generated from a non-parametric sparse additive auto-regressive
model, generated by the generalized linear model (GLM),

Xt+1,j|Xt ⇠ p

 

vj +
dX

k=1

f⇤
j,k(Xt,k)

!

, (4.1)

where f⇤
j,k is an unknown function belonging to a reproducing kernel Hilbert space

Hj,k. The goal is to estimate the d2 functions (f⇤
j,k)16j,k6d.

Prior theoretical guarantees for sparse additive models have focused on the
setting where samples are independent. In this Chapter, we analyze the convex
penalized sparse and smooth estimator developed and analyzed in Koltchinskii and
Yuan (2010); Raskutti et al. (2012) under the dependent Markov chain model (4.1).
To provide theoretical guarantees, we assume the Markov chain “mixes” using
concepts of � and �-mixing of Markov chains. In particular, in contrast to the para-
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metric setting, our mean-squared error is a function of � or �mixing co-e�cients,
and the smoothness of the RKHS function class. We also support our theoretical
guarantees with simulations and show through simulations and a performance
analysis on real data the potential advantages of using our non-parametric ap-
proach.

Our contributions. As far as we are aware, we are the first to provide a theoretical
analysis of high-dimensional non-parametric auto-regressive network models. In
particular, we make the following contributions.

i) We provide a scalable non-parametric framework using technologies in sparse
additive models for high-dimensional time series models that capture non-
linear, non-parametric framework. This provides extensions to prior work on
high-dimensional parametric models by exploiting RKHSs.

ii) In Section 4.4, we provide the most substantial contribution which is an upper
bound on mean-squared error that applies in the high-dimensional setting.
Our rates depend on the sparsity of the function, smoothness of each univariate
function, and mixing co-e�cients. In particular, our mean-squared error upper
bound scales as:

max
✓
s log dp

mT
,
r

m

T
✏̃2
m

◆
,

up to logarithm factors, where s is the maximum degree of a given node, d is the
number of nodes of the network, T is the number of time points. Here ✏̃m refers
to the univariate rate for estimating a single function in RKHS with m samples
(see e.g. Raskutti et al. (2012)) and 1 6 m 6 T refers to the number of blocks
needed depending on the � and �-mixing co-e�cients. If the dependence is
weak and m = O(T), our mean-squared error bounds are optimal up to log
factors as compared to prior work on independent models Raskutti et al. (2012)
while if dependence is strong m = O(1), we obtain the slower rate (up to log
factors) of 1p

T
that is optimal under no dependence assumptions.
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iii) We also develop a general proof technique for addressing high-dimensional
time series models. Prior proof techniques in Hall et al. (2016) rely heavily
on parametric assumptions and constraints on the parameters which allow
us to use martingale concentration bounds. This proof technique explicitly
exploits mixing co-e�cients which relies on the well-known “blocking” tech-
nique for sequences of dependent random variables (see e.g. Mohri and Ros-
tamizadeh (2010); Nobel and Dembo (1993)), which does not require parametric
assumptions. In the process of the proof, we also develop upper bounds on
Rademacher complexities for RKHSs and other empirical processes under
mixing assumptions rather than traditional independence assumptions as
discussed in Section 4.5.

iv) In Section 4.6, we demonstrate through both a simulation study and real
data example the flexibility and potential benefit of using the non-parametric
approach. In particular we show improved prediction error performance on
higher-order polynomials applied to a Chicago crime dataset.

The remainder of this Chapter is organized as follows: In Section 4.2, we intro-
duce the preliminaries for RKHSs, and beta-mixing of Markov chains. In Section 4.3,
we present the non-parametric multi-variate auto-regressive network model and
the sparse and smooth estimation scheme. In Section 4.4, we present the main
theoretical results and focus on specific cases of finite-rank kernels and Sobolev
spaces. In Section 4.5, we provide the main steps of the proof, deferring the more
technical steps to the appendix and in Section 4.6, we provide a simulation study
that supports our theoretical guarantees and a performance analysis on Chicago
crime data.

4.2 Preliminaries

In this section, we introduce the basic concepts of RKHSs and standard definitions
of � and �mixing for stationary processes.
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Reproducing Kernel Hilbert Spaces

First we introduce the basics of RKHSs and smoothness assumptions. Given a
subset X ⇢ R and a probability measure Q on X, we consider a Hilbert space
H ⇢ L

2(Q), meaning a family of functions g : X ! R, with kgkL2(Q) < 1, and
an associated inner product h·, ·iH under which H is complete. The space H is
a reproducing kernel Hilbert space (RKHS) if there exists a symmetric function
K : X⇥ X! R+ such that: (a) for each x 2 X , the function K(x, ·) belongs to the
Hilbert space H, and (b) we have the reproducing relation g(x) = hg(·),K(x, ·)iH
for all g 2 H. This function K is the so-called kernel function, which under suitable
regularity conditions, has an eigen-expansion of the form

K(x, x 0) =
1X

i=1

µi�i(x)�i(x
0)

guaranteed by Mercer’s theorem Mercer (1909), where µ1 > µ2 > µ3 > ... > 0
are a non-negative sequence of eigenvalues, and {�i}

1
i=1 are the associated eigen-

functions, taken to be orthonormal in L
2(Q). As has already been established (see

e.g. Aronszajn (1950); Koltchinskii and Yuan (2010); Meier et al. (2009); Raskutti
et al. (2012); Smola and Schölkopf (1998); Wahba (1990)), these eigenvalues play
a crucial role in our analysis, since they ultimately determine the univariate rate
✏m, ✏̃m (to be specified later) for estimating a single function in RKHS.

Since the eigenfunctions {�i}
1
i=1 form an orthonormal basis, any function g 2 H

has an expansion of the form g(x) =
P1

i=1 ai�i(x), where ai = hg,�iiL2(Q) =
R
X
g(x)�i(x)dQ(x) are (generalized) Fourier coe�cients. For any two functions in

H, say g(x) =
P1

i=1 ai�i(x) and f(x) =
P1

i=1 bi�i(x), we can define two distinct
inner products. The first is the usual inner product in the space L

2(Q)-namely,
hg, fiL2(Q) :=

R
X
g(x)f(x)dQ(x). By Parseval’s theorem, it has an equivalent repre-



60

sentation in terms of the expansion coe�cients, namely

hg, fiL2(Q) =
1X

i=1

aibi.

The second inner product, denoted hg, fiH, is the one that defines the Hilbert space
which can be written in terms of the kernel eigenvalues and generalized Fourier
coe�cients as

hg, fiH =
1X

i=1

aibi

µi

.

For more background on reproducing kernel Hilbert spaces, we refer the reader to
various standard references Aronszajn (1950); Saitoh (1988); Smola and Schölkopf
(1998); Wahba (1990); Weinert (1982).

Furthermore, for a subset Sj 2 {1, 2, ..,d}, let fj :=
P

k2Sj
fj,k(xk), where xk 2 X

and fj,k 2 Hj,k is the RKHS that fj,k lies in. Hence we define the norm

kfjk2
Hj(Sj)

:=
X

k2Sj

kfj,kk2
Hj,k

,

where k · kHj,k denotes the norm on the univariate Hilbert space Hj,k.

Mixing

Now we introduce standard definitions for dependent observations based on mixing
theory Doukhan (1994) for stationary processes.

Definition 4.1. A sequence of random variables Z = {Zt}
1
t=0 is said to be stationary if

for any t0 and non-negative integers t1 and t2, the random vectors (Zt0 , ...,Zt0+t1) and
(Zt0+t2 , ...,Zt0+t1+t2) have the same distribution.

Thus the index t or time, does not a�ect the distribution of a variable Zt in a
stationary sequence. This does not imply independence however and we capture
the dependence through mixing conditions. The following is a standard definition
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giving a measure of the dependence of the random variables Zt within a stationary
sequence. There are several equivalent definitions of these quantities, we are
adopting here a version convenient for our analysis, as in Mohri and Rostamizadeh
(2010); Yu (1994).

Definition 4.2. Let Z = {Zt}
1
t=0 be a stationary sequence of random variables. For

any i1, i2 2 Z [ {0,1}, let �i2
i1

denote the �-algebra generated by the random variables
Zt, i1 6 t 6 i2. Then, for any positive integer `, the �-mixing and �-mixing coe�cients of
the stochastic process Z are defined as

�(`) = sup
t

EB2�t

0
[ sup
A2�1

t+`

|P[A|B]- P[A]|],

�(`) = sup
t,A2�1

t+`,B2�t

0

|P[A|B]- P[A]|.

Z is said to be �-mixing (�-mixing) if �(`)! 0 (resp. �(`)! 0) as `!1. Furthermore
Z is said to be algebraically �-mixing (algebraically �-mixing) if there exist real numbers
�0 > 0 (resp. �0 > 0) and r > 0 such that �(`) 6 �0/`

r (resp. �(`) 6 �0/`
r) for all `.

Both �(`) and �(`) measure the dependence of an event on those that occurred
more than ` units of time in the past. �-mixing is a weaker assumption than �-
mixing and thus includes more general non-i.i.d. processes.

4.3 Model and Estimator

In this section, we introduce the sparse additive auto-regressive network model
and the sparse and smooth regularized schemes that we implement and analyze.
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Sparse additive auto-regressive network model

From Equation (4.1) in Section 4.1, we can state the conditional distribution explicitly
as:

P(Xt+1|Xt) =
dY

j=1

h(Xt+1,j)exp {' (Xt+1,j) ✓j - Z(✓j)} ,

✓j = vj +
dX

k=1

f⇤
j,k(Xt,k),

where f⇤
j,k is an unknown function belonging to a RKHS Hj,k, v 2 [vmin, vmax]d

are known constant o�set parameters. Recall that Z(·) refers to the log-partition
function and '(·) refers to the su�cient statistic. This model has the Markov and
conditional independence properties, that is, conditioning on the previous data
at time point t- 1, the elements of Xt are independent of one another and Xt are
independent with data before time t- 1. We note that while we assume that v is a
known constant vector, if we assume there is some unknown constant o�set that
we would like to estimate, we can fold it into the estimation of f⇤ via appending a
constant 1 column in Xt.

We assume that the data we observe is (Xt)Tt=0 and our goal is to estimate f⇤,
which is constructed element-wise by f⇤

j,k. However, in our setting where d may be
large, the sample size T may not be su�cient even under the additivity assumption
and we need further structural assumptions. Hence we assume that the network
function f⇤ is sparse which does not have too many non-zero functions. To be
precise, we define the sparse supports (S1,S2, ...,Sd) as:

Sj ⇢ {1, 2, ...,d}, for any j = 1, 2, ...,d.

We consider network function f⇤ is only non-zero on supports {Sj}
d

j=1, which means

f⇤ 2 H(S) := {fj,k 2 Hj,k|fj,k = 0 for any k /2 Sj}.
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The support Sj is the set of nodes that influence node j and sj = |Sj| refers to the
in-degree of node j. In this Chapter we assume that the function matrix f⇤ is s-
sparse, meaning that f⇤ belongs to H(S) where |S| =

P
d

j=1 |Sj| 6 s. From a network
perspective, s represents the total number of edges in the network.

Sparse and smooth estimator

The estimator that we analyze in this Chapter is the standard sparse and smooth esti-
mator developed in Koltchinskii and Yuan (2010); Raskutti et al. (2012), for each node
j. To simplify notation and without loss of generality, in later statements we assume
Hj,k refers to the same RKHS H, and define Hj = {fj|fj =

P
d

k=1 fj,k, for any fj,k 2
H} which corresponds to the additive function class for each node j. Further we
define the empirical norm kfj,kk2

T
:= 1

T

P
T

t=0 f
2
j,k(Xt,k). For any function of the form

fj =
P

d

k=1 fj,k, the (L2(PT ), 1) and (H, 1)-norms are given by

kfjkT ,1 =
dX

k=1

kfj,kkT , and kfjkH,1 =
dX

k=1

kfj,kkH

respectively. Using this notation, we estimate f⇤
j

via a regularized maximum like-
lihood estimator (RMLE) by solving the following optimization problem, for any
j 2 {1, 2, ..,d}:

f̂j = arg min
fj2Hj

L1(fj) + �TkfjkT ,1 + �HkfjkH,1, (4.2)

where L1(fj) is defined as

1
2T

TX

t=0

(Z(vj + fj(Xt))- (vj + fj(Xt))'(Xt+1,j)) .

Here (�T , �H) is a pair of positive regularization parameters whose choice will
be specified by our theory. An attractive feature of this optimization problem is
that, as a straightforward consequence of the representer theorem Kimeldorf and
Wahba (1971); Smola and Schölkopf (1998), it can be reduced to an equivalent
convex program in R

T ⇥ R
d

2 . In particular, for each (j,k) 2 {1, 2, ...,d}2, let K
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denote the kernel function associated with RKHS H where fj,k belongs to. We
define the collection of empirical kernel matrices Kj,k 2 R

T⇥T with entries Kj,k
t1,t2

=

K(Xt1,k,Xt2,k). As discussed in Koltchinskii and Yuan (2010); Raskutti et al. (2012),
by the representer theorem, any solution f̂j to the variational problem can be
expressed in terms of a linear expansion of the kernel matrices,

f̂j(z) =
dX

k=1

TX

t=1

↵̂j,k,tK(zk,Xt,k)

for a collection of weights {↵̂j,k 2 R
T (j,k) 2 {1, 2, ..,d}2}. The optimal weights are

obtained by solving the convex problem

↵̂j = (↵̂j,1, ..., ↵̂j,d)

= arg min
↵j,k2RT

1
2T

TX

t=0

�
Z
�
✓K
j

�
- ✓K

j
'(Xt+1,j)

�

+ �T

dX

k=1

r
1
T
kKj,k↵j,kk2

2 + �H

dX

k=1

q
↵T

j,kK
j,k↵j,k,

where ✓K
j
= vj +

dX

k=1

K
j,k↵j,k.

This problem is a second-order cone program (SOCP), and there are various algo-
rithms for solving it to arbitrary accuracy in polynomial time of (T ,d), among them
interior point methods (e.g., see the book Boyd and Vandenberghe (2004)).

Other more computationally tractable approaches for estimating sparse additive
models have been developed in Meier et al. (2009); Ravikumar et al. (2010) and in
our experiments section we use the package “SAM” based on the algorithm devel-
oped in Ravikumar et al. (2010). However from a theoretical perspective the sparse
and smooth SOCP defined above has benefits since it is the only estimator with
provably minimax optimal rates in the case of independent design (see e.g. Raskutti
et al. (2012)).
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4.4 Main Results

In this section, we provide the main general theoretical results. In particular, we
derive upper bounds on the mean-squared error

kf̂- f⇤k2
T
:=

1
T

TX

t=1

(f̂(Xt)- f̂(Xt))
2

under the assumption that the true network is s-sparse. The mean-squared error is
the di�erence in empirical L2(PT ) norm between the regularized maximum likeli-
hood estimator, f̂, and the true generating network, f⇤.

First we incorporate the smoothness of the RKHS H. We refer to ✏m as the
univariate rate, which depends on the eigenvalues of the RKHS. That ✏m is defined
as the minimal value of �, such that

1p
m

vuut
1X

i=1

min(µi,�2) 6 �2,

where {µi}
1
i=1 are the eigenvalues in Mercer’s decomposition of the kernel related

to the univariate RKHS (see Mercer (1909)). In this Chapter, we define ✏̃m as the
univariate rate in a slightly modified formula, which is the minimal value of �, such
that there exists a M0 > 1 satisfying

log(dT)
�

3 log(M0dT)p
m

vuut
M0X

i=1

min(µi,�2)

+

r
T

m

vuut
1X

M0+1

min(µi,�2)

✏

6 �2.

Remark. Note that since the left side of the inequality for ✏̃m is always larger than it
for ✏m, the definitions of ✏̃m and ✏m tell us that ✏m 6 ✏̃m. Furthermore ✏̃m is of
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order O(✏m log(dT)2) for finite rank kernel and kernel with decay rate i-2↵. See
Subsection 4.4 for more details. The modified definition ✏̃m allows us to extend the
error bounds on kf̂-f⇤k2

T
to the dependent case at the price of additional log factors.

The log(dT) term is an artifact of the analysis and is required because samples are
dependent, the M0 term is needed because non-parametric functions can have
infinite basis in RKHS and we require finite M0 to apply Martingale concentration
inequality.

Assumptions

We first state the assumptions in this subsection and then present our main results
in the next subsection. Without loss of generality (by re-centering the functions as
needed), we assume that

E[fj,k(Xt,j)] =

Z

X

fj,k(x)dP(x) = 0 for all fj,k 2 Hj,k, all t.

Besides, for each (j,k) 2 {1, ...,d}2, we make the minor technical assumptions:

• For any fj,k 2 H, kfj,kkH 6 1 and kfj,kk1 6 1.

• For any H, the associated eigenfunctions in Mercerâ£™s decomposition
{�i}

1
i=1 satisfy sup

x
|�i(x)| 6 1 for each i = 1, ...,1.

The first condition is mild and also assumed in Raskutti et al. (2012). The second
condition is satisfied by the bounded basis, for example, the Fourier basis. We
proceed to the main assumptions by denoting smax = maxj sj as the maximum
in-degree of the network and denoting Hµ =

P1
i=1 µi as the trace of the RKHS H.

Assumption 1 (Bounded Noise). Let wt,j =
1
2('(Xt+1,j)-Z 0(vj+f⇤

j
(Xt))), we assume

that E[wt,j] = 0 and with high probability wt,j 2 [- log(dT), log(dT)], for any j 2
{1, 2, ...,d}, t = 1, 2, ..., T .

Remark. It can be checked that for (1) Gaussian link function with bounded noise
or (2) Bernoulli link function, wt,j = O(1) with probability 1. For other generalized
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linear model cases, such as (1) Gaussian link function with Gaussian noise or (2)
Poisson link function under the assumption f⇤

j,k 6 0 for any (j,k), we have that
|wt,j| 6 C log(dT) with probability at least 1 - exp(-c log(dT)) for some constants
C and c (see the proof of Lemma 1 in Hall et al. (2016)).

Assumption 2 (Strong Convexity). For any x,y in an interval (vmin - a, vmax + a),

#kx- yk2 6 [Z(x)- Z(y)- Z 0(y)(x- y)].

Remark. For the Gaussian link function, a = 1 and # = 1. For Bernoulli link
function, a = (16

p
Hµ + 1)smax and # = (e(max(vmax,-vmin)+(16

p
Hµ+1)smax) + 3)-1. For

Poisson link function, a = (16
p
Hµ + 1)smax and # = evmin-(16

p
Hµ+1)smax where

recall that smax is the maximum in-degree of the network.

Assumption 3 (Mixing). The sequence (Xt)1t=0 defined by the model (4.1) is a stationary
sequence satisfying one of the following mixing conditions:

(a) �-mixing with r� > 1.

(b) �-mixing with r� > 0.781.

We can show a tighter bound when r� 6 2 using the concentration inequality
from Kontorovich et al. (2008). The condition r� > 0.781 arises from the technical
condition in which (r� + 2) ⇥ (2r� - 1) > 2r� (see the Proof of Lemma A.26).
Numerous results in the statistical machine learning literature rely on knowledge of
the �-mixing coe�cient Mcdonald et al. (2011); Vidyasagar (2002). Many common
time series models are known to be �-mixing, and the rates of decay are known
given the true parameters of the process, for example, ARMA models, GARCH
models, and certain Markov processes Mokkadem (1988); Carrasco and Chen (2002);
Doukhan (1994). The �-mixing condition is stronger but as we observe later allows
a sharper mean-squared error bound.

Assumption 4 (Fourth Moment Assumption). E[g4(x)] 6 CE[g2(x)] for some constant
C, for all g 2 Fj := [|Sj|=sj

Hj(Sj), for any j 2 {1, 2, ..,d} where the expectation is taken
over Q.
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Note that Assumption 4 is a technical assumption also required in Raskutti et al.
(2012) and is satisfied under mild dependence across the covariates.

Main Theorem

Before we state the main result, we discuss the choice of tuning parameters �T and
�H.

Optimal tuning parameters. Define �m = c1 max
✓
✏m,

q
log(dT)

m

◆
, where c1 >

0 is a su�ciently large constant, independent of T , s andd, andm�2
m

= ⌦(- log(�m))

and m�2
m
!1 as m!1. �̃m = max(�m, ✏̃m). The parameter m is a function of

T and is defined in Thm. 4.3 and Thm. 4.4. Then we have the following optimal
choices of tuning parameters:

�T > 8
p

2
r

m

T
�̃m, �H > 8

p
2
r

m

T
�̃2
m

,

�T = O(

r
m

T
�̃m), �H = O(

r
m

T
�̃2
m
).

Clearly it is possible to choose larger values of �T and �H at the expense of slower
rates.

Theorem 4.3. Under Assumptions 1, 2, 3 (a), and 4. Then there exists a constant C such
that for each 1 6 j 6 d,

kf̂j - f⇤
j
k2
T
6 C

sj
#2

✓
log(dT)p

mT
+

r
m

T
✏̃2
m

◆
, (4.3)

with probability at least

1 - 1
T
-
⇣
c2exp(-c3m�

2
m
) + T

-
⇣

1-c0
c0

⌘⌘
, where m = T

c0r�-1
c0r� for �-mixing when

r� > 1/c0, and c2 and c3 are constants. The parameter c0 can be any number between 0
and 1.

• Note that the term ✏̃2
m

accounts for the smoothness of the function class, #
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accounts for the smoothness of the GLM loss, and m denotes the degree of
dependence in terms of the number of blocks in T samples.

• In the very weakly dependent case r� ! 1 and m = O(T), we recover the
standard rates for sparse additive models sj logd

T
+ sj✏̃

2
T

(see e.g. Raskutti et al.
(2012)) up to logarithm factors. In the highly dependent case m = O(1),
we end up with a rate proportional to 1p

T
(up to log factors in terms of T

only) which is consistent with the rates for the lasso under no independence
assumptions.

• Note that we have provided rates on the di�erence of functions f̂j - f⇤
j

for
each 1 6 j 6 d. To obtain rates for the whole network function f̂ - f⇤, we
simply add up the errors and note that s =

P
d

j=1 sj.

• To compare to upper bounds in the parametric case in Hall et al. (2016), if
m = O(T) and ✏̃2

m
= O( 1

m
), we obtain the same rates. Note however that

in Hall et al. (2016) we require strict assumptions on the network parameter
instead of the mixing conditions we impose here.

• A larger c0 leads to a larger m and a lower probability from the term T
-

1-c0
c0 .

When r� > 2, Theorem 4.3 on �-mixing directly implies the results for�-mixing.
When 0.781 6 r� 6 2, we can present a tighter result using the concentration
inequality from Kontorovich et al. (2008).

Theorem 4.4. Under same assumptions as in Thm. 4.3, if we assume �-mixing when
0.781 6 r� 6 2, then there exists a constant C such that for each 1 6 j 6 d,

kf̂j - f⇤
j
k2
T
6 C

sj
#2

✓
log(dT)p

mT
+

r
m

T
✏̃2
m

◆
, (4.4)

with probability at least 1 - 1
T
- c2exp(-c3(m�2

m
)2), where m = T

r
�

r
�
+2 for �-mixing

when 0.781 6 r� 6 2, c2 and c3 are constants.



70

Note that m = T
r
�

r
�
+2 is strictly larger than m = T

r
�
-1

r
� for r� 6 2 which is why

Theorem 4.4 is a sharper result.

Examples

We now focus on two specific classes of functions, finite-rank kernels and infinite-
rank kernels with polynomial decaying eigenvalues. First, we discuss finite (⇠)
rank operators, meaning that the kernel function can be expanded in terms of ⇠
eigenfunctions. This class includes linear functions, polynomial functions, as well
as any function class where functions have finite basis expansions.

Lemma 4.5. For a univariate kernel with finite rank ⇠, ✏̃m = O
⇣q

⇠

m
log2(⇠dT)

⌘
.

Using Lemma 4.5 and ✏m calculated from Raskutti et al. (2012) gives us the
following result. Note that for T = O(m), we end up with the usual parametric
rate.

Corollary 4.6. Under the same conditions as Theorem 4.3, consider a univariate kernel
with finite rank ⇠. Then there exists a constant C such that for each 1 6 j 6 d,

kf̂j - f⇤
j
k2
T
6 C

sj
#2

⇠p
mT

log4(⇠dT), (4.5)

with probability at least

1- 1
T
-
⇣
c2exp(-c3(⇠+ log d)) + T

-
⇣

1-c0
c0

⌘⌘
, where m = T

c0r�-1
c0r� for �-mixing when

r� > 1/c0, c2 and c3 are constants.

Next, we present a result for the RKHS with infinitely many eigenvalues, but
whose eigenvalues decay at a rate µ` = (1/`)2↵ for some parameter↵ > 1/2. Among
other examples, this includes Sobolev spaces, say consisting of functions with ↵
derivatives (e.g., Birman and Solomyak (1967); Gu (2013)).

Lemma 4.7. For a univariate kernel with eigenvalue decay µ` = (1/`)2↵ for some ↵ > 1/2,

we have that ✏̃m = O

✓⇣
log2(dT)p

m

⌘ 2↵
2↵+1
◆

.
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Corollary 4.8. Under the same conditions as Theorem 4.3, consider a univariate kernel
with eigenvalue decay µ` = (1/`)2↵ for some ↵ > 1/2. Then there exists a constant C such
that for each 1 6 j 6 d,

kf̂j - f⇤
j
k2
T
6 C

sj
#2

log
8↵

2↵+1 (dT)p
m

2↵-1
2↵+1T

, (4.6)

with probability at least 1- 1
T
-T

-
⇣

1-c0
c0

⌘

, wherem = T
c0r�-1
c0r� for�-mixing when r� > 1/c0.

Note that if m = O(T), we obtain the rate O
⇣
sjT

- 2↵
2↵+1

⌘
up to log factors which

is optimal in the independent case.

4.5 Proof for the Main Result (Theorem 4.3)

At a high level, the proof for Theorem 4.3 follows similar steps to the proof of
Theorem 1 in Raskutti et al. (2012). However a number of additional challenges
arise when dealing with dependent data. The key challenge in the proof is that the
traditional results for Rademacher complexities of RKHSs and empirical processes
typically assume independence. These problems are addressed by Theorems 4.9
and 4.10 to follow which provide upper bounds for dependent empirical pro-
cesses. Also note that previous techniques in Hall et al. (2016) are not applicable
here because they require parametric assumptions which are amenable to analysis
for high-dimensional parametric problems. In particular for the proof of Theo-
rem 4.10, the common symmetrization technique fails to reduce the di�erence
between expectations in L2(PT ) and L2(P) to Rademacher complexity and martin-
gale concentration inequality fails because of the non-linear transformation on the
design matrix. Hence we use mixing assumptions to address both of these issues.
Unlike previous works using mixing that only guarantee central limit theory, we
quantify the convergence rate which then enables us to derive the upper bound on
mean-squared error with high probability in the high-dimension setting.
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Establishing the basic inequality

Our goal is to estimate the accuracy of f⇤
j
(·) for every integer j with 1 6 j 6

d. We denote the expected L2(P) norm of a function g as kgk2
2 = Ekgk2

T
where

the expectation is taken over the distribution of (Xt)Tt=0. We begin the proof by
establishing a basic inequality on the error function �j(.) = f̂j(.)- f⇤

j
(.). Since f̂j(.)

and f⇤
j

are, respectively, optimal and feasible for (4.2), we are guaranteed that

L1(f̂j(Xt)) + �Tkf̂jkT ,1 + �Hkf̂jkH,1

6 L1(f
⇤
j
(Xt)) + �Tkf⇤jkT ,1 + �Hkf⇤jkH,1.

Using our definition wt,j =
1
2('(Xt+1,j)- E['(Xt+1,j)|Xt]) =

1
2('(Xt+1,j)- Z 0(vj +

f⇤
j
(Xt))) and recall that L1(fj) is defined as

1
2T

TX

t=0

(Z(vj + fj(Xt))- (vj + fj(Xt))'(Xt+1,j))

that inequality is the same as

1
2T

TX

t=1

(Z(vj + f̂j(Xt))- f̂j(Xt)(Z
0(vj + f⇤

j
(Xt)) + 2wt,j))

+ �Tkf̂jkT ,1 + �Hkf̂jkH,1

6 1
2T

TX

t=1

(Z(vj + f⇤
j
(Xt))- f⇤

j
(Xt)(Z

0(vj + f⇤
j
(Xt)) + 2wt,j))

+ �Tkf⇤jkT ,1 + �Hkf⇤jkH,1.



73

Let BZ(·||·) denote the Bregman divergence induced by the strictly convex function
Z, some simple algebra yields that

1
2T

TX

t=1

BZ(vj + f̂j(Xt)||vj + f⇤
j
(Xt))

6 1
T

TX

t=1

�j(Xt)wt,j + �Tk�jkT ,1 + �Hk�jkH,1

(4.7)

which we refer to as our basic inequality (see e.g. Geer (2000) for more details on
the basic inequality).

Controlling the noise term

Let �j,k(·) = f̂j,k(·)- f⇤
j,k(·) for any k = 1, 2, ...,d. Next, we provide control for the

right-hand side of inequality (4.7) by bounding the Rademacher complexity for
the univariate functions in terms of their L2(PT ) and H norms. We point out that
tools required for such control are not well-established in the dependent case which
means that we first establish the Rademacher complexity result (Theorem 4.9) and
the uniform convergence rate for averages in the empirical process (Theorem 4.10)
for the dependent case (results for the independent case are provided as Lemma 7
in Raskutti et al. (2012)).

Theorem 4.9 (Rademacher complexity). Under Assumption 1, define the event

Am,T =

�

8(j,k) 2 {1, 2, ...,d}2, 8� > ✏̃m,

sup
kfj,kkH61,kfj,kk26�

�����
1
T

TX

t=1

fj,k(Xt)wt,j

����� 6
p

2
r

m

T
�2

✏

.

Then P(Am,T ) > 1 - 1
T

.

Remark. We have a correction term
q

T

m
for m < T , in order to connect our

Rademacher complexity result with mixing conditions. In the independent case,
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m = T which has been proven in prior work.

Theorem 4.10. Define the event

Bm,T =
�

sup
j,k

sup
fj,k2BH(1),kfj,kk26�m

|kfj,kkT - kfj,kk2| 6
�m

2

✏
(4.8)

wherem = T
c0r�-1
c0r� for�-mixing with r� > 1/c0. ThenP(Bm,T ) > 1-c2exp(-c3m�

2
m
)-

T
-
⇣

1-c0
c0

⌘

for some constants c2 and c3. Moreover, on the event Bm,T , for any g 2 BH(1)
with kgk2 > �m,

kgk2

2 6 kgkT 6 3
2kgk2. (4.9)

The proofs for Theorems 4.9 and 4.10 are provided in the appendix. Using
Theorems 4.9 and 4.10, we are able to provide an upper bound on the noise term
1
T

P
T

t=1�j(Xt)wt,j in (4.7). In particular, recalling that �̃m = c1 max
�
✏m, ✏̃m,

q
log(dT)

m

�
,

we have the following lemma.

Lemma 4.11. Given �̃m = max(�m, ✏̃m), on the event Am,T \Bm,T , we have:

|
1
T

TX

t=1

fj,k(Xt)wt,j| 6 4
p

2
r

m

T
(�̃mkfj,kkT + �̃2

m
kfj,kkH) (4.10)

for any fj,k 2 H, for all (j,k) 2 {1, 2, ...,d}2.

Exploiting decomposability

The reminder of our analysis involves conditioning on the event Am,T \ Bm,T .
Recalling the basic inequality (4.7) and using Lemma 4.11, on the event Am,T \Bm,T
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defined in Theorems 4.9 and 4.10, we have:

1
2T

TX

t=1

BZ(vj + f̂j(Xt)||vj + f⇤
j
(Xt))

6 4
p

2
r

m

T
�̃mk�jkT ,1 + 4

p
2
r

m

T
�̃2
m
k�jkH,1

+ �Tk�jkT ,1 + �Hk�jkH,1.

Recalling that Sj denotes the true support of the unknown function f⇤
j
, we define

�j,Sj
:=

P
k2Sj

�j,k, with a similar definition for �
j,SC

j

. We have that k�jkT ,1 =

k�j,Sj
kT ,1 + k�j,SC

j

kT ,1 with a similar decomposition for k�jkH,1. We are able to
show that conditioned on event Am,T \Bm,T , the quantities k�jkH,1 and k�jkT ,1 are
not significantly larger than the corresponding norms as applied to the function
�j,Sj

. First, notice that we can obtain a sharper inequality in the process of getting
our basic inequality (4.7), that is,

1
2T

TX

t=1

BZ(vj + f̂j(Xt)||vj + f⇤
j
(Xt))

6 1
T

TX

t=1

�j(Xt)wt,j + �T (kf⇤jkT ,1 - kf⇤j + �jkT ,1)

+ �H(kf⇤jkH,1 - kf⇤j + �jkH,1).

Using Lemma 4.11 and the fact that Bregman divergence is non-negative, on event
Am,T \Bm,T we obtain

0 64
p

2
r

m

T
�̃mk�jkT ,1 + �T (kf⇤jkT ,1 - kf⇤j + �jkT ,1)

+4
p

2
r

m

T
�̃2
m
k�jkH,1 + �H(kf⇤jkH,1 - kf⇤j + �jkH,1).
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Recall our choice �T > 8
p

2
p

m

T
�̃m, �H > 8

p
2
p

m

T
�̃2
m

, that yields

0 6�T2 k�jkT ,1 + �T (kf⇤jkT ,1 - kf⇤j + �jkT ,1)

+
�H
2 k�jkH,1 + �H(kf⇤jkH,1 - kf⇤j + �jkH,1).

Now, for any k 2 SC

j
, we have

kf⇤
j,kkT - kf⇤

j,k + �j,kkT = -k�j,kkT ,
and kf⇤

j,kkH - kf⇤
j,k + �j,kkH = -k�j,kkH.

On the other hand, for any k 2 Sj, the triangle inequality yields

kf⇤
j,kkT - kf⇤

j,k + �j,kkT 6 k�j,kkT

with a similar inequality for the terms involving k · kH. Given those bounds, we
conclude that

0 6 �T
2 k�jkT ,1 + �T (k�j,Sj

kT ,1 - k�j,SC

j

kT ,1)

+
�H
2 k�jkH,1 + �H(k�j,Sj

kH,1 - k�j,SC

j

kH,1).
(4.11)

Using the triangle inequality k�jk 6 k�j,Sj
k+k�

j,SC

j

k for any norm and rearranging
terms, we obtain

k�
j,SC

j

kT ,1 + k�j,SC

j

kH,1 6 3(k�j,Sj
kT ,1 + k�j,Sj

kH,1),

which implies

k�jkT ,1 + k�jkH,1 6 4(k�j,Sj
kT ,1 + k�j,Sj

kH,1). (4.12)

This bound allows us to exploit the sparsity assumption, since in conjunction with
Lemma 4.11, we have now bounded the right-hand side of the basic inequality (4.7)
in terms involving only �j,Sj

. In particular, still conditioning on event Am,T \Bm,T
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and applying (4.12), we obtain

1
2T

TX

t=1

BZ(vj + f̂j(Xt)||vj + f⇤
j
(Xt))

6 C

r
m

T
{�̃mk�j,Sj

kT ,1 + �̃
2
m
k�j,Sj

kH,1},

for some constant C, where we have recalled our choices �T = O(
p

m

T
�̃m) and

�H = O(
p

m

T
�̃2
m
). Finally, since both f̂j,k and f⇤

j,k belong to BH(1), we have

k�j,kkH 6 kf̂j,kkH + kf⇤
j,kkH 6 2,

which implies that k�j,Sj
kH,1 6 2sj, and hence

1
2T

TX

t=1

BZ(vj + f̂j(Xt)||vj + f⇤
j
(Xt))

6 C

r
m

T
(�̃mk�j,Sj

kT ,1 + sj�̃
2
m
).

Exploiting strong convexity

On the other hand, we are able to bound the Bregman divergence term on the
left-hand side as well by noticing that (4.12) implies

k�jkH,1 6 16sj, (4.13)
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since f̂j,k and f⇤
j,k belong to BH(1) with kf̂j,kk1 6 1 and kf⇤

j,kk1 6 1. Using bound
(4.13), for any t, we conclude that

|f̂j(Xt)| = |�j(Xt) + f⇤
j
(Xt)|

= |

dX

k=1

�j,k(Xt,k) + f⇤
j
(Xt)|

6
dX

k=1

k�j,kkH max
k

p
K(Xt,k,Xt,k) + |f⇤

j
(Xt)|

6 16

vuut
1X

i=1

µisj + |f⇤
j
(Xt)|

6

0

@16

vuut
1X

i=1

µi + 1

1

A smax.

Therefore, vj+f̂j(Xt), vj+f⇤
j
(Xt) 2 [vmin-(16

pP1
i=1 µi+1)smax, vmax+(16

pP1
i=1 µi+

1smax] where we have function Z(·) is #-strongly convex given Assumption 2. Hence

#

2k�jkT 6 C

r
m

T
{�̃mk�j,Sj

kT ,1 + sj�̃
2
m
}. (4.14)

Relating the L
2(PT) and L

2(P) norms

It remains to control the term k�j,Sj
kT ,1 =

P
k2Sj
k�j,kkT . Ideally we would like to

upper bound it bypsjk�j,Sj
kT . Such an upper bound would follow immediately

if it were phrased in terms of the k · k2 rather than the k · kT norm, but there are
additional cross-terms with the empirical norm. Accordingly, we make use of two
lemmas that relate the k · kT norm and the population k · k2 norms for functions in
Fj := [Sj⇢{1,2,...,d}|Sj|=sj

Hj(Sj).

In the statements of these results, we adopt the notation gj and gj,k (as opposed
to fj and fj,k) to be clear that our results apply to any gj 2 Fj. We first provide an
upper bound on the empirical norm kgj,kkT in terms of the associated kgj,kk2 norm,
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one that holds uniformly over all components k = 1, 2, ...,d.

Lemma 4.12. On event Bm,T ,

kgj,kkT 6 2kgj,kk2 + �m, for all gj,k 2 BH(2), (4.15)

for any (j,k) 2 {1, 2, ...,d}2.

We now define the function class 2Fj := {f+ f 0|f, f 0 2 Fj}. Our second lemma
guarantees that the empirical norm k · kT of any function in 2Fj is uniformly lower
bounded by the norm k · k2.

Lemma 4.13. Given properties of �m and �2
m,j = c4{

sj logd

m
+ sj✏

2
m
}, we define the event

Dm,T = {8j 2 [1, 2, ...,d], kgjkT > kgjk2/2
for all gj 2 2Fj with kgjk2 > �m,j}

(4.16)

where m = T
c0r�-1
c0r� for �-mixing with r� > 1/c0. Then we have P(Dm,T ) > 1 -

c2exp(-c3m(minj �
2
m,j))- T

-
⇣

1-c0
c0

⌘

where c2, c3 and c4 are constants.

Note that while both results require bounds on the univariate function classes,
they do not require global boundedness assumptions-that is, on quantities of the
form k

P
k2Sj

gj,kk1. Typically, we expect that the k · k1-norms of functions gj 2 Fj

scale with sj.

Completing the proof

Using Lemmas 4.12 and 4.13, we complete the proof of the main theorem. For
the reminder of the proof, let us condition on the events Am,T \ Bm,T \ Dm,T .
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Conditioning on the event Bm,T , we have

k�j,Sj
kT ,1 =

X

k2Sj

k�j,kkT

6 2
X

k2Sj

k�j,kk2 + sj�m

6 2psjk�j,Sj
k2 + sj�m.

(4.17)

Our next step is to bound k�j,Sj
k2 in terms of k�j,Sj

kT and sj�m. We split our anal-
ysis into two cases.
Case 1: If k�j,Sj

k2 < �m,j = ⇥(
p
sj�m), then we conclude that k�j,Sj

k1,T 6 Csj�m.
Case 2: Otherwise, we have k�j,Sj

k2 > �m,j. Note that the function �j,Sj
=

P
k2Sj

�j,k belongs to the class 2Fj so that it is covered by the event Dm,T . In
particular, conditioned on the event Dm,T , we have k�j,Sj

k2 6 2k�j,Sj
kT . Combined

with the previous bound (4.17), we conclude that

k�j,Sj
kT ,1 6 C{

p
sjk�j,Sj

kT ,2 + sj�m}.

Therefore in either case, a bound of the form k�j,Sj
kT ,1 6 C{

p
sjk�j,Sj

kT ,2 + sj�m}

holds. Substituting the inequality in the bound (4.14) yields

#

2k�jk2
T
6 C1

r
m

T
(
p
sj�̃mk�j,Sj

kT + sj�̃
2
m
).

The term k�j,Sj
kT on the right side of the inequality is bounded by k�jkT and the

inequality still holds after replacing k�j,Sj
kT by k�jkT . Through rearranging terms

in that inequality, we get,

k�jk2
T
6 2C1

1
#

r
m

T

�p
sj�̃mk�jkT + sj�̃

2
m

�
. (4.18)
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Because m

T
6 1 and 1

#
> 1, we can relax the inequality to

k�jk2
T
6

2C1

✓
1
#

⇣m
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⌘1/4p
sj�̃mk�jkT +

1
#2
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sj�̃

2
m

◆
.

(4.19)

We can derive a bound on k�jkT from that inequality, which is

k�jk2
T
6 C2
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#2

r
m

T
�̃2
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= C2
sj
#2

r
m

T

✓
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m
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T
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◆
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✓
log(dT)p

mT
+

r
m

T
✏̃2
m

◆
,

(4.20)

where C2 only depends on C1. That completes the proof.

4.6 Numerical Experiments

Our experiments are two-fold. First we perform simulations that validate the
theoretical results in Section 4.4. We then apply the SpAM framework on a Chicago
crime dataset and show its improvement in prediction error and ability to discover
additional interesting patterns beyond the parametric model. Instead of using
the sparse and smooth objective in this Chapter, we implement a computationally
faster approach through the R CRAN package “SAM”, which includes the first
penalty term kfjk1,T but not the second term kfjk1,H (Zhao and Liu (2012)). We also
implemented our original optimization problem in ‘cvx’ however this approach
does not scale. Hence we use the “SAM” package.
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Simulations

We validate our theoretical results with experimental results performed on synthetic
data. We generate many trials with known underlying parameters and then com-
pare the estimated function values with the true values. For all trials the constant
o�set vector v is set identically at 0. Given an initial vector X0, samples are generated
consecutively using the equation Xt+1,j = f⇤

j
(Xt) +wt+1,j, where wt+1,j is the noise

chosen from a uniform distribution on the interval [-0.4, 0.4] and f⇤
j

is the signal
function, which means that the log-partition function Z(·) is the standard quadratic
Z(x) = 1

2x
2 and the su�cient statistic'(x) = x. The signal function f⇤

j
is assigned in

two steps to ensure that the Markov chain mixes and we incorporate sparsity. In the
first step, we define sparsity parameters {sj}dj=1 all to be 3 (for convenience) and set
up a d by d sparse matrix A⇤, which has 3 non-zero o�-diagonal values on each row
drawn from a uniform distribution on the interval [- 1

2s , 1
2s ] and all 1 on diagonals.

In the second step, given a polynomial order parameter r, we map each value Xt,k in
vector Xt to (�1(Xt,k),�2(Xt,k), ...,�r(Xt,k)) in R

r space, where �i(x) =
x
i

i! for any
i in {1, 2, .., r}. We then randomly generate standardized vectors (b1

j,k,b2
j,k,b3

j,k) for
every (j,k) in {1, 2, ...,d}2 and define f⇤

j
as f⇤

j
(Xt) =

P
d

k=1 A
⇤
j,k(

P
r

i=1 b
i

j,k�i(Xt,k)).
The tuning parameter �T is chosen to be 3

p
log(dr)/T following the theory. We

focus on polynomial kernels for which we have theoretical guarantees in Lemma 4.5
and Corollary 4.6 since the “SAM” package is suited to polynomial basis functions.

The simulation is repeated 100 times with 5 di�erent values ofd (d = 8, 16, 32, 64, 128),
5 di�erent numbers of time points (T = 80, 120, 160, 200, 240), and 3 di�erent poly-
nomial order parameters (r = 1, 2, 3) for each repetition. These design choices
are made to ensure the sequence (Xt)Tt=0 is stable and mixes. Other experimental
settings were also run with similar results. We present the mean squared error
(MSE) of our estimates in Fig. 4.1. Since we select r values from the same vector
(b1

j,k,b2
j,k,b3

j,k) for all polynomial order parameters, the MSE for di�erent r is com-
parable and will be higher for larger r because of stronger absolute signal value.
In Fig. 4.1(a), we see that MSE decreases in the rate between T-1 and T-0.5 for all
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Figure 4.1: (a) shows the logarithm of MSE over a range of log T values, from 80 to
240 under the regression setting. (b) shows the MSE over a range of log d values,
from 8 to 128 under the regression setting. In all plots the mean value of 100 trials
is shown, with error bars denoting the 90% confidence interval for plot (a). For plot
(b), we also have error bars results but we do not show them for the cleanness of
the plot.

combinations of r and d. For larger d, MSE is larger and the rate becomes slower.
In Fig. 4.1(b), we see that MSE increases slightly faster than the log d rate for all
combinations of r and T which is consistent with Theorem 4.3 and Corollary 1.

Similarly we consider the Poisson link function and Poisson process for mod-
eling count data. Given an initial vector X0, samples are generated consecutively
using the equation Xt+1,j ⇠ Poisson(exp(f⇤

j
(Xt))), where f⇤

j
is the signal function.

The signal function f⇤
j

is again assigned in two steps to ensure the Poisson Markov
process mixes. In the first step, we define sparsity parameters {sj}

d

j=1 all to be
3 and set up a d by d sparse matrix A⇤, which has 3 non-zero values on each
row set to be -2 (this choice ensures the process mixes). In the second step
given a polynomial order parameter r, we map each value Xt,k in vector Xt to
(�1(Xt,k),�2(Xt,k), ...,�r(Xt,k)) in R

r, where �i(x) = x
i

i! for any i in {1, 2, .., r}.
We then randomly generate standardized vectors (b1

j,k,b2
j,k,b3

j,k) for every (j,k)
in {1, 2, ...,d}2 and define f⇤

j
as f⇤

j
(Xt) =

P
d

k=1 A
⇤
j,k(

P
r

i=1 b
i

j,k�i(Xt,k)). The tuning
parameter �T is chosen to be 1.3(log d log T)(

p
r/
p
T). The simulation is repeated
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Figure 4.2: (a) shows the logarithm of MSE behavior over a range of log T values,
from 80 to 240 for the Poisson process. (b) shows the MSE behavior over a range of
log d values, from 8 to 128 for the Poisson process. In all plots the mean value of
100 trials is shown, with error bars denoting the 90% confidence interval for plot
(a). For plot (b), we also have error bars results but we do not show them for the
cleanness of the plot.

100 times with 5 di�erent numbers of time series (d = 8, 16, 32, 64, 128), 5 di�erent
numbers of time points (T = 80, 120, 160, 200, 240) and 3 di�erent polynomial order
parameters (r = 1, 2, 3) for each repetition. These design choices are made to ensure
the sequence (Xt)Tt=0 mixes. Other experimental settings were also considered with
similar results, but are not included due to space constraints.

We present the mean squared error (MSE) of our estimations in Fig. 4.2. Since
we select r values from the same vector (b1

j,k,b2
j,k,b3

j,k) for all polynomial order
parameters, the MSE tends to be higher for larger r because the process has larger
variance. In Fig. 4.2 (a), we see that MSE decreases in the rate between T-1 and T-0.5

for all combinations of r and d. For larger d, MSE is larger and the rate becomes
slower. In Fig. 4.2 (b), we see that MSE increases slightly faster than the log(d) rate
for all combinations of r and T which is consistent with our theory.
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Chicago crime data

We now evaluate the performance of the SpAM framework on a Chicago crime
dataset to model incidents of severe crime in di�erent community areas of Chicago.
1. We are interested in predicting the number of homicide and battery (severe
crime) events every two days for 76 community areas over a two month period.
The recorded time period is April 15, 2012 to April 14, 2014 as our training set and
we choose the data from April 15, 2014 to June 14, 2014 to be our test data. In other
words, we consider dimension d = 76 and time range T = 365 for training set and
T = 30 for the test set. Though the dataset has records from 2001, we do not use all
previous data to be our training set since we do not have stationarity over a longer
period. We choose a 2 month test set for the same reason. We choose time horizon
to be two days so that number of crimes is counted over each two days. Since we
are modeling counts, we use the Poisson GLM and the exponential link Z(x) = ex.

We apply the “SAM” package for this task using B-spline as our basis. The
degrees of freedom r are set to 1, 2, 3 or 4, where 1 means that we only use linear
basis. In the first part of the experiment, we choose the tuning parameter �T using
3-cross validation; the validation pairs are chosen as 60 days back (i.e., February
15, 2012 to February 14, 2014 as the training set and February 15, 2014 to April 14,
2014 as the testing set), 120 days back and 180 days back from April 15, 2012 and
April 15, 2014 but with the same time range as the training set and test set. Then
we test SpAM with this choice of �T . The performance of the model is measured by
Pearson chi-square statistic, which is defined as

1
30

29X

t=0

(Xt+1,j - f̂j(Xt))2

f̂j(Xt)

on the 30 test points for the jth community area. The Pearson chi-square statistic is
1This dataset reflects reported incidents of crime that occurred in the City of Chicago from

2001 to present. Data is extracted from the Chicago Police Department’s CLEAR (Citizen Law
Enforcement Analysis and Reporting) system https://data.cityofchicago.org

https://data.cityofchicago.org
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Figure 4.3: The boxplot shows the performance of SpAM on crime data measured
by Pearson statistic for r = 1, 2, 3, 4-degrees of freedom in B-spline basis.

commonly used as the goodness-of-fit measure for discrete observations Hosmer
et al. (1997). In Fig. 4.3, we show a box plot for the test loss on 17 non-trivial
community areas, where “trivial” means that the number of crimes in the area
follows a Poisson distribution with constant rate, which tells us that there is no
relation between that area and other areas and no relation between di�erent time.
From Fig. 4.3, we can see that as basis become more complex from linear to B-spline
with 4 degrees of freedom, the performance of fitting is gradually (although not
majorly) improved. The main benefit of using higher-order (non-parametric) basis
is revealed in Fig. 4.4 where we pick two community areas and plot the �T path
performance for every r in Fig. 4.4. In the examples of two community areas shown
in Fig. 4.4, we can see that the non-parametric SpAM has a lower test loss than
linear model (r = 1). For community area 34, when r is set to be 3 and 4, the SpAM
model discovers meaningful influences of other community areas on that area
while the model with r equal to 1 or 2 choose a constant Poisson process as the best
fitting. A similar conclusion holds for community area 56. Here r = 1 corresponds
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(a) Performance on community area 34
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(b) Performance on community area 56

Figure 4.4: (a) shows the Pearson statistic loss on the number of crimes in community
area 34. (b) shows the Pearson statistic loss on the number of crimes in community
area 56.

to the parametric model in Hall et al. (2016).

Finally, we present a visualization of the estimated network for the Chicago
crime data. Since the estimated model is a network, the sparse patterns can be
represented as an adjacency matrix where 1 in the ith row and jth column means
that the ith community area has influence on the jth community area and 0 means
no e�ect. Given the adjacency matrix, we can use spectral clustering to generate
clusters for di�erent polynomial order r’s used in SpAM model, which are shown
in Figs. 4.5 (a) and (b). For each case, even the location information is not used in
learning at all, we find that the close community areas are clustered together. We
see that the patterns from the non-parametric model (r = 3) is di�erent from the
parametric generalized linear model (r = 1) and they seem more smooth. It tells us
that the non-parametric model proposed in this Chapter can help us to discover
additional patterns beyond the linear model. Even in other tasks, the clusters cannot
represent the location information very well. In Binkiewicz et al. (2017); Zhang et al.
(2018), the authors proposed a covariate-assisted method to deal with this problem,
which applies spectral clustering on L+ �XTX, where L is the adjacency matrix, X
are the covariates (latitude and longitude in our case), and � is a tuning parameter.
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(b) r = 1
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(c) r = 3 using location information
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(d) r = 1 using location information

Figure 4.5: (a) shows the clusters given by spectral clustering using the adjacency
matrix from SpAM with polynomial order r = 3, (b) shows the clusters when
polynomial order r = 1. To derive clusters in (c), compared to (a), we add location
information to the adjacency matrix for r = 3. Similarly, we get clusters in (d) using
location information compared to (b) for r = 1.

By using location information as the assisted covariate in spectral clustering, we
obtain results in Fig. 4.5 (c)(d). Since the location information is used, we see in
both cases that community areas are almost clustered in four groups based on
location information. Again, we find that the patterns from non-parametric model
is di�erent from the linear model and the separation between clusters is slightly
clearer.
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� ���������� ��� ���� �� ����������� �� ����
������������� ������: ������ ����������� ������ �� ����
���������

5.1 Introduction

In this Chapter, we study the case when data is huge and the model trained to fit
it is complicated to understand. While we discussed in previous Chapters about
how to combine multiple heterogeneous datasets, and analyze high-dimensional
spatiotemporal data, we find that in the last decade, prediction tasks when suf-
ficient data is available can be significantly facilitated by the use of deep neural
networks. However, deep neural networks lack interpretability and probabilistic
measurements, which make their predictions hard to explain and understand in
scientific studies. In this Chapter, we show how kernel methods together with deep
probabilistic models can help us to obtain deep neural networks with interpretabil-
ity and uncertainty measurements. To complete that, we derive a framework to
understand the flow of information in deep probabilistic models.

Deep probabilistic models are a core topic of interest within modern deep learn-
ing. Motivated by a spectrum of applications that benefit from formulations that
roughly fall under the umbrella of deep probabilistic models – namely – Bayesian
neural networks (BNNs), deep Gaussian processes (DGPs), variational autoencoders
(VAEs) and others Hernández-Lobato and Adams (2015); Gal and Ghahramani
(2016); Damianou and Lawrence (2013); Bui et al. (2016); Wilson et al. (2016), there is
a growing interest in better understanding their properties, both from a theoretical
as well as a practical perspective. Our goal in this Chapter is to study mechanisms
to characterize the information flow for deep probabilistic models, i.e., the flow of
representations from the input features to the output prediction passing through
the units that make up the network. While this is motivated by and should facilitate
applications where interpretability is important, in principle, a clear understanding
of these properties would also allow a more rigorous analysis of the model and
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evaluating or verifying if it has desirable statistical properties. For general deep
neural networks (DNNs), there is a sizable (and growing) body of work that tackles
information flow in a number of interesting ways. For example, one could con-
struct procedures that seek to explain individual feature importance, for example by
computing input gradients and decomposing predictions Shrikumar et al. (2017);
Ancona et al. (2018); Sundararajan et al. (2017). Concurrently, there are also pro-
posals based on attention-based models Xu et al. (2015); Mnih et al. (2014), which
are able to localize which parts of the images critically drive the decision making
process of a DNN model. Expectedly, this understanding will often, although not
always, enable better interpretation of why the prediction was a certain class (and
not another). More recent works have also sought to use simpler interpretable mod-
els to explain the prediction from a DNN Chen et al. (2018). Despite this evolving
body of work, we find that analogous results for deep probabilistic models are
either lacking or still in a nascent stage.

One should be able to, at least in principle, adapt existing information flow or se-
mantic attribution strategies which work for general DNNs, to the deep probabilistic
models setting. But we find that an overwhelming majority of such procedures
natively focus on individual feature importance, e.g., pixel saliency maps for images.
But inspecting coe�cients of individual predictor variables is often insu�cient in
many classical statistical models – and we are often interested in statistical interac-
tions and on occasion, higher order interactions. We find, as has been noted recently
in Tsang et al. (2018) that extending available feature importance and sensitivity
analysis methods for DNNs to this general case is non-trivial. It turns out, however,
that if we use simple strategies, namely imposing assumptions on the structure of
the function class in a manner we will describe shortly, this problem turns out to
be a little more tractable. This strategy has precedence – for example, in classical
statistical models, assuming an additive or a hierarchical structure is quite common
for numerical reasons or to better analyze its statistical behavior Hastie and Tibshi-
rani (1986); Gelman and Hill (2006); Huang et al. (2010). Therefore, it seems that an
assumption, similar as above, i.e., an explicitly specified structure on the function
class, may be a good idea for deep probabilistic models as well. If successful, this
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will help characterize information flow, not merely back to individual features but
will also help understand the relevance of higher order statistical interactions on
the output. While not stated in this form, such an assumption, nonetheless, under-
lies capsule structures Sabour et al. (2017) and multi-resolution analysis (MRA) in
CNNs Mallat (2016); Angles and Mallat (2018).

What is the structure assumption on the function class? Build function with a com-
putation skeleton. To better understand and characterize the function class which
our deep probabilistic model corresponds to, we will make use of the so-called
“computation skeleton” idea in Daniely et al. (2016). In Daniely et al. (2016), the
computation skeleton is used to study the relationship between DNNs and kernels
and the e�ect of depth. Here, we find that the computation skeleton idea helps
us capture the overall structure of the DNN and the function class via an easier-
to-analyze “gadget”. Importantly, it can be generalized in a way where we can
evaluate the functions being learned (by the deep probabilistic model) via analyzing
the corresponding computation skeleton (and the functionality we insert in the
di�erent parts of the skeleton). This significantly facilitates analyzing the flow of
information because we now only need to analyze information flow from the input
to the output over the computation skeleton.

Other advantages. As a by-product, the foregoing assumption also helps us to
study the relationship between BNNs and DGPs, the e�ect of layer width and
dataset shape in the deep probabilistic model setting. For instance, some recent
papers describe designing deep probabilistic models that can be both understood
as Bayesian neural networks and deep Gaussian processes Gal and Ghahramani
(2016); Cutajar et al. (2017); Salimbeni and Deisenroth (2017). It turns out that
our mechanisms to impose structure on the function class lead to an interesting
theoretical perspective describing the relation between Bayesian neural networks
and deep Gaussian processes through kernels. Such a result, helps us tie various
deep probabilistic models together in our framework, which can easily adjust
to di�erent probabilistic formulations. Additionally, we could use this general
framework to flexibly choose between di�erent structures and even uncertainty
estimation schemes. All these benefits essentially come for free – the framework
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retains all useful empirical properties from BNNs such as mini-batch training,
works on large-scale datasets and yields the expressive power of DGPs with kernels.
Finally, if desired, one could also easily compare various deep probabilistic models
using this framework as a tool.

Additional benefits for interpretability. With the computation skeleton framework
for deep probabilistic models in hand, it will be easy to design specific structures
to obtain interpretable results. Instead of studying feature importance, we show
that the framework can lead to a solution to study statistical interactions, which
is important for interpretability in biomedical and financial applications but has
received scant attention Tsang et al. (2018). If an output depends on several features,
one is often interested in changing some features to evaluate how it a�ects the
response. In doing so, we must guarantee that other “uncontrolled” features do
not influence the response. This confound is called interaction: the simultaneous
influence of several features on the outcome is not additive and the features may
jointly a�ect the outcome. Interpretability means understanding how predictors
influence the outcome. But failing to detect statistical interactions causes problems
in inferring the features’ influence (e.g., the Simpson’s paradox). A general DNN
architecture permits all features to interact, without the ability to control for the
nuisance terms. In statistics, we may use a fully additive statistical model with
ANOVA decomposition. Similarly, we propose an additive structure on the network
and apply post-training ANOVA decomposition to detect statistical interactions:
what may be called a Bayesian additive neural network (BANN).

Our contributions.

i) We derive a framework to understand information flow for deep probabilistic
models.

ii) We extend the “structure on function” assumption used in statistics to DNNs
and deep probabilistic models, which helps us to obtain statistical measures
beyond feature importance (namely, interactions) for interpretability.
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iii) Our framework ties various deep probabilistic models together including
BNNs, DGPs, DKL and others. The analysis helps us to understand the simi-
larities/di�erences between various deep probabilistic models.

iv) We leverage our structure assumption explicitly – as an additive structure – to
obtain Bayesian additive neural networks (BANN), which provide competitive
results to DNNs but with other benefits.

Preliminaries

In this section, we briefly review deep Gaussian process and variational inference
schemes to setup the rest of our presentation. We also review the classical Analysis
of Variance (ANOVA) decomposition in statistics which we use later.

Gaussian processes (GP) and deep Gaussian processes (DGPs). Consider the
inference task for a stochastic function f : Rp ! R, given a likelihood p(y|f) and
a set of n observations y = (y1, ...,yn)T 2 R

n at locations X = (x1, ..., xn)T 2 R
n⇥p.

We place a GP prior on the function f that models all function values as jointly
Gaussian, with a covariance K : Rp ⇥ R

p ! R. We use the notation f = f(X)
and K(X, X)ij = K(xi, xj). Then, the joint density for y and f for a single-layer
Gaussian process (GP) is p(y, f) = p(f; X)

Q
n

i=1 p(yi|fi), where f|X ⇠ N(0,K(X, X))
and yi|fi ⇠ N(fi, �2).

For L vector-valued stochastic functions denoted as F`, a deep Gaussian process
(DGP) Damianou and Lawrence (2013) defines a prior recursively on F

1, ...,FL. The
prior on each function F

` is an independent GP in each dimension, with input
locations given by the function values at the previous layer: the outputs of GPs at
layer ` are {F`.j}dj=1 and the corresponding inputs are F`-1. The joint density is

p(y, {F`}L
`=1) =

nY

i=1

p(yi|f
L

i
)

LY

`=1

p(F`|F`-1),

where F0 = X, F` 2 R
n⇥d` for 0 < ` 6 L, F`.j|F`-1

⇠ N(0,K`
j
(F`-1, F`-1)) for 1 6 j 6

d`, 0 < ` 6 L.
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Variational inference (VI) for Bayesian models. Consider the joint density of
the latent variables f = {fi}

m

i=1 and the observations y = {yi}
n

i=1, p(f, y) = p(f)p(y|f).
We know that inference in any Bayesian model amounts to conditioning on the
data and computing the posterior p(f|y). In models like DGP, this calculation is
di�cult and so, we use approximate inference. A popular strategy is variational
inference (VI) Blei et al. (2017) which requires specifying a family of approximate
densities Q. Our goal is to find the member q⇤ of that family which minimizes the
Kullback-Leibler (KL) divergence to the exact posterior,

q⇤(f) = arg min
q(f)2Q

KL(q(f)||p(f|y)).

Instead of minimizing the KL divergence, one maximizes the evidence lower bound
(ELBO),

ELBO(q) = Eq(f)[log p(y|f)]- KL(q(f||p(f)).

The first term is an expected likelihood, which encourages the densities to place
their mass on configurations of the latent variables that explain the observed data.
The second term is the negative KL divergence between the variational density and
the prior so the densities lie close to the prior.

Analysis of variance (ANOVA) decomposition. Consider the inference task
for a stochastic function f with a set of n observations (y1, ...,yn)T at locations
(x1, ..., xn)T . In a simple setting, we assume that p(y|f) follows the Gaussian dis-
tribution with yi = f(xi) + ✏i, ✏i ⇠ N(0, �2). Based on Gu and Wahba (1993), for
a multivariate function f, f(x) =

⇥Q
p

j=1(I- Ej + Ej)
⇤
f(x). Expanding the product,

we obtain the equivalent representation for f in an ANOVA decomposition,

f(x) = f0 +
pX

j=1

fj(x
j) +

pX

j=1

pX

k=1

fj,k(x
j, xk) + · · · , (5.1)

where f0 = (
Q

p

j=1 Ej)f(x) is the mean constant, f1(x1) = (I - E1)(
Q

j 6=1 Ej)f(x)
is the main e�ect function for the first dimension x1 of x and f1,2(x1, x2) = (I -

E1)(I- E2)(
Q

j 6=1,2 Ej)f(x) is the second-order interaction function between the first
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Figure 5.1: Using S in (a), one can construct a BNN N(S) in (d) with the function
block (FB) in (b) and the random feature block (RB) in (c). For di�erent S, (e) is MC
dropout, (f) is deep random features, (g) is deep kernel learning. (g) also represents
a multi-task S while (h) gives the additive structure.

dimension x1 and the second dimension x2 of x. The rest of the terms can be
defined similarly. The ANOVA decomposition makes the prediction interpretable
by splitting f into sub-functions, such as f1 and f1,2: we can understand the main
e�ect of a single parameter or interactions between a few parameters.

5.2 Deep Probabilistic Models with a Computation
Skeleton Assumption

We first define the computation skeleton and show how it imposes structure on
the function class. This will directly facilitate understanding flow of information
from input to output. Later, we show that the constructed BNNs can be seen as VI
approximations for the DGPs with the expressive power of the kernel. Finally, we
discuss how to understand other deep probabilistic models Gal and Ghahramani
(2016); Wilson et al. (2016); Daniely et al. (2016) in our framework.

What is a computation skeleton? Computation skeleton Daniely et al. (2016) is a
gadget to compactly describe a feed-forward computation structure from the inputs
to the outputs: in other words, the flow of information. Formally, a computation
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skeleton S is a multi-layer graph with the bottom nodes representing inputs, the
top nodes representing outputs and non-input nodes are labeled by activations �.
In Daniely et al. (2016), this idea was used to study a family of DNNs: it was shown
that DNNs can be seen as the realization of certain types of structures and their
dual kernels. In fact, every S defines a specific NN: Fig. 5.1(a) shows a two layer
fully connected NN, Daniely et al. (2016) shows more examples. Here, we reuse the
name but define a slightly di�erent S to restrict the function class. For notational
simplicity, we consider S’s with a single output.

What are blocks? To express a deep probabilistic model (say, BNNs) using a
computation skeleton S, we also need two additional components, which we call
“blocks”. Our first type of block is a function block denoted as FB(Pv, r,d), which
allows every “node” in S to replicate d times. This will help us in defining Bayesian
priors and posteriors. We setup FB as a one layer NN where the inputs nodes and
output nodes are fully connected. All incoming edges to the output node fj as in
Fig. 5.1(b) form a vector vj. The set of vj’s for 1 6 j 6 d i.i.d. follow the distribution
Pv on R

r. FB(Pv, r,d) simply takes the inputs � = (�1, ...,�r)T and outputs a d-
dimension vector f with fj = �Tvj for 1 6 j 6 d. Our second type of block is
a random feature block denoted as RB(Pw,d, r,�K), which we use to construct
random feature approximations for kernels to leverage the expressive power of
DGP. We setup RB as a one layer NN with random weights where the inputs nodes
and outputs are fully connected. All incoming edges to the output node �j as in
Fig. 5.1(c) form a vector wj. The set of wj’s for 1 6 j 6 r follow the distribution Pw

on R
d for 1 6 j 6 d. RB(Pw,d, r,�K) takes the inputs x = (x1, ..., xd)T and outputs

a r-dimension vector � with �j =
1p
r
�K(xTwj) for 1 6 j 6 r.

Writing a BNN with S, FB and RB blocks. Let us denote s` to be the number
of nodes in layer ` of the computation skeleton S. Typically, we may choose Pv ⇠

N(µ,⌃) and Pw ⇠ ⇢N(0, I) for a constant ⇢. Alg. 3 shows how given a S, together
with FB and RB blocks, we can construct a BNN N(S) by sequentially replacing
edges in S with a combination of FB and RB from bottom (input nodes) up to the
top (output nodes). Shortly, we describe the properties of such a BNN. First, let us
see an example. For Fig. 5.1, using FB in (b) with r = 3 and d = 2 (d = 1 for the
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last layer) and RB in (c) with d = 2 and r = 3 (d = 4 for the first layer) in Algorithm
3, we construct a BNN in (d) from the in S in (a). Essentially, we “substitute in”
FB+ RB to replace every edge in Fig. 5.1(a).

Prior and posterior approximation for N(S)

Our remaining task is to describe a prior for N(S) and then derive a posterior
approximation scheme for the construction in Alg. 3. To do so, we define some
notations. We use W for all random weights in the RB blocks, V gives all BNN
weights in the FB blocks and v`

k
denotes the weight vector that goes into kth dimen-

sion of f`. The related random features are denoted by �`
k
. For X = (x1, ..., xn)T , we

denote F` as a matrix with the ith row F`
i. = f`(xi) as the value of f` evaluated on

input xi. We define �`

k
to be the random feature matrix related to f`

k
for 1 6 k 6 d`.

Definition 5.1. For a BNN N(S) from Algorithm 3, we treat W as fixed, then the pa-
rameters are only V. We choose Pv = N(0, Ir) in Algorithm 3 to define the Bayesian
prior on v`

k
as N(0, Ir) for 1 6 k 6 d`, 1 6 ` 6 L. This Bayesian prior leads to the

relation p(F`.k|F`-1) = N(F`.k; 0,�`

k
�`

k

T

), therefore has a distribution over {F`}L
`=1 which

is p({F`}L
`=1) =

Q
L

`=1 p(F`|F`-1).

Algorithm 3 Expressing a Bayesian neural network (BNN) with computation skeleton and blocks

Input: a computation skeleton S. Output: a deep BNN N(S).
Construct layer 0 in N(S) by copying inputs (layer 0) from S.
for ` = 1 to L do

f`-1 = (f`-1
1 ; ...; f`-1

s`-1) 2 R
d
`-1 : output vector on layer `- 1 in N(S).

For each f`-1
j

, 1 6 j 6 s`-1, apply the activation � in S, and output {�(f`-1
j

)}s
`-1

j=1 .
for i = 1 to s` do
In(i) = {1 6 j 6 s`-1

| if node j in layer `- 1 connects with node i in layer ` in
S}

Build RB(Pw`
i

,d`-1, r,�K) on {�(f`-1
j

)}j2In(i) and output �`
i
2 R

r.
Build FB(Pv`

i

, r,d`
i
) on �`

i
and output f`

i
2 R

d
`

i in layer ` of N(S)
end for

end for
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When the outputs y and likelihood p(y|FL) are available for the design matrix
X, the posterior of BNN N(S) is intractable. Therefore, we use variational inference
to approximate its posterior.

Definition 5.2. We define the variational inference approximation for the posterior of V in
N(S) by defining the variational posterior q over V with v`

k
⇠ N(µ`

k
,⌃`

k
). Then, we get the

ELBO =
P

n

i=1 Eq(fL
i
) log(p(yi|fi)) - KL(q(V)|p(V)). This variational posterior over

V also leads to a posterior over {F`}L
`=1.

To optimize the ELBO, we apply a doubly stochastic approximation for the first
term in the ELBO, where the sum is estimated using mini-batches and the expec-
tation is approximated with a Monte Carlo sample from the variational posterior
q(fL

i
). Both stochastic approximations are unbiased. Further, by reparameterizing

v`
k
= µ`

k
+⌃`

k

1/2
N(0, Ir), the optimization of ELBO can be achieved with mini-batch

training and backpropagationCutajar et al. (2017); Salimbeni and Deisenroth (2017);
Gal and Ghahramani (2016).

Relationship between N(S) and DGPs

Having constructed a BNN N(S) from S, now we show that it can be seen as a VI
approximation for the DGP. To simplify notation, we assume that all {�`

k
}
d
`

k=1 are the
same so we drop the subscript k. We also assume that all {d`}L

`=1 are the same. We de-
fine an empirical kernel K̂`(f`-1(x), f`-1(x 0)) as 1

r

P
r

i=1 �K(�(f`-1(x))Twi)�K(�(f`-1(x 0))Twi)

and it’s expectation K
`(f`-1(x), f`-1(x 0)) as Ew�K(�(f`-1(x))Tw)�K(�(f`-1(x 0))Tw.

It is easy to check that K̂
`(f`-1(x), f`-1(x 0)) = h�`(x),�`(x 0)i. We denote

K̂
`(F`-1, F`-1) as the n⇥ n matrix for n inputs. First, we point out that the prior in

Definition 5.1 is indeed a DGP prior.

Proposition 5.3. The BNN prior of N(S) in Def. 5.1 represents a DGP prior for {F`}L
`=1.

This means that F`.j|W, F`-1
⇠ N(0, K̂`(F`-1, F`-1)), for 1 6 j 6 d and 1 6 ` 6 L.

This DGP with kernels {K̂
`
}
L

`=1 is also an approximation for the DGP with
kernels {K`}L

`=1 if �K is ReLU or C-bounded (�K is continuously di�erentiable and
||�K||1, ||� 0

K
||1 6 C).
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C-boundedness. TheC-bounded condition holds for most popular sigmoid-like
functions such as 1/(1 + e-x), erf(x), x/

p
1 + x2, tanh(x) and tan-1(x). The bound

for C-bounded activation functions is given in the supplement, which is similar to
the ReLU results below.

Theorem 5.4. If the activation function �K is ReLU, then for every 1 6 ` 6 L, on a
compact set M 2 R

d with diameter diam(M) and max�2M ||�||2 6 cM, with probability
at least 1 - c1cMdiam(M)2exp

⌦
- r✏

2

8(1+d)⌫2
M

↵
, for any �(f`-1(x)),�(f`-1(x 0)) 2 M̃,

|K̂
`(f`-1(x), f`-1(x 0))-K

`(f`-1(x), f`-1(x 0))| 6 ✏,

for a constant c1 > 0 and a parameter ⌫M depending on M. Here, M̃ specifies that we
require �(f`-1(x)) and �(f`-1(x 0)) to be two vectors in M that are not collinear.

Remark 5.5. In Cho and Saul (2009); Cutajar et al. (2017), the authors point out that
K
` is the arc-cosine kernel for ReLU activation function and in Cutajar et al. (2017), the

authors use this random feature approximation idea to construct a BNN. In this direction of
works, our main contribution is the theoretical analysis. In Daniely et al. (2016), the author
proves the convergence rate for K̂ given fixed points x and x 0. Theorem 5.4 is stronger which
proves the uniform convergence rate on a compact set M. It implies the e�ect of the diameter
diam(M), the angle between �(f`-1(x)) and �(f`-1(x 0)), and the e�ect of the replication
d of FB block besides the e�ect of the RB block replication r.

We show that the BNN prior of N(S) in Def. 5.1 is a prior for DGP with kernels
{K̂
`
}
L

`=1, which is also an approximation for DGP with kernels {K
`
}
L

`=1. Next, we
show that the variational posterior and ELBO optimization in Definition 5.2 leads
to the same posterior approximation for DGP as using a recent “inducing points”
approach via doubly stochastic variational inference Salimbeni and Deisenroth
(2017).

Theorem 5.6. Using inducing points with doubly stochastic variational inference Salimbeni
and Deisenroth (2017) to approximate the posterior of the DGP with kernels {K̂`}L

`=1, we
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obtain exactly the same posterior approximation as solving the ELBO optimization in
Definition 5.2 for N(S).

Remark 5.7 (Proof discussion). First, since we show that the prior of N(S) in Def. 5.1
is a prior for DGP with kernels {K̂`}L

`=1, we can apply the inducing points approximation
for DGP. Second, the variational posterior defined in Definition 5.2 is over v` while the
variational posterior from inducing points approach is defined over F` for each layer `. We
need to show the equivalence for variational posterior and ELBO between the two approaches.
Then, because the feature space for the kernel {K̂`}L

`=1 is finite with rank r, by randomly
selecting r inducing points, we can decompose the kernel matrix into a product of two
square matrix, which is also invertible based on random matrix theory Rudelson (2008);
Tao (2012). Finally, we simplify both sides and we achieve the equivalence. More details are
in the supplement.

Based on Prop. 5.3 and Thm. 5.6, we show that the BNN N(S) constructed from
S can be seen as a VI approximation for the DGP with kernels {K̂`}L

`=1. However,
we notice that the empirical kernel {K̂`}L

`=1 and its expectation kernel are restricted
by the class of �K which does not cover all general kernels. We solve this problem
by proposing a new block in BNNs, which is named as inducing points block IPB.

Definition 5.8. For a kernel K, IPB can be constructed by choosing r additional points Z
(inducing points), taking the inputs x and outputting an r-dimension vectorK(x, Z)K(Z, Z)-1/2.

Replacing RB in Alg. 3 by IPB, we obtain a new class of BNNs. We prove that
the N(S) with IPB can be seen as a VI approximation for DGP with general kernels
{K
`
}
L

`=1.

Theorem 5.9. Using inducing points with doubly stochastic variational inference Salimbeni
and Deisenroth (2017) to approximate the posterior of the DGP with kernels {K`}L

`=1, we
obtain the same posterior approximation as solving the ELBO optimization in Definition
5.2 for N(S) with IPB, except a constant o�set in each layer (see supplement).

Theorem 5.9 proves that for any DGP with a general kernel {K`}L
`=1, theN(S)with

IPB can be seen as a VI approximation. The similarity between RB matrix � and
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the IPB matrix K(x, Z)K(Z, Z)-1/2 is that they are both rank r basis approximation
for the kernel K, which are equivalent when the kernel is K̂ related to activation
function �K.

N(S) and other deep probabilistic models

We have shown that the BNN N(S) constructed from Alg. 3 can be seen as a VI
approximation for DGP. Next, we show that with a few small changes, Alg. 3 can
construct other interesting deep probabilistic models. To do so, we allow changes
in the existing framework,

Change 1) In Alg. 3, inside the inner-most loop, we have one RB (IPB). We
allow taking out RB (IPB) entirely or replacing it by multiple sequential RBs (IPBs)
as long as they are matched.
Change 2) Earlier, we assumed that the variational posterior q for v`

i
follows a

normal distribution. We now allow it to follow a probability mass function and a
mixture of two probability mass functions.
Change 3) Earlier in Def. 5.1, the prior p(v) is a normal distribution. We allow
other forms of priors to encourage other regularizations, e.g., Laplace distribution
for `1 sparsity.

Remark 5.10. Change 1 determines the complexity of kernels in each layer. Since the exact
posterior can be multi-modal, Change 2 allows us to use di�erent variational posterior class
from normal distribution. As prior in Bayes often serves as a regularization, Change 3 allows
us to choose priors related to Lasso type penalty while normal distribution corresponds to
L2 penalty.

By simply applying these changes, N(S) can lead to most popular deep proba-
bilistic models. First, consider the case where no RB is used in constructing N(S).
This gives us a kernel K with K(x, x 0) = �(x)T�(x 0) as in Fig. 5.1 (e). Further, let
us use q(v) as a mixture of two probability mass functions. These changes leads
to MC dropout Gal and Ghahramani (2016). Second, let us allow multiple RBs
in constructing N(S) as in Fig. 5.1(f). This ends up representing the Gaussian
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process with deep random feature in Daniely et al. (2016). Third, in Fig.5.1 (g), we
show another construction that represents deep kernel learning Wilson et al. (2016),
where IPB or RB is not used at all; the variational posterior q(v) is a probability
mass function except the last layer.

Remark 5.11. One of the contribution from our framework is that it ties most deep proba-
bilistic models to study their similarity and di�erence. It shows the similarity among them
through the computation skeleton N(S) in Alg. 3. It distinguishes them through blocks and
simple changes. Through our framework, it is easy to compare di�erent deep probabilistic
models Salimbeni and Deisenroth (2017); Cutajar et al. (2017); Gal and Ghahramani (2016);
Daniely et al. (2016); Wilson et al. (2016) and derive new constructions, approximation
methods and optimization algorithms.

Computation skeleton and structure. We see that the structure assumption is
applied via the computation skeleton and we can construct various deep proba-
bilistic models by adjusting blocks in Alg. 3. A computation skeleton, which has a
meaningful structure for the applications, can help to build a deep probabilistic
model that is interpretable. For example, in Fig. 5.1 (g), we see a computation
skeleton for multi-task learning where the first layer captures the shared low level
patterns among multiple tasks and the second layer defines individual high level
patterns for each task. In Fig. 5.1 (h), we have an additive structure where a large
neural network is composed by summing several sub neural networks, which helps
to simplify the prediction model and understand the interactions within small
input groups.

5.3 Additive Structure and Interactions

Let us see an example of constructing BNNs with additive structure in our frame-
work to detect statistical interactions and provide interpretability. In eq.(5.1), we
introduced the ANOVA decomposition, which represents a complicated function
f(x) as an additive model of several sub-functions. Each sub-function represents an
interaction term. For example, given a function f⇤ between inputs x = (x1, ..., xp)
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and output y, one can define the interaction function IT over a subset of inputs xT

Gu and Wahba (1993) as

IT (xT ) =
Y

i2T

(Ixi
- Exi

)
Y

j/2T

Exj
f⇤(x1, ..., xp). (5.2)

The ANOVA decomposition helps us understand the flow of information from the
input to the output. For example, I1(x{1}) is the main e�ect of first input x1 and
I{1,2}(x{1,2}) is the interaction between the first two inputs.

First, we discuss how to design a DNN with the additive structure and detect
statistical interactions. Then using Alg. 3, the results can be easily extended to
the Bayesian formulation which yields a Bayesian additive neural network. Based
on Fig. 5.1(h), the additive neural network f(x) is f(x) =

P
k

j=1 gj(x), where each
sub-function gj(x) is a sub-neural network with few inputs. In the smoothing spline
ANOVA model Gu and Wahba (1993), one considers all possible sub-functions in
ANOVA, which means that the number of components k is 2p. The sub-function
gj(x) is a non-parametric model in a reproducing kernel Hilbert space defined by a
kernelKj(x). However, when high-order interactions exist, the kernel is not complex
enough to model the interactions and considering all possible sub-functions in
the ANOVA decomposition is expensive. Since each sub-function gj(x) in our
additive neural network is a neural network, it has the capability to model complex
interactions even when the dimension is high. We choose k to be a polynomial
number of p. In order to generate similar results as the ANOVA decomposition to
study interactions, we use a post-training estimate. After we fit a function f(x) from
the training step, we apply the empirical expectation operator En with n samples
on f(x),

In
T
(xT ) =

Y

i2T

(Ixi
- E

n

xi
)
Y

j/2T

E
n

xj
f(x1, ..., xp), (5.3)

which is an approximation for the interaction function IT (xT ). Detecting statis-
tical interactions is hard when p is large, but we show that our additive neural
network model with the post-training ANOVA decomposition in (5.3) can estimate
interactions in polynomial complexity of p.
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Theorem 5.12. If there exist inputs clusters {T⇤
j
}
k
⇤

j=1 such that f⇤(x) =
P

k
⇤

j=1 g
⇤
j
(xT⇤

j
) with

k⇤ of the order of a polynomial in p and c = maxk
⇤

j=1 |T
⇤
j
| = O(log p), then there exists a

trained additive neural network that predicts y well and restricts the number of possible
interactions to be at most a polynomial in p. Further, if every sub neural network has L
layers with d hidden units, then the complexity of (5.3) is at most nck⇤d2L-1, which is also
polynomial in p.

Remark 5.13. This result does not hold for an arbitrary neural network, which needs to
consider all 2p possible interactions in the post-training ANOVA decomposition and needs
np(k⇤d)2L-1 complexity for (5.3). When computing (5.3), an additive neural network is
more e�cient since each block is more compact, and the additive structure helps eliminate
non-existing interactions from the candidates set. Therefore, when the true function f⇤ has
a good additive representation, additive neural network is more e�cient. In practice, we
always use group Lasso type penalty to encourage each sub neural network to depend on a
few inputs.

Bayesian additive neural network (BANN). We present the computation skele-
ton of the additive structure in Fig. 5.1 (h). By applying our BNN construction
framework in Alg. 3, we can easily construct the Bayesian formulation of our
additive neural network model using various deep probabilistic models. In or-
der to allow each sub-neural network selects a subset of inputs, for every sub-
neural network, the first layer is only built with FB and the prior on the weights
is p(V1) ⇠ exp(-

P
p

i=1 ||v1
i
||2) where v1

i
refers to the weight vector emanating from

the ith input. The variational posterior q(V1) is the probability mass function to
make top layers stable. Other layers are constructed depending on the specific deep
probabilistic model in Alg. 3. That generates a Bayesian additive neural network
which can estimate interaction, provide interpretability and derive uncertainties
for measures of interest.
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5.4 Experiments

We show how our BANN model can detect statistical interactions and how one
can easily compare various deep probabilistic models. We first evaluate the perfor-
mance of our BANN model on synthetic experiments for regression and interaction
detection for additive functions. Then, we use Alg. 3 to construct four di�erent
types of BANNs (where each refers to a type of deep probabilistic model) and
check its utility for prediction and identifying interaction strength. Finally, we
show how BANN can infer main e�ects and statistical interactions of features with
uncertainties for interpretability. Further, we apply BANN on eight benchmark
datasets to show its performance.

Table 5.1: (L) Synthetic functions from Tsang et al. (2018); (R) Comparisons between
BANN, BNN, BART and NID. BNN/BART do not detect interactions.

Method formula RMSE Top rank recall (noise, �2 = 1, 3, 5)
BANN (0.5k) BNN (7k) BART NID (20k) Ours (BANN) NID

f1 10 sin(⇡x1x2) + 20(x3 - .5)2 1.07 ± 0.01 1.15 ± 0.01 1.07 ± 0.01 1.09 ± 0.01 1 1 1 1 1 1
f2

10exp(x1x2)- 20 cos(x3 + x4 + x5)
+7 arcsin(x9x10)

1.16 ± 0.01 1.22 ± 0.02 1.43 ± 0.02 1.44 ± 0.02 1 1 2/3 1 2/3 0

f3
exp(|x1x2|+ 1) + exp(|x3 + x4|+ 1)
-19 cos(x5 + x6)- 10

p
x2

8 + x2
9 + x2

10
1.35 ± 0.01 1.32 ± 0.01 1.24 ± 0.02 1.42 ± 0.02 3/4 3/4 2/4 1 2/4 1/4

f4

1
1+x2

1+x2
2+x2

3
- 5
p

exp(x4 + x5)

+10|x6 + x7 |+ 6x8x9x10
1.13 ± 0.01 1.13 ± 0.01 1.17 ± 0.01 1.40 ± 0.02 3/4 3/4 2/4 2/4 2/4 1/4

BANN, BNN, BART and NID on prediction accuracy and interaction detec-
tion. We compare BANN with BNN (with a single neural network), BART (Bayesian
additive regression tree) and NID (Neural interaction detection) in terms of pre-
diction accuracy and interaction detection. For BANN, we use the setup in section
5.3, where the group Lasso penalty is applied on the first layer. We use 10 compact
sub-NNs for BANN and a single (but more complex) neural network for BNN
(see supplement). For BART and NID, we use the setup in Chipman et al. (2010);
Tsang et al. (2018). Both BANN and BNN here are based on the MC dropout type
construction (see section 5.2). First, we compare RMSE (root mean-squared-error).
We run 4 synthetic experiments, see Tab. 5.1. We use one function f in Tab. 5.1 to
generate 5000 train/test samples (10 features, 1 response), where for every input
x, each dimension of the inputs are i.i.d. generated from the uniform distribution
on (0, 1] and the response y is y = f(x) + ✏, with ✏ ⇠ N(0, 1). From Tab. 5.1, we see
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that the BANN yields comparable (or better) RMSE compared to baselines. Though
the prediction performance is similar, note that BANN is a much more compact
design: BANN has just ⇠500 edges while the BNN has 7000 edges, NID has 2000
edges and BART has 200 trees (see Tab. 5.1).

Table 5.2: Constructing multiple types BANN of f1.

Measure MLL Interaction Main e�ect
(1, 2) 1 2 3 4 5

MC dropout -1.61 ± 0.09 1.51 ± 0.05 2.44 ± 0.15 2.35 ± 0.10 1.69 ± 0.06 3.18 ± 0.04 1.63 ± 0.03
RF -1.60 ± 0.09 1.52 ± 0.06 2.39 ± 0.08 2.31 ± 0.11 1.70 ± 0.11 3.19 ± 0.06 1.61 ± 0.04

DKL -1.53 ± 0.08 1.59 ± 0.04 2.44 ± 0.23 2.32 ± 0.13 1.70 ± 0.08 3.16 ± 0.06 1.61 ± 0.04
DRF -1.56 ± 0.07 1.40 ± 0.02 2.36 ± 0.05 2.35 ± 0.10 1.71 ± 0.03 3.15 ± 0.03 1.59 ± 0.02

Next, we compare BANN and NID for interaction detection (other two baselines
are not applicable). To detect interactions, BANN first calculates the interaction
functions from eq.(5.3), then their empirical `2 norms are used as the “interaction
strength”, and then BANN selects the top k interactions. Possible interaction candi-
dates are based on the group-Lasso clusters for every “sub-NN” in our additive
model. For NID, we use the setup in Tsang et al. (2018). We run the same experi-
ments as the RMSE setting using Tab. 5.1. To assess ranking quality, we use the
top-rank recall metric Tsang et al. (2018): a recall of interaction rankings where
only those interactions that are correctly ranked before we encounter any false
positives are considered. Only one superset interaction from each sub-function of f
is counted as a true interaction. From Tab. 5.1, we see that the BANN outperforms
NID for interaction detection.

Four di�erent types of BANN. As described in section 5.2, we can derive other
deep probabilistic model schemes for BANN: MC dropout, random features (RF),
deep kernel learning (DKL) and deep random features (DRF), see section 5.2. Then,
we can calculate uncertainty based on each of these schemes. Here, we consider
two measures, the mean log likelihood (MLL) and the empirical `2 norm of the
interaction or main e�ect function from eq.(5.3). The mean log likelihood (MLL)
measures the prediction accuracy. The empirical `2 norm measures the strength of
the interaction or main e�ect. For the uncertainty of the interaction measure, we
only calculate it for BANN but do not compare the results with NID Tsang et al.
(2018) since NID cannot model uncertainty. In Tab. 5.2, we show the two types
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measures with uncertainties for f1 in Tab. 5.1. The results show that all four types
of constructions (derivable from our proposal) correctly yields interactions between
x1 and x2 as well as the main e�ects of each input because the values are close to
the truth from the math calculation. We also see the advantage of our framework
that it makes the comparison between di�erent deep probabilistic models easy for
new computation skeletons.

Interpretability and uncertainty using BANN. We showed that BANN can
produce interaction e�ect measure with it’s uncertainty. Here, we show that the
BANN can also produce uncertainties for the interaction function defined in eq.
(5.3). We use the f1 in Tab. 5.1 as an example and we are interested in modeling the
interaction between x1 and x2. Using BANN, we can obtain the interaction function
and the uncertainty function for it in Fig. 5.2. We draw them as heatmaps where
the horizontal axis is x1 and the vertical axis is x2 . We can see from those figures
that BANN can provide meaningful information for interactions, which is rarely
available for deep neural network models. This ability of BANN can be very useful
for interpretability.

Benchmark experiments. Finally, we apply BANN on common datasets used
by other authors. BANN (which is a more compact model) yields competitive
performance in addition to the other features it natively provides such as inter-
action (interpretability) and uncertainty discussed above. This implies that these
additional benefits do not come at a cost of performance.

Figure 5.2: Interaction between x1, x2 for f1 in Tab. 5.1. Mean interaction (L) and
its standard deviation (R) shown.
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Table 5.3: Average test performance in RSME and Standard Errors for BANN(ours),
dropout uncertainty (MC dropout), deep Gaussian process (DGP 5) and prob-
abilistic back-propagation(PBP) on benchmarks. Dataset size(N) and input
dimensionality(Q) are also given.

N Q BANN MC dropout DGP 5 PBP
Boston 506 13 3.03 ± 0.12 2.97 ± 0.19 2.92 ± 0.17 3.01 ± 0.18

Concrete 1030 8 5.18 ± 0.14 5.23 ± 0.12 5.65 ± 0.10 5.67 ± 0.09
Energy 768 8 0.65 ± 0.03 1.66 ± 0.04 0.47 ± 0.01 1.80 ± 0.05
Kin8nm 8192 8 0.07 ± 0.00 0.10 ± 0.00 0.06 ± 0.00 0.10 ± 0.00
Naval 11934 16 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
Power 9568 4 4.04 ± 0.03 4.02 ± 0.04 3.68 ± 0.03 4.12 ± 0.03
Protein 45730 9 4.07 ± 0.01 4.36 ± 0.01 3.72 ± 0.04 4.73 ± 0.01
Wine 1599 11 0.66 ± 0.01 0.62 ± 0.01 0.63 ± 0.01 0.64 ± 0.01

5.5 Discussion

We presented a framework to understand the flow of Information in deep prob-
abilistic models. We generalized the structure on function class assumption in
statistics to deep probabilistic models through the use of the computation skeleton,
which also helps provide more interpretable models. Our framework ties various
deep probabilistic models together including BNNs, DGPs, DKL and others. As
a by-product, our technical development and analysis helps us understand the
similarities and di�erence between various deep probabilistic models. Finally, we
show how the structure assumption can be instantiated via an additive structure
assumption to derive a Bayesian additive neural networks (BANN), which produce
interpretable results through statistical interactions with uncertainty estimates.
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In this dissertation, we discussed how kernel methods can be used in the analysis
of big and complex data. In Chapter 2, we considered the situation when multiple
datasets are available and come from heterogeneous sources. Those datasets formu-
late a large dataset with more samples but also with more biases. Our contribution
is to derive a framework using the graphical causal model to identify covariate shift
bias and using maximum mean discrepancy, a kernel-based approach, to eliminate
the covariate shift bias between multiple datasets. The framework is applied to
Alzheimer’s disease study to show an advantage. More details can be found in
Zhou et al. (2016, 2018a).

When we have multiple datasets from heterogeneous sources, we can use the
framework in Chapter 2 to eliminate the biases with the best e�ort. However, an
important question remains to be answered that how we can determine combining
multiple datasets is beneficial because of increased sample size instead of harming
the analysis because of increased biases. In Chapter 3, we answered this question.
We derived a hypothesis testing to decide when it is beneficial to combine multiple
datasets from heterogeneous sources. We derived theoretical analysis for a sparse
multi-source model on multi-source datasets to study its behavior. More details
can be found in Zhou et al. (2017).

In the analysis of spatiotemporal data, we are interested in understanding the
dynamic behavior. For example, in Chicago crime data, we want to understand
how crime happens and transit between various communities in Chicago as time
changes. Instead of fitting a linear auto-regressive model, we built a kernel-based
non-parametric model to study this dynamic behavior. In this setting, the spatial
information and kernel space formulates a high dimensional space while the sam-
ples are sparse in the observed period. As prior high dimensional statistics, we
added regularizations to solve the problem in Chapter 4. We derived theoretical
analysis to study the behavior of the non-parametric kernel-based model in this
setting when model space is high dimension and samples are dependent. More
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details can be found in Zhou and Raskutti (2019).
Finally, with the development of high computation power and the ability to

collect big data, deep learning becomes popular in a lot of applications recently. The
kernel methods can not directly adapt to this change and benefit from the recent
high computation power. We found a new area called deep probabilistic models.
In Chapter 5, we derived a framework and showed that kernels and structure
assumptions in statistics can be used to understand those models. It also points out
a way to extend classic statistics models, such as additive model and hierarchical
model, to a deep structure where we can use the recent development from deep
learning and maintain interpretability and uncertainty estimates from statistics.
More details can be found in Zhou et al. (2018b).
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A.1 Proofs for Theorems in Chapter 2

In this section, we give proofs for Theorem 2.2, Theorem 2.6, Theorem 2.7, and
Theorem 2.9.

Proof for Theorem 2.2

Theorem A.1. The distribution shift correction is identifiable if there exists a known set of
variables Z such that the following three conditions are all concurrently satisfied:
1) Z d-separatesX and EB (sample selection bias) and also d-separatesX and EP (population

characteristic di�erence);
2) The conditional probability P(X|Z), after appropriate transformations on X, is the same

across multiple participating sites (S and T );
3) The distribution of Z has a non-trivial overlap across multiple sites (S and T ), which

means that there exists an interval [a,b] such that P(a 6 Z 6 b) > 0.5 for all sites.

Proof. We denote measurements of interest as XS in dataset 1 and XT in dataset
2. We assume EB = 1, EP = 1 for dataset 1 and EB = 2, EP = 2 for dataset 2
to represent the biases between the two datasets. Without loss of generality, we
assume that a transformation h�0(.) can resolve the distributional shift, that is,
marginal distributions of h�0(XS) and XT are the same. However, when biases exist,
we have,

P(h�0(XS)|EB = 1,EP = 1) 6= P(XT |EB = 2,EP = 2). (A.1)

Therefore, we may not be able to find the correct transformation by matching
the distributions Zhou et al. (2016). Then, the correction problem becomes non-
identifiable if we do not have any additional information. The situation changes
when we have a set of variables Z which satisfy the three identification conditions
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in Thm. 2.2. The following explanation describes why.

P(h�0(XS)|EB = 1,EP = 1) = EZ|EB=1,EP=1[P(h
�0(XS)|Z,EB = 1,EP = 1)] (A.2)

= EZ|EB=1,EP=1[P(h
�0(XS)|Z)] (A.3)

The second equation holds because of condition 1) in Thm. 2.2. Similarly,we have,

P(XT |EB = 2,EP = 2) = EZ|EB=2,EP=2[P(XT |Z)] (A.4)

Then, since condition 2) holds, we have P(h�0(XS)|Z) = P(XT |Z), that is, they are
identical functions of Z. Therefore, the only di�erence between the two datasets
are P(Z|EB = 1,EP = 1) and P(Z|EB = 2,EP = 2). We should keep in mind
that this di�erence is similar to [A.1]. However, there is no longer an unknown
transformation h�0(.) in the relation. To address this issue, we can conduct a
subsampling procedure SSP on Z to approximately align P(Z|EB = 1,EP = 1) with
P(Z|EB = 2,EP = 2). The condition 3) in Thm. 2.2 shows that this is possible. After
the subsampling procedure, we will approximately have,

P(h�0(XS)|EB = 1,EP = 1, SSP) = P(XT |EB = 2,EP = 2, SSP). (A.5)

Therefore, the correction problem becomes identifiable since we can now learn h�0

by matching the distributions.

Proofs for Theorem 2.6 and Theorem 2.7

First,we have Lemmas from Zhou et al. (2016).

Lemma A.2. For any fixed function h(xs, �), g(xt,�),any �, �, bounded kernel K, we
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have
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Lemma A.3. For any fixed function h(xs, �), g(xt,�),any �, �, bounded kernel K, we
have
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Lemma A.4. For any fixed function h(xs, �), g(xt,�) and a bounded kernel K, if (A1)
holds, we have

P( sup
�2⌦�

sup
f2F

|
1
n

nX

i=1
f(h(xis, �))- Exs

f(h(xs, �))| >
p
Kp
n

 

4 +

s

C(h,↵) +
d�
2rh

logn

!

) 6 ↵

2

P( sup
�2⌦�

sup
f2F

|
1
m

mX

i=1
f(g(xit,�))- Ext

f(g(xt,�))| >
p
Kp
m

 

4 +

s

C(g,↵) +
d�
2rg

logm

!

) 6 ↵

2

where C(h,↵) = log(2|⌦�|)+log↵-1+ d�

rh
log Lhp

K
, and C(g,↵) = log(2|⌦�|)+log↵-1+

d�

rg
log Lgp

K

Theorem A.5. Under mild assumptions 2.4, if there is a �0, ✓0 such that h�0(XS) and
g✓0(XT ) have the same distribution, then

MMD(h�̂(XS),g✓̂(XT ))! 0



114

with the rate max(
p

log(nS)p
nS

,
p

log(nT )p
nT

). If �0, ✓0 are unique, then the estimators �̂, ✓̂ are
consistent.

Proof. Recall the basic inequality
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We use a basic inequality and get
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The results follows from Lemma A.4, by noticing that for every random variable
W,Z, constant a,b, we have P(W + Z > a+ b) 6 P(W > a) + P(Z > b). Thus, for



116

any ↵ > 0, with probability at least 1 - ↵.
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Next, we show the estimators are consistent. We assume that ⌦�,⌦� are
bounded. For notational convenience we simply call

||Exs
K(h(xs, �̂), .)- Ext

K(g(xt, �̂), .)||H - ||Exs
K(h(xs, �0), .)- Ext

K(g(xt,�0), .)||H

as ⇣(�̂, �̂).
Notice that ⇣(·) is continuous because ⇣(·)2 is the summation of expectations of

bounded continuous functions (because the kernel is bounded continuous). If (�̂, �̂)
doesn’t converge to (�0,�0) when ⇣(�̂, �̂) converges to 0, then we have a sequence
(�̂k, �̂k) and an ✏ > 0, such that ||(�̂k, �̂k) - (�0,�0)|| > ✏ but ⇣(�̂k, �̂k) converges
to 0. Because ⌦�,⌦� bounded, ⇣(·) is continuous, and hence T(�,�,C) = {� 2
⌦�,� 2 ⌦�|⇣(�,�) < C} is a compact set of (�,�) for some constant C.

So we can find a point (�̃, �̃) in T(�,�,C)\{(�,�)|||(�,�)-(�0,�0)| > ✏} such that
there is a subsequence (�̂kl

, �̂kl
) which converges to (�̃, �̃) when l goes to 1, based

on Bolzano-Weierstrass theorem. But since ⇣(·) is continuous, we have ⇣(�̃, �̃) = 0,
with ||(�̃, �̃)- (�0,�0)|| > ✏. This contradicts with the unique solution requirement
of (�0,�0).

Theorem A.6. Given Assumptions 2.4, when H0 is true, with probability at least 1 - ↵,
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When HA is true, with probability at least 1 - ↵,
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where C⇤ = min�,✓MMD(h�(PS),g✓(PT )) is a positive constant when HA holds. Here,
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Proof. Under H0,

M(�̂, �̂)-M
⇤(�0,�0)

6 M(�0,�0)-M
⇤(�0,�0)

= MMD(h(xs, �0),g(xt,�0))-MMD⇤(h(xs, �0),g(xt,�0))

where MMD⇤(·) is the MMD in the population sense while MMD(·) takes the
expectation in a sample sense. The MMD empirical bound from Theorem 7 in
Gretton et al. (2012) can be directly applied to the right hand side of the above
inequality. This application will lead to the bound on H0.

Similarly, under HA,

M(�̂, �̂)-M
⇤(�A,�A)

6 M(�A,�A)-M
⇤(�A,�A)

= MMD(h(xs, �A),g(xt,�A))-MMD⇤(h(xs, �A),g(xt,�A))

Similar to the case of H0, the upper bound follows from Theorem 7 of Gretton et al.
(2012). The lower bound proof under the alternative follows from Lemma A.4.
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|M(�̂, �̂)-M
⇤(�A,�A)| = | min

�2⌦�
min
�2⌦�

sup
f2F

(
1
m

mX

i=1

f(g(xi
t
,�))- 1

n

nX

i=1

f(h(xi
s
, �)))

- min
�2⌦�

min
�2⌦�

sup
f2F

(Ext
f(g(xt,�))- Exs

f(h(xs, �)))|

Use the fact that |minx f1(x) - minx f2(x)| is smaller than sup
x
|f1(x) - f2(x)|, we

have

|M(�̂, �̂)-M
⇤(�A,�A)|

6 sup
�2⌦�,�2⌦�

sup
f2F

|(
1
m

mX

i=1
f(g(xit,�))-

1
n

nX

i=1
f(h(xis, �)))- (Ext

f(g(xt,�))- Exs
f(h(xs, �)))|

6 sup
�2⌦�

sup
f2F

|
1
m

mX

i=1
f(g(xit,�))- Ext

f(g(xt,�))|+ sup
�2⌦�

sup
f2F

|
1
n

nX

i=1
f(h(xis, �))- Exs

f(h(xs, �))|

The results come from Lemma A.4, and the fact that for every random variable
W,Z, constant a,b, we have P(W + Z > a+ b) 6 P(W > a) + P(Z > b)

Proof for Theorem 2.9

Theorem A.7. Define gb

u(i,k) to be the number of appearances of x(i,k)u in iteration b.
Define COV(gu(i,k), �) = 1

B

P
B

b=1(�̂
b - �̂)(gb

u(i,k) -
si

ni
u

). The IJ estimator of variance
for �̂ is

VARIJ(�̂) =
X

u2{S,T}

dX

i=1

n
i
uX

k=1

(COV(gu(i,k), �))2

The procedure for ✓̂ is identical.

We provide a proof of our extension of the infinitesimal Jackknife estimator
Efron (2014) to multiple groups. The proofs proceed in two steps.

Proof. Step 1.



119

Before describing the proof, we define some notations. We have two datasets XS,
XT and d groups for each dataset. We define our samples from one dataset as

XS = (x(1,1)
S

, ..., x(1,n1
S
)

S
, ..., x(d,1)

S
, ..., x(d,nd

S
)

S
)

and samples from the other dataset as

XT = (x(1,1)
T

, ..., x(1,n1
T
)

T
, ..., x(d,1)

T
, ..., x(d,nd

T
)

T
).

Based on X = (XS,XT ), we can generate bootstrap samples for every group and
we call all such generated samples as V = (VS,VT ). In this proof (similar to Efron
(2014)), we assume that the bootstrap sample sizes are the same as the original
samples, that is,

VS = (v(1,1)
S

, ..., v(1,n1
S
)

S
, ..., v(d,1)

S
, ..., v(d,nd

S
)

S
)

and
VT = (v(1,1)

T
, ..., v(1,n1

T
)

T
, ..., v(d,1)

T
, ..., v(d,nd

T
)

T
).

Based on V = (VS,VT ), we define the count variables N(V) = (N(VS),N(VT )) and
probability variables P(V) = (P(VS),P(VT )), which are,

N(Vu)
(i,j) = #{k = 1, ...,ni

u
|V(i,k)

u
= X(i,j)

u
}, for any u 2 {S, T }. i 2 {1, ...,d}. j 2 {1, ...,ni

u
}.

P(Vu)
(i,j) =

1
ni
u

N(Vu)
(i,j), for any u 2 {S, T }. i 2 {1, ...,d}. j 2 {1, ...,ni

u
}.

In other words, N(Vu)(i,j) records how many times X(i,j)
u appears in the bootstrap

samples for one iteration. The probability variable P(Vu)(i,j) is the normalized
N(Vu)(i,j) such that

P
n

i
u

j=1 P(Vu)(i,j) = 1. The bootstrap process is repeated B times.
Later, when we have superscript b for V , N(V) and P(V), it implies that those
variables are related to the bth iteration of the bootstrap process. Now, we define
another term to be the baseline for the probability variables, which is,

P(X) = (P(XS),P(XT )), whereP(Xu)
(i,j) =

1
ni
u

, for any u 2 {S, T }. i 2 {1, ...,d}. j 2 {1, ...,ni

u}.
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We can see that P(X) represents the uniform distribution for each group of X, which
only depends on the original samples X. On the other hand, P(Vb) depends on X

and the bootstrap samples Vb for the bth iteration.

The probability variables P(Vb) and the baseline probability variables P(X) are
connected by multinomial distributions as

ni

u
⇥P(Vb

u
)(i) ⇠ Multini

u
(ni

u
,P(Xu)

(i)), for any u 2 {S, T }. i 2 {1, ...,d}.b 2 {1, ...,B},
(A.6)

where P(Vb

u
)(i) is related to the ith group from dataset Vb

u
and P(Xu)(i) is related

to the ith group from dataset Xu. In Multini
u
(ni

u
,P(Xu)(i)), ni

u
is the total number

of variables in the ith group whereas P(Xu)(i) is the uniform distribution for this
group. This means that ni

u
⇥P(Vb

u
)(i) can be viewed as ni

u
samples generated from

the multinomial distribution on ni

u
discrete values with equal probability to be

drawn.

Let us consider an estimation function f. For the bth iteration in the bootstrap
process, we obtain an estimator f̂b from samples Vb. We assume that, given X,
f̂b only depends on P(Vb), which means that we can represent f̂b by f(P(Vb)).
Therefore, we can approximate f̂b via the tangent hyperplane that goes through
f(P(X)) at P(X), which gives us that

fTAN(P(V
b)) = f(P(X)) + hP(Vb)- P(X),Ui (A.7)

where hP(Vb) - P(X),Ui =
P

u=S,T
P

d

i=1hP(Vb

u
)(i) - P(Xu)(i),Ui

u
i, and U

i

u
=

(U(i,1)
u , ...,U(i,ni

u)
u ),

U
(i,j)
u

= lim
✏!0

f(P(Xu)(i) + ✏(ej - P(Xu)(i)))- f(P(X)(i))

✏
. (A.8)

where ej is a vector with all zeros except one on the jth position.
Because our bootstrap samples are drawn independently from every group, we
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have that

E[fTAN(P(V
b))- f(P(X))]2 =

X

u=S,T

dX

i=1

E[hP(Vb

u
)(i) - P(Xu)

(i),Ui

u
i]2 (A.9)

Further, using the multinomial distribution relation between P(Vb) and P(X) in
[A.6], we get

E[hP(Vb

u
)(i) - P(Xu)

(i),Ui

u
i]2

= (Ui

u
)tE[(P(Vb

u
)(i) - P(Xu)

(i))(P(Vb

u
)(i) - P(Xu)

(i))t]Ui

u

=
1

ni
u

2 (U
i

u
)t(I-

1
ni
u

1t(1))Ui

u
=

n
i
uX

j=1

1
ni
u

2 (U
(i,j)
u

)2 -
1

ni
u

3 (

n
i
uX

j=1

U
(i,j)
u

)2,

(A.10)

where (·)t represents the transpose operation on a vector or matrix, and 1 is the all
one vector. Further, since

P
n

i
u

j=1(ej -P(Xu)(i)) = 0, we have
P

n
i
u

j=1 U
(i,j)
u = 0 from its

definition in [A.8]. Therefore, we get an approximation for the mean squared error
(MSE) of f̂b for estimation f(P(X)), that is

E[fTAN(P(V
b))- f(P(X))]2 =

X

u=S,T

dX

i=1

1
ni
u

2

n
i
uX

j=1

(U(i,j)
u

)2 (A.11)

Further, if E[f(P(Vb))] = f(P(X)), then this MSE is the bootstrap estimation for the
variance of f(P(X)) Efron (2014).

Step 2.
Now, we consider the estimation regarding the variance of �̂ := 1

B

P
B

b=1 �̂
b. In this

proof, we assume that B is large enough that it exactly covers all finite possibilities
for the bootstrap samples. Therefore, we can consider �̂ as the value of a function
f(·) at P(X). In other words, we consider f(P(X)) in Step 1 to be �̂ . Let us imagine
that we generate bootstrap samples to estimate the variance of �̂ as in Step 1, which
is a second layer of bootstrap since �̂ is already based on bootstrap samples. Again,
we can use the tangent hyperplane scheme in Step 1 to approximate the bootstrap
estimation of the variance. For this estimator, the relation E[f(P(Vb))] = f(P(X)) =
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�̂ holds because we assume that B covers all the possibilities. Therefore, the only
remaining issue is to calculate U

(i,j)
u . We define a probability measure on X which

is

P(Vu)
(i,j)
✏ = {P(Xu)

(i) + ✏(ej - P(Xu)
(i)) for the group X

(i)
u ,

and P(Xv)
(k) for other groups X(k)

v , for any v 2 {S, T }. k 2 {1, 2, ...,d}.}

Because B bootstrap samples covers all possibilities, we have that

f(P(Vu)
(i,j)
✏

) =
1
B

BX

b=1

�̂bwb(P(Vu)
(i,j)
✏

) (A.12)

where wb(P(Vu)
(i,j)
✏ ) = P(Vb

|P(Vu)
(i,j)
✏ )

P(Vb|P(X)) . The probability P(Vb
|µ) is defined to be

the probability of Vb under the probability measure µ. We can further simplify
wb(P(Vu)

(i,j)
✏ ) by

wb(P(Vu)
(i,j)
✏

) =
P(Vb

|P(Vu)
(i,j)
✏ )

P(Vb|P(X))

= (1 + (ni

u
- 1)✏)ni

uP(Vb
u)

(i,j)
n

i
uY

l=1,l 6=j

(1 - ✏)n
i
uP(Vb

u)
(i,l)

= (1 + (ni

u
- 1)✏)ni

uP(Vb
u)

(i,j)
(1 - ✏)n

i
u-n

i
uP(Vb

u)
(i,j)

Let ✏! 0, we have that

[wb(P(Vu)
(i,j)
✏

)- 1]/✏ = [(1 + (ni

u
- 1)✏)ni

uP(Vb
u)

(i,j)
(1 - ✏)n

i
u-n

i
uP(Vb

u)
(i,j)

- 1]/✏
! [(1 + ni

u
✏ni

u
P(Vb

u
)(i,j))(1 - ✏ni

u
)- 1]/✏

! ni

u
(ni

u
P(Vb

u
)(i,j) - 1)

(A.13)
Therefore, using [A.8], we know that

1
ni
u

U
(i,j)
u

=
1
B

BX

b=1

�̂b(ni

u
P(Vb

u
)(i,j) - 1) (A.14)
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By plugging in that form in equation [A.11], we get the approximation for the
bootstrap estimation for the variance of �̂, which is

VAR(�̂) =
X

u=S,T

dX

i=1

n
i
uX

j=1

(COV(�̂,N(Vu)
(i,j)))2,

where COV(�̂,N(Vu)
(i,j)) =

1
B

BX

b=1

�̂b((Vb

u
)(i,j) - 1)

(A.15)

For finite B, 1
B

P
B

b=1 �̂
b((Vb

u
)(i,j)-1) is an approximation of COV(�̂,N(Vu)(i,j)). For

the subsampling case, the expectation of (Vb

u
)(i,j) is no longer 1 but si

ni
u

. As a result,
we adjust the covariance term to COV(�̂,N(Vu)(i,j)) =

1
B

P
B

b=1 �̂
b((Vb

u
)(i,j) - si

ni
u

)

as in Wager and Athey (2017). This leads to the Thm. 2.9 in Chapter 2.
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A.2 Proofs for Theorems in Chapter 3

In this section, we give proofs for Theorem 3.1, Lemma 3.2, Theorem 3.3, Theo-
rem 3.5, Theorem 3.7, and Theorem 3.8 in Chapter 3.

Proofs for Theorem 3.1, Lemma 3.2, Theorem 3.3, and Theorem 3.5

Theorem A.8. ⌧i = �1
�i

achieve the smallest variance in �̂.

Proof. The choice of ⌧i leads to weighted least squares, which is known to be the
best linear unbiased estimator (BLUE) under uncorrelated heteroscedastic errors.
The variance of �̂ is equivalent to the case when ��i = 0. In the latter case, BLUE
condition holds and setting ⌧i to the above value achieves lowest variance. The
equivalence between variances under two cases completes the proof.

Lemma A.9. For model (3.3), we have

kBias�k2
2

kG-1/2��k2
2
6 k(⌃̂k

1 )
-2(⌃̂k

2 (n1⌃̂1)
-1⌃̂k

2 + ⌃̂k

2 )k⇤, (A.16)

Var� = �2
1
��(n1⌃̂1)

-1 - (n1⌃̂1 + ⌃̂
k

2 )
-1��

⇤ . (A.17)

Proof. The estimation from single site model is unbiased, and it has the following
variance.

Var1 = tr((XT

1 X1)
-1)�2

1 = tr((n1⌃̂1)
-1)�2

1 (A.18)

The estimation error from multi-sites model has the following closed form expres-
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sion

�̂- �⇤ =

0

BBBB@

0

BBBB@

X1

⌧2X2

..
⌧kXk

1

CCCCA

T 0

BBBB@

X1

⌧2X2

..
⌧kXk

1

CCCCA

1

CCCCA

-1
0

B@
⌧2X2

..
⌧kXk

1

CA

T 0

B@
⌧2X2(��2)

..
⌧kXk(��k)

1

CA

+

0

BBBB@

0

BBBB@

X1

⌧2X2

..
⌧kXk

1

CCCCA

T 0

BBBB@

X1

⌧2X2

..
⌧kXk

1

CCCCA

1

CCCCA

-10

BBBB@

X1

⌧2X2

..
⌧kXk

1

CCCCA

T 0

BBBB@

✏1

⌧2✏2

..
⌧k✏k

1

CCCCA

(A.19)

First term in the summation from (A.19) is bias, while second term is variance. We
can see that our choice of ⌧i = �1

�i

resolves heteroscedastic errors issue among sites.
We further simplify bias and variance terms, and obtain

Var2 = tr((n1⌃̂1 +
kX

i=2

ni⌧
2
i
⌃̂i)

-1)�2
1 (A.20)

The reduced variance statement is proved. For the bias term, it is equivalent as
shown below.

0

BBBBB@

0

BBBB@
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⌧2X2

..
⌧kXk

1

CCCCA

T 0

BBBB@

X1

⌧2X2

..
⌧kXk

1

CCCCA

1

CCCCCA

-1
0

B@
⌧2X2

..
⌧kXk

1

CA

T 0

B@
⌧2X2 0 ... 0

0 ⌧3X3 ... 0
0 0 ... ⌧kXk

1

CA

⇥G1/2

8
><

>:
G-1/2

0

B@
��2

..
��k

1

CA

9
>=

>;

(A.21)

A one step Cauchy Schwartz inequality is then applied. Then our final proof is to



126

show k..k2
F

on

0

BBBB@

0

BBBB@

X1

⌧2X2

..
⌧kXk

1

CCCCA

T 0

BBBB@

X1

⌧2X2

..
⌧kXk

1

CCCCA

1

CCCCA
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0

B@
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⌧kXk

1

CA

T 0

B@
⌧2X2 0 ... 0

0 ⌧3X3 ... 0
0 0 ... ⌧kXk

1

CAG1/2

(A.22)
is equal to right side of the bias relaxation in (3.4).
It is easy to see that kAk2

F
= kATAk⇤. Based on this, we can see the first term of

matrix inverse contributes the (⌃̂k

1 )
-2 in (3.4). Let the other part in (A.22) be L. We

have

LLT =

0

B@
⌧2

2X
T

2 X2

..
⌧2
k
XT

k
Xk

1

CA

T

G

0

B@
⌧2

2X
T

2 X2

..
⌧2
k
XT

k
Xk

1

CA =

0

B@
n2⌧

2
2⌃̂2

..
nk⌧

2
k
⌃̂k

1

CA

T

G

0

B@
n2⌧

2
2⌃̂2

..
nk⌧

2
k
⌃̂k

1

CA (A.23)

After some manipulations, this becomes (⌃̂k

2 (n1⌃̂1)-1⌃̂k

2 + ⌃̂k

2 ). The bias part is
proved.

Theorem A.10. a) Model (3.3) has smaller MSE of �̂ than model (3.1) whenever

H0 : kG-1/2��k2
2 6 �2

1. (A.24)

b) Further, we have the following test statistic,

�����
G-1/2��̂

�1

�����

2

2

⇠ �2
(k-1)⇤p

 ����
G-1/2��

�1

����
2

2

!

, (A.25)

where kG-1/2��/�1k2 is called a “condition value”.

Proof for Theorem 3.3. (a): Based on Lemma 3.2, the theorem is proved when right
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side in (3.4) is replaced by

�2
1
��(n1⌃̂1)-1 - (n1⌃̂1 + ⌃̂k

2 )
-1
��
⇤

k(⌃̂k

1 )
-2(⌃̂k

2 (n1⌃̂1)-1⌃̂k

2 + ⌃̂k

2 )k⇤
(A.26)

We first calculate the numerator

�2
1
��(n1⌃̂1)

-1 - (n1⌃̂1 + ⌃̂
k

2 )
-1��

⇤ = �2
1
��⇥(n1⌃̂1)

-1(n1⌃̂1 + ⌃̂
k

2 )- I
⇤
(n1⌃̂1 + ⌃̂

k

2 )
-1��

⇤

= �2
1
��(n1⌃̂1)

-1⌃̂k

2 (n1⌃̂1 + ⌃̂
k

2 )
-1��

⇤
(A.27)

The denominator is then given by

k(⌃̂k

1 )
-2(⌃̂k

2 (n1⌃̂1)
-1⌃̂k

2 + ⌃̂k

2 )k⇤ = k(⌃̂k

1 )
-2((⌃̂k

2 + n1⌃̂1)(n1⌃̂1)
-1⌃̂k

2 )k⇤ (A.28)
Remember ⌃̂k

1 = ⌃̂k

2 + n1⌃̂1, , we continue (A.29)
= k((⌃̂k

2 + n1⌃̂1)
-1(n1⌃̂1)

-1⌃̂k

2 )k⇤ = k((n1⌃̂1)
-1⌃̂k

2 (n1⌃̂1 + ⌃̂
k

2 )
-1)k⇤ (A.30)

The last step uses the property of k..k⇤ norm. The proof is completed by noticing
the simplified form of numerator and denominator. It is clear now that the right
side in (3.4) is exactly �2

1.
(b): First, we show �2

1G is the covariance matrix of ��̂. We have

cov(��̂i,��̂j) = cov(�̂i, �̂j)- cov(�̂i, �̂1)- cov(�̂1, �̂j) + cov(�̂1, �̂1) (A.31)
Since each site is independent from other site, we have (A.32)
cov(��̂i,��̂j) = cov(�̂1, �̂1) = �

2
1(n1⌃̂1)

-1for i 6= j (A.33)
cov(��̂i,��̂i) = cov(�̂i, �̂i) + cov(�̂1, �̂1) (A.34)
= �2

1((n1⌃̂1)
-1 + (ni(�

2
1/�

2
i
)⌃̂i)

-1) = �2
1((n1⌃̂1)

-1 + (ni⌧
2
i
⌃̂i)

-1) (A.35)

��̂ follows Gaussian distribution since it is a linear transformation of Gaussian
distribution. It’s expectation is �� since each �̂i is an unbiased estimator. Hence,
we have

��̂ ⇠ N(��,�2
1G) (A.36)
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This distribution result, and noticing the connection between Gaussian and non-
central �2 distributions completes the proof.

Theorem A.11. Analysis in Section 3.2 holds for � in (3.9) by replacing ⌃̂i with ⌃̃i =

⌃̂xxi
- ⌃̂xzi

(⌃̂zzi
)-1⌃̂zxi

Proof for Theorem 3.5. Define �T = (�T
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�
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(A.37)
Using sub-matrix inverse property, we obtain
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all
Z̃all)-1Z̃T

all

!
(A.38)

We then have

Z̃all = (I- Xall(X
T

all
Xall)

-1XT

all
)Zall (A.39)

X̃all = (I- Zall(Z
T

all
Zall)

-1ZT

all
)Xall =

0

BBBB@

(I- Z1(ZT

1 Z1)-1ZT

1 )X1

(I- Z2(ZT

2 Z2)-1ZT

2 )X2

..
(I- Zk(ZT

k
Zk)-1ZT

k
)Xk

1

CCCCA
(A.40)

Define
HZi

= (I- Zi(Z
T

i
Zi)

-1ZT

i
) (A.41)
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Hence, we have

�̂- �⇤ = (X̃T

all
X̃all)

-1X̃T

all

0

BBBB@

0
⌧2X2(��2)

..
⌧kXk(��k)

1

CCCCA
+ (X̃T

all
X̃all)

-1X̃T

all

0

BBBB@

✏1

⌧2✏2

..
⌧k✏k

1

CCCCA

= (X̃T

all
X̃all)

-1
kX

i=2

⌧iX̃
T

i
Xi(��i) + (X̃T

all
X̃all)

-1X̃T

all

0

BBBB@

✏1

⌧2✏2

..
⌧k✏k

1

CCCCA

(A.42)
We also observe that

X̃T

i
Xi = XT

i
HZi

Xi = XT

i
H2

Zi
Xi = X̃T

i
X̃i (A.43)

Therefore, we can apply our previous results to a subset of parameters if we replace
Xi by X̃i. Since our results only depend on ⌃̂i, we only need to replace it by

1
ni

X̃T

i
X̃i =

1
ni

XT

i
HZi

Xi = ⌃̂xxi
- ⌃̂xzi

(⌃̂zzi
)-1⌃̂zxi

(A.44)

This proves the theorem.

Proof of Theorem 3.7:

Theorem A.12. Let 0 6 ↵ 6 0.4. Assume there exist constants 0 6 ⇢min 6 ⇢max 6 1
such that

lim inf
n!1

�min

 

sp log n̄

✓
1 +

2↵
1 - 2↵

◆2
!

> ⇢min

lim sup
n!1

�max(sp + min{
kX

i=1

ni,kp}) 6 ⇢max.
(A.45)
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Then, for � / �
p

n̄ log(kp), there exists a constant ! > 0 such that, with probability
converging to 1 for n!1,

1
k
kB̂� - B⇤k2

F
6 !�2 s̄ log(kp)

n̄
, (A.46)

where s̄ = {(1 - ↵)
p
sp + ↵

p
sh/k}

2, � is the noise level.

We follow the proof procedure from Lasso Meinshausen and Yu (2009) and
group Lasso Liu and Zhang (2009) results. Let B� be the estimator under the
absence of noise, i.e., B� = B̂�,0, where B̂�,⇠ is defined as in (A.48). The `2-distance
can then be bounded by kB̂� - B⇤k2

F
6 2kB̂� - B�k2

F
+ 2kB� - B⇤k2

F
. The first term

on the right-hand side represents the variance of the estimation, while the second
term represents the bias. The bias contribution follows directly from Lemma A.13
below, and the variance bound term follows from Lemma A.18.

De-noised response. For 0 < ⇠ < 1, we define a de-noised version of the
response variable as follows,

Yi(⇠) = Xi�i + ⇠✏i (A.47)

We can regulate the amount of noise with the parameter ⇠.
For ⇠ = 0, only the signal is retained. The original observations with the full

amount of noise are recovered for ⇠ = 1. Now consider for 0 6 ⇠ 6 1 the estimator
B̂�,⇠,

B̂�,⇠ = arg min
B

kX

i=1

kYi(⇠)- Xi�ik2
2 + �⇤(B)

⇤(B) = (1 - ↵)
p
k

pX

j=1

k�jk2 + ↵
pX

j=1

k�jk1

(A.48)

The ordinary sparse multi-site Lasso estimate is recovered under the full amount
of noise so that B̂�,1 = B̂�. Using the notation from the previous results, we have
B̂�,0 = B�, for the estimate in the absence of noise. The definition of the de-noised
version of the sparse multi-site Lasso estimator will be helpful for the proof as it
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allows to characterize the variance of the estimator.

Part I of proof – Dealing with bias

Let P⇤ be the set of nonzero groups of B⇤, i.e., P⇤ = {j : �j 6= 0}. The cardinality of
P⇤ is denoted by sp. For each j in P⇤, let Hj be the set of nonzero elements of �j, i.e.,
Hj = {i : �j

i
6= 0}. The number of all nonzero elements of B is denoted by sh. For

the following, let B� be the estimator B̂�,0 with no noise (as defined in (A.48)). For
each �, the solution B� can be written as B� = B⇤ + ��. We define �j and �i to be
j-th column and i-th row of � . � is the transpose of the unfolded vector of � by row.
Denote �2 = �(1 - ↵) and ⌘ = ↵

1-↵ . Then

�� = arg min
�

f(�) (A.49)

The function f(�) is given by

f(�) = n̄�TC�+ �2

8
<

:
X

j2PC
⇤

(
p
Kk�jk2 + ⌘k�jk1) +

X

j2P⇤

p
K(k�j + �jk2 - k�jk2)

9
=

;+

�2

8
<

:
X

j2P⇤

⌘(k�j

Hj
+ �j

Hj
k1 - k�jHj)k+

X

j2P⇤

⌘k�jHC

j
k1

9
=

;

(A.50)
The matrix �� is the bias of the sparse multi-site Lasso estimator. We derive first a
bound on the Frobenius norm of ��.

Lemma A.13. Assume conditions in Theorem3.7. The Frobenius norm of �� is then
bounded for su�ciently large values of n̄, given a constant!1 > 0, by

k��k2
F
6 !1�

2ks̄ log(kp)
n̄

(A.51)

Proof. f(�) = 0 whenever � = 0 following the definition from (A.50). For the true
solution ��, it follows hence that f(��) 6 0. For notational simplicity, we drop the
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super-script � from here on. Using �TC� > 0, we have
8
<

:
X

j2PC
⇤

(
p
kk�jk2) +

X

j2PC
⇤

(⌘k�jk1) +
X

j2P⇤

⌘k�j
HC

j

k1

9
=

; 6

8
<

:
X

j2P⇤

p
kk�jk2 +

X

j2P⇤

⌘k�j
Hj
k1

9
=

;

(A.52)
Since |P⇤| = sp,

P
j2P⇤

|Hj| = sh. It follows that
P

j2P⇤
k�jk2 6 pspk�k2,

P
j2P⇤
k�j

Hj
k1 6

p
shk�k2, and hence, using (A.52),

⇤(�) 6 2{(1 - ↵)
p

ksp + ↵
p
sh}k�k2 = 2

p
ks̄k�k2 (A.53)

Using f(�) 6 0 again and (A.53), it follows that

n̄�TC� 6 2�
p
ks̄k�k2 (A.54)

Now consider �TC�. Bounding this term from below and plugging the result into
(A.53) will yield the desired upper bound on the Frobenius norm of � . Let k�(1)k >
k�(2)k > ... > k�(p)k be the ordered columns of � . Let un for n 2 N be a sequence
of positive integers, to be chosen later, and define U = {j : k�jk2 > k�(un)k2}. Define
�(U) and �(UC) by setting �j(U) = �j1{i /2 U} and �j(UC) = �j1{i 2 U}, followed
by unfolding � . Then quantity �TC� can be written as �TC� = ka + bk2

2, where
a := n̄-1/2X�(U), b := n̄-1/2X�(UC), X = DIAG(X1, ...,Xk). Then

�TC� = ka+ bk2
2 > (kak2 - kbk2)

2 (A.55)

Before proceeding, we need to bound the norm k�(UC)k2 as a function of un.
Assume l =

P
p

j=1 k�jk2. It holds for every j = 1, ...,p that k�(j)k2 6 l/j. Hence,

k�(UC)k2
2 6 (

pX

j=1

k�jk2)
2

pX

j=un+1

1
j2

(A.56)
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Therefore, we have

k�(UC)k2 6
pX

j=1

k�jk2

s
1
un

6 k�k1

s
1
un

(A.57)

Based on (A.53), ⇤(�) = (1 - ↵)
p
k
P

p

j=1 k�jk2 + ↵k�k1, and (A.57), it follows that

k�(UC)k2
2 6 4k�k2

2

8
<

:
1
un

 p
ks̄

(1 - ↵)
p
k+ ↵

!2
9
=

; (A.58)

By definition, since �(U) has only un nonzero groups,

kak2
2 = k�(U)TC�(U)k2

2 > �min(un)k�(U)k2
2 >

�min(un)k�k2
2

 

1 - 4
�

1
un

✓
ks̄

(1 - ↵)
p
k+ ↵

◆2
✏!

(A.59)

Here we explain why we obtain�min(un) instead of�min(kun). We denote�i

min(m)

to be m-sparse of n̄-1XT

i
Xi. Then�min(m) = mink

i=1�
i

min(m) because of block struc-
ture. Since we have un nonzero groups, instead of arbitrary kun nonzero elements,
we obtain a higher value �min(un) = mink

i=1�
i

min(un) instead of �min(kun). This
is the one place where we consider the block structure of multi-site design.

As �(UC) has at most min{
P

k

i=1 ni,kp} nonzero groups, using again (A.58),
(A.53) and the block structure of multi-site design,

kbk22 6 4�max(min{
kX

i=1
ni,kp})k�k22

8
<

:
1
un

 p
ks̄

(1 - ↵)
p
k+ ↵

!2
9
=

; (A.60)

Using (A.60), (A.59) and (A.55), along with�max(min{
P

k

i=1 ni,kp}) > �min(un),

�TC� > �min(un)k�k22 ⇥

0

@1 - 4

vuut�max(min{
P

k

i=1 ni,kp})
�min(un)

�
1
un

(

p
ks̄

(1 - ↵)
p
k+ ↵

)2

✏1

A

(A.61)
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Using conditions in Theorem 3.7 and setting un = log(n̄)
⇣ p

ks̄

(1-↵)
p
k+↵

⌘2
, it follows

that
�TC� > ⇢min

✓
1 - 4

r
⇢max

⇢min log(n̄)

◆
k�k2

2 (A.62)

Using this result together with (A.54), which says that �TC� 6 2n̄-1�
p
ks̄k�k2, we

have the following for large n̄,

k�k2
F
= k�k2

2 6 !1
�2ks̄

n̄2 (A.63)

The proof of Lemma A.13 is completed by noticing � in Theorem 3.7.

Part II of proof – Dealing with variance

The proof for the variance part is two-fold. We first derive a bound on the vari-
ance, which is a function of the number of nonzero groups. We then bound the
number of nonzero groups, taking into account the bound on the bias derived above.

Variance of restricted OLS: Before considering the sparse multi-site Lasso estimator,
a trivial bound is shown for the variance of a restricted OLS estimation. For every
subset  ⇢ {1, â£�,p}, we use it to select a subset of columns from design matrix Xi

for task i. These columns form a matrix Xi . Define X = DIAG(X1 ,X2 , ...,Xk ),
and the restricted OLS-estimator with the noise vector ✏T = (✏1, ..., ✏k)T is

✓̂ = (XT

 
X )

-1XT

 
✏ (A.64)

The `2-norm of this estimator can be bounded.

Lemma A.14. Let mp be a sequence with mp = o(n̄) and mp !1 for n̄!1. It holds
with probability converging to 1 for n!1

max
 :| |6mp

k✓̂ k2
2 6

2 log kp

n̄

kmp

�2
min(mp)

�2 (A.65)
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Proof. We refer the readers to Lemma 3 in Meinshausen and Yu (2009) and Lemma 3
in Liu and Zhang (2009) for the proof. Here, we again use block design structure of
multi-site problem, the same as in (A.59), to obtain �min(mp) instead of �min(kmp).

The variance of the sparse multi-site Lasso estimator can be bounded by the
variance of restricted OLS estimators, using bounds on the number of active groups.

Lemma A.15. If, for a fixed value of �, the number of nonzero groups of de-noised estimators
B̂�,⇠ is for every 0 6 ⇠ 6 1 bounded by m, then

kB̂�,0 - B̂�,1k2
F
6 C max

 :| |6m

k✓̂ k2
2 (A.66)

with C as a generic constant.

Proof. We refer the readers to Lemma 4 and Lemma 5 in Liu and Zhang (2009) for
the proof.

Let AP

�,⇠ be the set of variables in nonzero groups of the de-noised estimator B̂�,⇠.
Define mp to be the largest number of nonzero groups over all values of 0 6 ⇠ 6 1.
Then we have kmp = sup06⇠61 |A

P

�,⇠|.

Lemma A.16. Given 0 6 ↵ 6 0.5, we have

|AP

�,⇠|�
2(1 - 2↵)2 6 k2XT

A
p

�,⇠
(Y - X�̂�,⇠)k2

2 (A.67)

where we defined before that X = DIAG(X1, ...,Xk), YT = (YT

1 , ..., YT

k
). �̂�,⇠ is the

transpose of unfolded vector of B̂�,⇠ by rows. XA
p

�,⇠
is X when  = Ap

�,⇠

Proof. The conditions for the solution of sparse multi-site Lasso are presented in
Simon et al. (2013). We use �̂ rather than �̂�,⇠ for notational simplicity in this proof.
We continue to use our notation �̂j to refer the j-th column (here it is a group) of
B̂, and �̂j

i
to refer the i-th element (task) in �̂j. We define Xj = DIAG(Xj

1, ...,X
j

k
)
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and Xj

i
to be the j-th column of Xi for task i. In other words, we allow for (k- 1)p

number of 0 in Xj

i
.

- 2Xj

i

T

(Y - X�̂) + �

�

↵
�̂j

i

k�̂j

i
k2

+ (1 - ↵)
�̂j

i

k�̂jk2/
p
k

✏

= 0, when �̂j

i
6= 0, �̂j 6= 0,

- 2Xj

i

T

(Y - X�̂) + �(1 - ↵)
�̂j

i

k�̂jk2/
p
k
= �↵vj

i
, with kvj

i
k2 6 1, when �̂j

i
= 0, �̂j 6= 0,

���-2XjT (Y - X�̂)
���

2
6 �
p
k, when �̂j = 0.

(A.68)
Let DP

�,⇠ = {j 2 1, 2, ...,p|group j is active for B̂�,⇠
}. For each j in DP

�,⇠, we define �̂j

⇤

to be the vector of all �̂j

i
6= 0. Their corresponding columns Xj

i
s from Xj, would

form a matrix Xj

⇤. For each j in DP

�,⇠, we define �̂j

⇤C to be the vector of all �̂j

i
= 0.

Their corresponding columns Xj

i
s from Xj, would form a matrix Xj

⇤C . Then, from
(A.68),

D
P

�,⇠X

j=1

k2Xj

⇤
T

(Y - X�̂)k2
2 > �2(1 - ↵)2k

D
P

�,⇠X

j=1

k�̂j

⇤k2
2

k�̂jk2
2

(A.69)

Based on the fact that ka+ bk2
2 > (kak2 - kbk2)2

D
P

�,⇠X

j=1

k2Xj

⇤C
T

(Y - X�̂)k2
2 >

D
P

�,⇠X

j=1

 

�(1 - ↵)
p
k
k�̂j

⇤Ck2

k�̂jk2
- �↵kvj⇤Ck2
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=

D
P

�,⇠X
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�

�2(1 - ↵)2k
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⇤Ck
2
2

k�̂jk2
2
+ �2↵2kvj⇤Ck

2
2 - 2�2↵(1 - ↵)

p
k
k�̂j

⇤Ck2

k�̂jk2
kvj⇤Ck2

✏

>
D

P

�,⇠X

j=1

�

�2(1 - ↵)2k
k�̂j

⇤Ck
2
2

k�̂jk2
2
+ �2↵2kvj⇤Ck

2
2 - �

2↵(1 - ↵)

"

k
k�̂j

⇤Ck
2
2

k�̂jk2
2
+ kvj⇤Ck

2
2

#✏

= �2(1 - ↵)(1 - 2↵)k
D

P

�,⇠X

j=1

k�̂j

⇤Ck
2
2

k�̂jk2
2
- �2↵(1 - 2↵)

D
P

�,⇠X

j=1

kvj⇤Ck
2
2

(A.70)
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Based on (A.69) and (A.70), we have

k2XT

A
p

�,⇠
(Y - X�̂)k2

2 =

D
P

�,⇠X

j=1

k2XjT (Y - X�̂)k2
2 =

D
P

�,⇠X

j=1

k2Xj

⇤
T

(Y - X�̂)k2
2 +

D
P

�,⇠X

j=1

k2Xj

⇤C
T

(Y - X�̂)k2
2

(A.71)

> �2(1 - ↵)2k

D
P

�,⇠X

j=1

k�̂j

⇤k2
2

k�̂jk2
2
+ �2(1 - ↵)(1 - 2↵)k

D
P

�,⇠X

j=1

k�̂j

⇤Ck
2
2

k�̂jk2
2
- �2↵(1 - 2↵)

D
P

�,⇠X

j=1

kvj⇤Ck
2
2

(A.72)

> �2(1 - ↵)(1 - 2↵)k
D

P

�,⇠X

j=1

k�̂j

⇤k2
2 + k�̂

j

⇤Ck
2
2

k�̂jk2
2

- �2↵(1 - 2↵)
D

P

�,⇠X

j=1

kvj⇤Ck
2
2 (A.73)

> �2(1 - ↵)(1 - 2↵)k|DP

�,⇠|- �
2↵(1 - 2↵)k|DP

�,⇠| (A.74)
= �2(1 - 2↵)2k|DP

�,⇠| = �
2(1 - 2↵)2

|AP

�,⇠| (A.75)

The next lemma provides an asymptotic upper bound on the number of selected
variables, the proof of which is similar to Lemma 5 in Meinshausen and Yu (2009).

Lemma A.17. Assume conditions in Theorem 3.7, with probability converging to 1 for
n!1,

sup
06⇠61

|AP

�,⇠| 6 log(n̄)
�✓

1 +
↵

1 - 2↵

◆p
ksp +

↵

1 - 2↵
p
sh

�
(A.76)

Follow from Lemmas A.14,A.15, and A.17, the next lemma bounds the variance
part of the sparse multi-sites Lasso estimator:

Lemma A.18. Assume conditions in Theorem3.7, there exists a constant !2 > 0, with
probability converging to 1 for n!1,

kB� - B̂�k2
F
6 !2�

2ks̄ log(kp)
n̄

(A.77)
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The lemma A.13 and A.18 together complete the proof of Theorem 3.7

Proof of Theorem 3.8:

Theorem A.19. Let 0.4 6 ↵̃ 6 1. Assume there exist constants 0 6 ⇢min 6 ⇢max 6 1
such that

lim inf
n!1

�min

 

sh log n̄

✓
1 +

(1 - ↵̃)

↵̃

◆2
!

> ⇢min

lim sup
n!1

�max(sh + min{
kX

i=1

ni,kp}) 6 ⇢max.
(A.78)

Then, for �̃ / �
p

n̄ log(kp), there exists! > 0 such that, with probability converging to
1 for n!1, we have (3.15) with s̃ = {(1 - ↵̃)

p
sp/k+ ↵̃

p
sh/k}

2 instead of s̄.

The proof is similar to that of Theorem 3.7. Recall that in this case, however, we
do not penalize

p
k on group penalty. Hence, we have the following result about

bias contribution of Theorem 3.8.

Lemma A.20. Assume conditions in Theorem 3.8. The Frobenius norm of �� is then
bounded for su�ciently large values of n̄, given a constant!1 > 0, by

k��k2
F
6 !1�

2ks̃ log(kp)
n̄

(A.79)

Proof. The proof procedure is same as Lemma A.13. But instead of (A.53), we now
have

⇤(��) 6 2{(1 - ↵̃)
p
sp + ↵̃

p
sh}k��k2 = 2

p
ks̃k��k2 (A.80)

because we do not have
p
k penalization on group penalty. Hence, in Lemma A.20,

we have s̃ = {(1-↵̃)
p

sp/k+↵̃
p

sh/k}
2, instead of s̄ = {(1-↵̃)psp+↵̃

p
sh/k}

2.

For restricted OLS estimation, we redefine few things here. For every subset ⇢
{1, ...,kp} with | | 6 P

k

i=1 ni, we define X to be the combination of columns from
design matrix X, where X = DIAG(X1,X2, ...,Xk). The restricted OLS-estimator of
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the noise vector ✏T = (✏1, ..., ✏k)T is then given by,

✓̂ = (XT

 
X )

-1XT

 
✏ (A.81)

For the variance contribution, the proof is similar to that of Theorem 3.7. We present
the required Lemmas for Theorem 3.8 here.

Lemma A.21. Let mn be a sequence with mn = o(kn̄) and mn ! 1 for n̄ ! 1. It
holds with probability converging to 1 for n!1

max
 :| |6mn

k✓̂ k2
2 6

2 log kp

n̄

mn

�2
min(mn)

�2 (A.82)

Lemma A.22. If, for a fixed value of �, the number of active variables of de-noised estimators
B̂�,⇠ is for every 0 6 ⇠ 6 1 bounded by m, then

kB̂�,0 - B̂�,1k2
F
6 C max

 :| |6m

k✓̂ k2
2 (A.83)

with C as a generic constant.

Let A1
�,⇠ be the set of active variables of the de-noised estimator B̂�,⇠. Let mn to

be the largest number of active variables over all values of 0 6 ⇠ 6 1. Then we have
mn = sup06⇠61 |A

1
�,⇠|.

Lemma A.23. For any 0 6 ↵ 6 1, we have

|A1
�,⇠|�

2↵2 6 k2XT

A1
�,⇠
(Y - X�̂�,⇠)k2

2 (A.84)

where we defined before that X = DIAG(X1, ...,Xk), YT = (YT

1 , ..., YT

k
). �̂�,⇠ is the

transpose of unfolded vector of B̂�,⇠ by rows. X
A1
�,⇠

is X when  = A1
�,⇠

Lemma A.24. Assume conditions in Theorem 3.8, with probability converging to 1 for
n!1,

sup
06⇠61

|A1
�,⇠| 6 log(n̄)

�
p
sh +

1 - ↵

↵

p
sp

�
(A.85)



140

Lemma A.25. Assume conditions in Theorem3.8, there exists a constant !2 > 0, with
probability converging to 1 for n!1,

kB� - B̂�k2
F
6 !2�

2ks̃ log(kp)
n̄

(A.86)

Lemma A.20 and Lemma A.25 complete the proof of Theorem 3.8
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A.3 Proofs for Theorems in Chapter 4

In this section, we give the proofs for Theorem 4.4, the two examples in Subsec-
tion 4.4, Theorems 4.9 and Theorem 4.10 (which are the key results used in the proof
of Theorem 4.3). Then proofs for other Lemmas are presented in Subsection A.3.

Proof of Theorem 4.4

The outline of this proof is the same as the outline of the proof for Theorem 4.3.
The key di�erence here is that, given a �-mixing process with 0.781 6 r� 6 2, we
are able to derive sharper rates for Theorem 4.10 and Lemma 4.13, which result in

m = T
r
�

r
�
+2 . For r� 6 2 this rate is sharper since T

r
�

r
�
+2 > T

r
�
-1

r
� . Specifically, using

the concentration inequality from Kontorovich et al. (2008), we show two Lemmas
which give us a larger m than Theorem 4.10 and Lemma 4.13.

Lemma A.26. Define the event

Bm,T =
�

sup
j,k

sup
fj,k2BH(1),kfj,kk26�m

|kfj,kkT - kfj,kk2| 6
�m
2

✏

.

For a stationary �-mixing process (Xt)Tt=0 with 0.781 6 r� 6 2 and m = T
r
�

r
�
+2 , we

have P(Bm,T ) > 1 - c2exp(-c3(m�2
m
)2) where c2 and c3 are constants.

Moreover, on the event Bm,T , for any g 2 BH(1) with kgk2 > �m,

kgk2

2 6 kgkT 6 3
2kgk2. (A.87)

Lemma A.27. Given properties of �m and �2
m,j = c4{

sj log(d)
m

+sj✏
2
m
}, we define the event

Dm,T = {8j 2 [1, 2, ...,d], kgjkT > kgjk2/2,

for all gj 2 2Fj with kgjk2 > �m,j}.
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For a�-mixing process (Xt)Tt=0 with 0.781 6 r� > 2 andm = T
r
�

r
�
+2 , we have P(Dm,T ) >

1 - c2exp(-c3(m(minj �
2
m,j))

2) where c2, c3 and c4 are constants.

Following the outline of the proof for Theorem 4.3, we replace Theorem 4.10
and Lemma 4.13 by Lemma A.26 and Lemma A.27, which allows us to prove Theo-
rem 4.4.

Proofs for Subsection 4.4

Now we give proofs for Lemmas 4.5 and Lemma 4.7 for the two examples in
Subsection 4.4.

Proof for Lemma 4.5. : Recall our definition of ✏̃m, by choosing M0 as M0 = ⇠, we
have that

log(dT)
 

3log(M0dT)p
m

vuut
M0X

i=1
min(µi,�2)

+

r
T

m

vuut
1X

i=M0+1
min(µi,�2)

!

= 3log(⇠dT) log(dT)p
m

vuut
⇠X

i=1
min(µi,�2).

(A.88)

Since min(µi,�2) 6 �2, that equation is upper bounded by

3�
r
⇠

m
log(⇠dT) log(dT). (A.89)

Since ✏̃m is the minimal value of � such that (A.88) lower than �2, from the upper
bound (A.89) we can show that

✏̃m = O

 r
⇠

m
log(⇠dT)2

!

.
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Proof of Lemma 4.7: Before proving ✏̃m, we recall the discussion of ✏m Raskutti
et al. (2012). To simplify the discussion, we assume that there exists an integer `0
such that �2 = 1

`2↵
0

. That assumption doesn’t a�ect the rate which we’ll get for ✏m.
Using the definition of `0, min(µi,�2) = �2 when i < `0 and min(µi,�2) = µi when
i > `0. Therefore, since µi = (1/i)2↵, we have

1p
m

vuut
1X

i=1

min(µi,�2)

6 1p
m

s

`0�2 +
1

2↵- 1
1

`2↵-1
0

=
1p
m
�1- 1

2↵

r
2↵

2↵- 1.

Hence ✏m = O(m- ↵

2↵+1 ). For ✏̃m, we still define `0 to be �2 = 1
`2↵

0
. We require the

nuisance parameter M0 > `0, whose value will be assigned later. Again, using
the fact that min(µi,�2) = �2 when i < `0 and min(µi,�2) = µi when i > `0 and
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µi = (1/i)2↵, we have

log(dT)
 r

T

m

vuut
1X

i=M0+1
min(µi,�2)

+ 3log(M0dT)p
m

vuut
M0X

i=1
min(µi,�2)

!

6 log(dT)
 r

T

m

s
1

2↵- 1
1

M2↵-1
0

+ 3log(M0dT)p
m

vuut�2- 1
↵ +

1
2↵- 1

 
1

`2↵-1
0

-
1

M2↵-1
0

!!

= log(dT)
 r

T

m

s
1

2↵- 1
1

M2↵-1
0

+ 3log(M0dT)p
m

s
2↵

2↵- 1�
2- 1

↵ -
1

2↵- 1
1

M2↵-1
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!

6 log(dT)
 r

T

m

r
1

2↵- 1
1

M
↵- 1

2
0

+ 3log(M0dT)p
m

r
2↵

2↵- 1�
1- 1

2↵

!

.

In order to obtain a similar rate as ✏m, we set up the value of M0 such that
✓rq

T

m

1

M
↵- 1

2
0

◆1+ 1
2↵

= 1p
m

. In other words, M0 = m
1

2↵+1T
1

2↵-1 . After plugging

in the value of M0, we obtain an upper bound

log(dT)
 

3
r

2↵
2↵- 1

log(M0dT)p
m

�1- 1
2↵

+

r
1

2↵- 1

✓
1p
m

◆ 4↵
2↵+1
!

.
(A.90)
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Compare the upper bound (A.90) with �2, we obtain

✏̃m = O(m- ↵

2↵+1 (log(M0dT) log(dT)) 2↵
2↵+1 )

= O

 ✓
log(dT)2
p
m

◆ 2↵
2↵+1
!

.

Proof of Theorem 4.9

We consider single univariate function here and use f to refer each fj,k. Finally,
we’ll use union bound to show that the result holds for every j,k. Before presenting
the proof, we point out that there exists an equivalent class F, which means that

sup
kfkH61,kfk26�

�����
1
T

TX

t=1

f(Xt)wt

����� > sup
f2F

�����
1
T

TX

t=1

f(Xt)wt

����� ,

sup
kfkH61,kfk26�

�����
1
T

TX

t=1

f(Xt)wt

����� 6 sup
f2

p
2F

�����
1
T

TX

t=1

f(Xt)wt

����� .
(A.91)

That function class F is defined as

F = {f =
1X

i=1

�i

p
µi�i(x)|

1X

i=1

⌘i�
2
i
6 1},

where ⌘i =
⇣

min
⇣

1, �2

µi

⌘⌘-1
. The equivalence is because of

{f|kfkH 6 1, kfk2 6 �}

= {f =
1X

i=1

�i

p
µi�i(x)|

1X

i=1

�2
i
6 1,

1X

i=1

µi�
2
i
6 �2

},

(1)
P1

i=1 max(1, µi

�2 )�2
i
6 1 )

P1
i=1 �

2
i
6 1,

P1
i=1

µi

�2�
2
i
6 1, and (2)

P1
i=1 �

2
i
6 1,

P1
i=1

µi

�2�
2
i
6 1 )

P1
i=1 max(1, µi

�2 )�2
i
6 P1

i=1(1 + µi

�2 )�2
i
6 2. Next, we prove the



146

results for f 2 F. Let’s define

Yn =
1
T

nX

t=1

�i(Xt)wt. (A.92)

Then we have

Yn - Yn-1 =
1
T
�i(Xn)wn,

E[Yn - Yn-1|w1, ...,wn-1] =
1
T
E[�i(Xn)|w1, ...,wn-1]E[wn] = 0.

It tells us that {Yn}
T

n=1 is a martingale. Therefore, we are able to use Lemma 4 on
Page 20 in Hall et al. (2016). Additionally, given that �i(.) is bounded by 1 and
Assumption 1 for wt, we know that

|Yn - Yn-1| =
1
T
|�i(Xn)wn| 6

log(dT)
T

.

In order to use Lemma 4 in Hall et al. (2016), we bound the so-called term Mi

n
and

hence the so-called summation term Dn in Hall et al. (2016), which are

Mi

n
=

nX

t=1

E
⇥
(Yt - Yt-1)

i
|w1, ...,wt-1

⇤
6 n

log(dT)i
T i

,

and

Dn =
X

i>2

⇢i

i! M
i

n
6

X

i>2

⇢i

i! n
log(dT)i

T i

= n

✓
e⇢ log(dT)/T - 1 -

⇢ log(dT)
T

◆
,

for any nuisance parameter ⇢. That bound on Dn is defined as D̂n. Then using the
results from Lemma 4 in Hall et al. (2016) that max(E[e⇢Yn],E[e-⇢Yn]) 6 eD̂n for a
martingale {Yn}

T

n=1 and the Markov inequality, we are able to get an upper bound
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on the desired quantity Yn, that is,

P(|Yn| > y)

6 E[e⇢|Yn|]e-⇢y 6
�
E[e⇢Yn] + E[e-⇢Yn]

�
e-⇢y

6 2eD̂n-⇢y

= 2exp(n(e⇢ log(dT)/T - 1 -
⇢ log(dT)

T
)- ⇢y).

(A.93)

By setting the nuisance parameter ⇢ = T

log(dT) log( yT

n log(dT) + 1), that yields the
lowest bound

P(|Yn| > y) 6 2exp
✓
-nH

✓
Ty

n log(dT)

◆◆
,

where H(x) = (1 + x) log(1 + x) - x. We can use the fact that H(x) > 3x2

2(x+3) for
x > 0 to further simplify the bound and get

P(|Yn| > y) 6 2exp
✓

-3T 2y2

2Ty log(dT) + 6n log(dT)2

◆
.

Plugging in the definition of Yn, this result means that
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.

Then by setting n = T , we get
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6 2exp
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◆
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(A.94)
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Using union bound, we obtain an upper bound for the supreme over M0 such
terms, which is

P

 

sup
i=1,2,..,M0

�����
1
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(A.95)

We will show next that (A.95) enables us to bound sup
f2F

��� 1
T

P
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is our goal. First, we decompose it into two parts
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The second part can be easily bounded using Assumption 1 in following
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Using Cauchy-Schwarz inequality, this upper bound is further bounded by
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Our next goal is to show that we can bound the first part
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using (A.95). To bound that, simply using Cauchy-Schwarz inequality, we get
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Using (A.95), we show that the first part is upper bounded by
vuut

M0X

i=1

min(µi,�2)y,
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with probability at least 1 - exp
⇣
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. Therefore, after
combining the bounds on the two parts, we obtain the upper bound for
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. Further, after
applying union bound on all (j,k) 2 {1, 2, ...,d}2 and recalling the connection be-
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2F, we can show that with probability at least
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for all (j,k) 2 {1, 2, ...,d}2 and any M0,y.
Finally, by setting y = 3 (log(M0dT)) log(dT)p

T
, we obtain that, with probability at
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Here, we assumed T > 2, log(M0dT) > 1. Our definition of ✏̃m guarantees that, if
� > ✏̃m, then
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That completes our proof for Theorem 4.9.

Proof of Theorem 4.10

Since we have kfj,kk1 6 1, it su�ces to bound
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The proofs are based on the result for independent case from Lemma 7 in Raskutti
et al. (2012), which shows that there exists constants (c̃1, c̃2) such that
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(A.96)

where {X̃t}
m

t=1 are i.i.d drawn from the stationary distribution of Xt denoted by
P0. Let T = m`. We divide the stationary T -sequence XT = (X1,X2, ...,XT ) into m

blocks of length `. We use Xa,b to refer the b-th variable in block a. Therefore, we
can rewrite
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Using the fact that sup |
P

..| 6 P
sup |..|, (A.97) is smaller than
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which, by using the fact that P(1
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P
`

i=1 ai > c) 6 P([`
i=1(ai > c)) 6 P

`

i=1 P(ai >
c), is bounded by

`X

b=1
P

 

sup
j,k

sup
fj,k2BH(1),kfj,kk26�m

|
1
m

mX

a=1
f2
j,k(Xa,b)- kfj,kk22| >

�2
m

4

!

.

Using the fact that the process is stationary, it is equivalent to
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Our next steps are trying to bound the non-trivial part in (A.98). Because of
Lemma 2 in Nobel and Dembo (1993), we can replace {Xa,l}

m

a=1 by their independent
copies under probability measure P0 with a sacrifice of m�(`). Then we are able to
use (A.96) to bound the remaining probability. First, using Lemma 2 in Nobel and
Dembo (1993), we have
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Now, using (A.96), it is bounded by
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Therefore, we get
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for some constants c̃3 and c̃4. That completes the proof. For the follow-up statement,
condition on the event Bm,T , for any g 2 BH(1) with kgk2 > �m, we have h =

�m

g

kgk2
is in BH(1) and khk2 6 �m. Therefore, we have

����k�m

g

kgk2
kT - k�m

g

kgk2
k2

���� 6
�m

2 ,

which implies
|kgkT - kgk2| 6

1
2kgk2.
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Other proofs
Proof of Lemma 4.11. The statement which we want to show is equivalent to

|
1
T

TX

t=1
fj,k(Xt)wt,j| 6 4

p
2kfj,kkH

r
m

T
(�̃2

m + �̃m
kfj,kkT
kfj,kkH

) (A.99)

for any fj,k 2 H, for any (j,k) 2 [1, 2, ...,d]2.
For each j,k, we define

ZT ,j,k(w; `) :=

����� sup
kfj,kkT6`,kfj,kkH61

1
T

TX

t=1
fj,k(Xt)wt,j

����� .

We claim that on event Am,T \Bm,T ,

ZT ,j,k(w; `) 6 4
p

2
r

m

T
(�̃2

m
+ �̃m`), (A.100)

for any (j,k) 2 [1, 2, ...,d]2.We give the proof in following.

Proof. Based on the sandwich inequality in Theorem 4.10, for any g 2 BH(1), any
� > �m, when kgk2 > 2� > �m, kgkT > kgk2

2 > �. Therefore, for any � > �m,

if kgkT 6 � then kgk2 6 2�. (A.101)

Using this fact, we proceed the proof in two cases.
Case 1: If ` 6 �̃m, then

ZT ,j,k(w; `) =

����� sup
kfj,kkT6`,kfj,kkH61

1
T

TX

t=1
fj,k(Xt)wt,j

�����

6
����� sup
kfj,kkT6�̃m,kfj,kkH61

1
T

TX

t=1
fj,k(Xt)wt,j

����� .
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Since �̃m > �m, using the fact (A.101), we get

ZT ,j,k(w; `) 6
����� sup
kfj,kk262�̃m,kfj,kkH61

1
T

TX

t=1
fj,k(Xt)wt,j

����� .

Further, since �̃m > ✏̃m, we are able to use Theorem 4.9 and show that

ZT ,j,k(w; `) 6 4
p

2
r

m

T
�̃2
m

.

Case 2: If ` > �̃m, we use scaling on f to transform it to Case 1, hence we can
show a bound in following.

ZT ,j,k(w; `)

=
����� sup
kfj,kkT6`,kfj,kkH61

1
T

TX

t=1
fj,k(Xt)wt,j

�����

=
������
`

�̃m
sup

k �̃m
`

fj,kkT6�̃m,k �̃m
`

fj,kkH6 �̃m

`

1
T

TX

t=1

�̃m
`

fj,k(Xt)wt,j

������

6
������
`

�̃m
sup

kf̃j,kkT6�̃m,kf̃j,kkH61

1
T

TX

t=1
f̃j,k(Xt)wt,j

������

6

4
p

2
r

m

T
`�̃m.

Therefore, statement (A.100) is true.

Next, we use proof by contradiction to prove (A.99). If (A.99) fails for a function
f0
j,k, we can assume kf0

j,kkH = 1, otherwise, statement also fails for f
0
j,k

kf0
j,kkH

. Then we
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let ` = kf0
j,kkT . Now kf0

j,kkT 6 `, kf0
j,kkH 6 1, but

�����
1
T

TX

t=1

f0
j,k(Xt)wt,j

�����

> 4
p

2
r

m

T
(�̃2

m
kf0

j,kkH + �̃mkf0
j,kkT )

= 4
p

2
r

m

T
(�̃2

m
+ �̃m`),

which contradicts (A.100). Therefore, (A.99) is true.

Proof of Lemma 4.12. First, using Theorem 4.10, on event Bm,T for any (j,k) 2
[1, 2, ...,d]2,

kfj,kkT 6 kfj,kk2 +
�m

2 , (A.102)

for all fj,k 2 BH(1) and kfj,kk2 6 �m. On the other hand, if kfj,kk2 > �m, then the
sandwich relation in Theorem 4.10 implies that kfj,kkT 6 2kfj,kk2. Therefore, we
have

kfj,kkT 6 2kfj,kk2 +
�m

2 for all fj,k 2 BH(1).

The proof is completed by noticing gj,k = 2fj,k.

Proof of Lemma 4.13. First, we point out that we only need to show that

kgjkT > �m,j/2 for all gj 2 2Fj with kgjk2 = �m,j,

because if kgjk2 > �m,j, we can scale gj to �m,j
kgjk2

gj, which belongs to 2Fj as well since
�m,j
kgjk2

< 1. We choose a truncation level ⌧ > 0 and define the function

`⌧(u) = {
u2 if |u| 6 ⌧
⌧2 otherwise

.
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Since u2 > `⌧(u) for all u 2 R, we have

1
T

TX

t=1

g2
j
(Xt) >

1
T

TX

t=1

`⌧(gj(Xt)).

The remainder of the proof consists of the following steps:

(1) First, we show that for all gj 2 2F with kgjk = �m,j, we have

E[`⌧(gj(x))] >
1
2E[g

2
j
(x)] =

�2
m,j

2 .

(2) Next we prove that

sup
gj22Fj,kgjk26�m,j

�����
1
T

TX

t=1
`⌧(gj(Xt))- E[`⌧(g(Xt))]

����� 6
�2
m,j
4 , (A.103)

with high probability for �mixing process with r > 1/c0.

Putting together the pieces, we conclude that for any gj 2 Fj with kgjk2 = �m,j,
we have

1
T

TX

t=1
g2
j
(Xt) >

1
T

TX

t=1
`⌧(gj(Xt)) >

�2
m,j
2 -

�2
m,j
4 =

�2
m,j
4 ,

with high probability (to be specified later). This shows that event Dm,T holds with
high probability, thereby completing the proof. It remains to establish the claims.
Part 1. Establishing the lower bound for E[`⌧(gj(x))]:

Proof. We can not use the same proofs as in the independent case from Raskutti
et al. (2012), since each element from the multivariate variable x = (x1, ..., xd) is not
independent from others in the stationary distribution. That is the reason why we
need to have Assumption 4. In the independent case, Assumption 4 is shown to be
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true in Raskutti et al. (2012). Note that

gj(x) =
X

k2U

gj,k(xj),

for a subset U of cardinality at most 2sj, we have

E[`⌧(gj(x))] > E[g2
j
(x)I[|gj(x)| 6 ⌧]]

= �2
m,j - E[g2

j
(x)I[|gj(x)| > ⌧]].

Using Cauchy-Schwarz inequality and Markov inequality, we can show that

(E[g2
j
(x)I[|gj(x)| > ⌧]])2 6 E[g4

j
(x)]P(|gj(x)| > ⌧)

6 E[g4
j
(x)]

�2
m,j

⌧2 .

Since E[g4
j
(x)] 6 C�2

m,j = CE[g2
j
(x)] given by Assumption 4, by choosing ⌧ > 2

p
C,

we are able to show that

E[`⌧(gj(x))] >
1
2E[g

2
j
(x)] =

�2
m,j

2 .

Part 2. Establishing the probability bound on
�

sup
gj22Fj,kgjk26�m,j

�����
1
T

TX

t=1
`⌧(gj(Xt))- E[`⌧(gj(X1))]

�����

6
�2
m,j
4

✏

.

Proof. Similar as the proof of Lemma. 4.11, we base our proof on the independent
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result from Lemma 4 in Raskutti et al. (2012), which is

P0

 

sup
gj22Fj,kgjk26�m,j�����

1
m

mX

a=1
`⌧(g(Xa))- E[`⌧(g(X1))]

�����
�2
m,j
12

!

6 c̃1exp(-c̃2m�
2
m,j).

(A.104)

We let T = m`. Using the same facts and results as in the proof for Theorem 4.10,
we have

P

 
�2
m,j
4 6 sup

gj22Fj,kgjk26�m,j�����
1
T

TX

t=1
`⌧(gj(Xt))- E[`⌧(gj(X1))]

�����

!

= P

 
�2
m,j
4 6 sup

gj22Fj,kgjk26�m,j�����
1
`

`X

b=1

1
m

mX

a=1
`⌧(gj(Xa,b))- E[`⌧(g(Xa,1))]

�����

!

6 `P0

 
�2
m,j
4 6 sup

gj22Fj,kgjk26�m,j�����
1
m

mX

a=1
`⌧(gj(Xa,`))- E[`⌧(g(Xa,`))]

�����

!

+ T�(`).

Using (A.104), we conclude that it is upper bounded by

`c̃1exp(-c̃2m�
2
m,j) + T

✓
T

m

◆-r�

,

which is then upper bounded by c̃3exp(-c̃4m�
2
m,j) + T

-
1-c0
c0 for constants c̃3, c̃4.

Now, we proved that all claims are correct. Therefore, we complete the proof.

Proof of Lemma A.26. For �-mixing process with 0.781 6 � 6 2, we can use the
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concentration inequality from Kontorovich et al. (2008) to show sharper rate in
Lemma A.26 than Theorem 4.10. That concentration inequality is presented in
following.

Lemma A.28 (McDirmaid inequality in Kontorovich et al. (2008); Mohri and Ros-
tamizadeh (2010)). Suppose S is a countable space, FS is the set of all subsets of Sn, Q is
a probability measure on (Sn,FS) and g : Sn ! R is a c-Lipschitz function (with respect
to the Hamming metric) on S

n for some c > 0. Then for any y > 0,

P(|g(X)- Eg(X)| > y) 6 2exp
 

-
y2

2nc2(1 + 2
P

n-1
`=1 �(`))

2

!

.

Its original version is for discrete space, which is then generalized to continuous
case in Kontorovich (2007). Here, we use its special form for the �-mixing process
which is pointed out in Kontorovich (2007) and Mohri and Rostamizadeh (2010).

For our statement, as pointed out in the proof for Theorem 4.10, since we have
kfj,kk1 6 1, it su�ces to bound

P

 

sup
j,k

sup
fj,k2BH(1),kfj,kk26�m

|kfj,kk2
T
- kfj,kk2

2| >
�2
m

4

!

. (A.105)

The proofs are based on independent result from Lemma 7 in Raskutti et al. (2012),
which shows that there exists constants (c̃1, c̃2) such that

P0

 

sup
j,k

sup
fj,k2BH(1),kfj,kk26�m

�����
1
m

mX

t=1
f2
j,k(X̃t)- kfj,kk22

����� >
�2
m

10

!

6 c̃1exp(-c̃2m�
2
m),

where {X̃t}
m

t=1 are i.i.d drawn from the stationary distribution of Xt denoted by P0.
Now, we can use Lemma A.28 to show the sharper rate. Recall that kfj,kk1 6 1,

we define
g(X) = sup

fj,k2BH(1),kfj,kk26�m

|kfj,kk2
T
- kfj,kk2

2|.
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Then,

|g(X)- g(Y)|

6 sup
fj,k2BH(1),kfj,kk26�m

�����
1
T

TX

t=1
fj,k(Xt)

2 -
1
T

TX

t=1
fj,k(Yt)

2

�����

6 1
T
distHM(X, Y),

where distHM(X, Y) means the Hamming metric between X and Y, which equals to
how many paired elements are di�erent between X and Y. Thus, we know that g(X)
is 1

T
-Lipschitz with respect to the Hamming metric. Therefore, using Lemma A.28,

we show that

P

✓
|g(X)- Eg(X)| > �2

m

8

◆

6 2exp
 

-
T�4

m

128(1 + 2
P

T-1
`=1 �(`))

2

!

.

Using the fact that �(`) = `-r� , we show that probability is bounded by

O(exp(-min(T 2r�-1, T)�4
m
)).

If we use union bound ond2 terms, that is at mostO(exp(2 log(d)-min(T 2r�-1, T)�4
m
)).

Since 0.781 6 r� 6 2, we show that T 2r�-1�4
m

= m
(r
�
+2)(2r

�
-1)

r
� �4

m
= ⌦(m2�4

m
) and

T�4
m

= m
r
�
+2

r
� �4

m
= ⌦(m2�4

m
). Therefore, the probability is at most c2exp(-c3(m�2

m
)2)

for some constants (c2, c3).
The remaining proof is then to show that Eg(X) 6 �

2
m

8 . In other words, we need
to show that for su�cient large m,

E sup
fj,k2BH(1),kfj,kk26�m

�����
1
T

TX

t=1
f2
j,k(Xt)- kfj,kk22

����� 6
�2
m

8 (A.106)

First, we use the same fact and results as in the proof for Theorem 4.10 to show
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that

E

"

sup
fj,k2BH(1),kfj,kk26�m

�����
1
T

TX

t=1
f2
j,k(Xt)- kfj,kk22

�����

#

=

E

"

sup
fj,k2BH(1),kfj,kk26�m

�����
1
`

`X

b=1

1
m

mX

a=1
f2
j,k(Xa,b)- kfj,kk22

�����

#

6

1
`

`X

b=1
E

"

sup
fj,k2BH(1),kfj,kk26�m

�����
1
m

mX

a=1
f2
j,k(Xa,b)- kfj,kk22

�����

#

=

E

"

sup
fj,k2BH(1),kfj,kk26�m

�����
1
m

mX

a=1
f2
j,k(Xa,`)- kfj,kk22

�����

#

.

Using the fact that E[Z] = E[ZI(Z 6 �)] + E[ZI(Z > �)] 6 � + kZk1P(Z > �) and
kfj,kk1 6 1, we show an upper bound

�+

2P
 

sup
fj,k2BH(1),kfj,kk26�m

�����
1
m

mX

a=1
f2
j,k(Xa,`)- kfj,kk22

����� > �
!

,

for any � > 0. As in the proof of Theorem 4.10, we use Lemma 2 in Nobel and
Dembo (1993) to connect the dependence probability with independence probability,
which gives us

�+ 2P
 

sup
fj,k2BH(1),kfj,kk26�m

��kfj,kk2
m
- kfj,kk2

2
�� > �

!

6 �+m�(`)+

P0

 

sup
fj,k2BH(1),kfj,kk26t

��kfj,kk2
m
- kfj,kk2

2
�� > �

!

.
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We choose � to be �
2
m

10 , then using (A.105), we have the upper bound

�2
m

10 +m�(`) + P0

 

sup
f2BH(1),kfk26t

��kfk2
m
- kfk2

2
�� > �2

m

10

!

6 �2
m

10 +m�(`) + c̃1exp(-c̃2m�
2
m
).

We require m�2
m

= ⌦(- log(�m)), which is the same as Raskutti et al. (2012). Based
on our assumptions, m�(`) = m(m2/r�)-r� = m-1 = o(�2

m
) since m�2

m
! 1 as

m ! 1. Therefore, for su�ciently large m, that expectation is bounded by �
2
m

8 .
That completes the proof.

For the follow-up statement, condition on event Bm,T , for any gj,k 2 BH(1) with
kgj,kk2 > �m, we have hj,k = �m

gj,k
kgj,kk2

is in BH(1) and khj,kk2 6 �m. Therefore, we
have ����

�����m

gj,k

kgj,kk2

����
T

-

�����m

gj,k

kgj,kk2

����
2

���� 6
�m

2 ,

which implies
|kgj,kkT - kgj,kk2| 6

1
2kgj,kk2.

Proof of Lemma A.27. We follow the outline of proof for Lemma 4.13. The only
di�erence is here is the proof for showing

sup
gj22Fj,kgjk26�m,j

�����
1
T

TX

t=1
`⌧(gj(Xt))- E[`⌧(g(Xt))]

����� 6
�2
m,j
4 ,

with high probability for �mixing process with 0.781 6 r 6 2.
To show that, we use Lemma A.28 as in the proof of Lemma A.26 and define

h(X) = sup
gj22Fj,kgjk26�m,j

�����
1
T

TX

t=1
`⌧(gj(Xt))- E[`⌧(gj(X1))]

����� .
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We have

|h(X)- h(Y)|

6 sup
gj22Fj,kgjk26�m,j

�����
1
T

TX

t=1
(`⌧(gj(Xt))- `⌧(gj(Yt)))

�����

6 ⌧2

T
distHM(X, Y),

which give us

P

 

|h(X)- Eh(X)| >
�2
m,j

8

!

6 O

 

exp

 

-min(T 2r�-1, T)
�4
m,j

⌧4

!!

6 c2exp(-c3(m�
2
m,j)

2),

following the same analyses as in the proof of Lemma A.26.
As in the proof of Lemma A.26, we then need to show that for su�cient large

m,

E sup
gj22Fj,kgjk26�m,j

�����
1
T

TX

t=1
`⌧(gj(Xt))- E[`⌧(gj(X))]

�����

6
�2
m,j
8 .

Using the same facts and results as we mentioned in the proof of Theorem 4.10
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and Lemma A.26, we show the upper bound in following.

E sup
gj22Fj,kgjk26�m,j

�����
1
T

TX

t=1
`⌧(gj(Xt))- E[`⌧(gj(X1))]

�����

6
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�����
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mX

a=1
`⌧(gj(Xa,`))- E[`⌧(gj(Xa,`))]

�����
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�+ 2⌧2P
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mX

a=1
`⌧(gj(Xa,`))- E[`⌧(gj(X))]

����� > �
!

6

�+ 2⌧2m�(`) + 2⌧2
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����� > �
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6
�2
m,j
12 + 2⌧2m�(`) + 2⌧2
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gj22Fj,kgjk26�m�����

1
m

mX

a=1
`⌧(gj(Xa,`))- E[`⌧(gj(X))]

����� >
�2
m,j
12

!

6
�2
m,j
12 + 2⌧2m�(`) + 2⌧2c̃1exp-(c̃2m�

2
m,j),

which is bounded by �
2
m,j
8 for su�ciently large m, using similar arguments as in

the proof for Lemma 4.11. That completes the proof.
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A.4 Supplement for Chapter 5

In this section, we first discuss the extensions of the model to multiple outputs and
classification and discuss how to incorporate the bias terms in NN. Then we show
the proofs for the theorems in the main body. Finally, we present details for models
used in experiments and provide more experiment results.

The extension to multiple outputs, classification and including
bias terms

For the output y 2 R
d, we permit our computation skeleton to have d output nodes

as well. Then after we run our construction algorithm, we obtain a BNN with d

outputs fL at the last layer. Then the analysis and properties for the single output
case also hold for the multiple output case.

In regression task, we assume the likelihood p(y|FL) of the output y to be a
normal distribution, given the input matrix X with n samples and the relevant
output FL at the last layer of BNN. We output FL to estimate the mean of y. The
relevant loss in the optimization of ELBO is the mean square loss. This is usually
considered for the regression task. In a classification task with y 2 {0, 1, ...,k} in k

categories, we assume the likelihood p(yi|FL

i.) =
exp(FL

iy
i
)

P
k

j=1 exp(FL

ij
)

for 1 6 i 6 n. Then
the relevant loss in the optimization of ELBO is

1
n

nX

i=1

log
 

exp(FL

iyi
)

P
k

j=1 exp(FL

ij
)

!

.

We can add bias terms into the framework. The bias term with random weight
can either be incorporated into the construction of RB Daniely et al. (2016) or be
treated as a parameter in the BNN Gal and Ghahramani (2016). We refer one to see
these two works for incorporating bias terms.

Remark. The statements for the extension to multiple outputs and classification
hold for DGPs as well.
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Proofs for theorems in the main body

In this section, we give the proofs for theorems in the main body.

The proof for the relation between activation functions and kernels

First, we prove theorems on the relation between activation functions and kernels.
The uniform concentration bound for C-bounded activation functions and

its proof
First, we present the uniform concentration bound for C-bounded activation

functions and its proof.
Theorem 0. If the activation function �K is C-bounded, meaning it is con-

tinuously di�erentiable and ||�K||1, ||� 0
K
||1 6 C, then for every 1 < ` 6 L, on

a compact set M 2 R
d with diameter diam(M), with probability at least 1 -

c1diam(M)2exp
⌦
- ✏

2
r

8(1+d)C

↵
,

sup
�(f`-1(x)),�(f`-1(x 0))2M

|K̂
`(f`-1(x), f`-1(x 0))-K

`(f`-1(x), f`-1(x 0))| 6 ✏,

for a constant c1 > 0.

Proof. (a) For a C-bounded activation function, since ||�K(·)||1 6 C, for fixed f`-1(x)
and f`-1(x 0), the r random variables {�K(�(f`-1(x))Twi)�K(�(f`-1(x 0))Twi)}ri=1 are
independent and lie in a bounded interval [-C,C]. Then using Hoe�dings’ inequal-
ity, we get that

P(|K̂`(f`-1(x), f`-1(x 0))-K
`(f`-1(x), f`-1(x 0))| > ✏) 6 2exp(-2r✏2

4C2 ). (A.107)

Next we show that for a compact set M of Rd with diameter diam(M), with

probability at least 1 - 211
⇣

C
4
d diam(M)2

✏2r

⌘ d

1+d exp
⌦
- r✏

2

8(1+d)C2

↵
,
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sup
�(f`-1(x)),�(f`-1(x 0))2M

|K̂
`(f`-1(x), f`-1(x 0))-K

`(f`-1(x), f`-1(x 0))| 6 ✏.

Since M has diameter diam(M), we can find �-net that covers M using at most
T = (4diam(M)/�)d balls of radius �. Let {�i}

T

i=1 denote the centers of these balls.
Then using (A.107) and union bounds, for any two centers, such as �1 and �2, with
probability at least 1 - 2exp(log(T 2)- 2r✏2

16C2 ),

|K̂
`(�1,�2)-K

`(�1,�2)| 6
✏

2 . (A.108)

For the function u(x, x 0) = K̂
`(f`-1(x), f`-1(x 0))-K

`(f`-1(x), f`-1(x 0)), we have
the inequality from partial derivative that

|u(x, x 0)-u(x0, x 0
0)| 6 L�K

(||�(f`-1(x))-�(f`-1(x0))||2+ ||�(f`-1(x 0))-�(f`-1(x 0
0))||2),

(A.109)
where

L�K
= arg max

�(f`-1(x)),�(f`-1(x 0))2M

||
1
r

rX

i=1

@�K(�(f`-1(x))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0))Twi)

- Ew
@�K(�(f`-1(x))Tw)

@�(f`-1(x)) �K(�(f`-1(x 0))Tw)||2

= ||
1
r

rX

i=1

@�K(�(f`-1(x⇤))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Twi)

- Ew
@�K(�(f`-1(x⇤))Tw)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Tw)||2.

We also have that
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EL2
�K

= E||
1
r

rX

i=1

@�K(�(f`-1(x⇤))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Twi)

- Ew
@�K(�(f`-1(x⇤))Tw)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Tw)||22

= E||
1
r

rX

i=1

@�K(�(f`-1(x⇤))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Twi)||
2
2

- ||Ew
@�K(�(f`-1(x⇤))Tw)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Tw)||22

=
1
r2

rX

i=1

E||
@�K(�(f`-1(x⇤))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Twi)||
2
2

-
1
r2 ||Ew

@�K(�(f`-1(x⇤))Tw)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Tw)||22

6 1
r2C

4
rX

i=1

E||wi||
2
2

=
C4d

r
.

Therefore, by Markov’s inequality,

P(L�K
> ✏

4�) 6 EL2
�K

16�2

✏2 6 16�2C4d

✏2r

Then using Eq. (A.109), with probability at least 1 - 16�2
C

4
d

✏2r ,

|u(x, x 0)- u(x0, x 0
0)| 6

✏

2
This inequality combined with Eq. (A.108) enables us to conclude that

sup
�(f`-1(x)),�(f`-1(x 0))2M

|K̂
`(f`-1(x), f`-1(x 0))-K

`(f`-1(x), f`-1(x 0))| 6 ✏.
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with probability at least 1 - 16�2
C

4
d

✏2r - 2exp(log(T 2) - 2r✏2

16C2 ). Recall that T =

(4diam(M)/�)d, so the probability has a format of 1 - 1�
2 - 2�

-2d for �. By
setting � = 2

1

1
2+2d , we have the probability as 1 - 2

2d
2+2d
1 

2
2+2d
2 . So the probability is

at least

1 - 211
✓
C4d diam(M)2

✏2r

◆ d

1+d

exp
�
-

r✏2

8(1 + d)C2

�

Proof of Theorem 1 for ReLU
We have seen how to control the distance between empirical kernel and the

expectation kernel uniformly for C-bounded activation functions, now we present
the proof for ReLU activation functions.

Theorem A.29. If the activation function �K is ReLU, then for every 1 6 ` 6 L, on a
compact set M 2 R

d with diameter diam(M) and max�2M ||�||2 6 cM, with probability
at least 1 - c1cMdiam(M)2exp

⌦
- r✏

2

8(1+d)⌫2
M

↵
,

sup
�(f`-1(x)),�(f`-1(x 0))2M̃

|K̂
`(f`-1(x), f`-1(x 0))-K

`(f`-1(x), f`-1(x 0))| 6 ✏,

for a constant c1 > 0 and a parameter ⌫M depending on M. Here, M̃ specifies that we
require �(f`-1(x)) and �(f`-1(x 0)) to be two vectors in M that are not collinear.

Proof. For the ReLU activation �K(x) = max(0, x), we use concentration bound for
sub-exponential random variable to show the result for fixed points. We define u =

�K(�(f`-1(x))Tw)�K(�(f`-1(x 0))Tw). Our first goal is to compute Ew[e�u]. Since w
follows a normal distribution that is symmetric, how we choose axis does not influ-
ence the results. Therefore, we choose axis such that �(f`-1(x)) = e1||�(f`-1(x))||2
and �(f`-1(x 0)) = (e1 cos ✓+e2 sin ✓)||�(f`-1(x 0))||2 where e1 and e2 refer to standard
vector for the first and second axis. We denote Cf = ||�(f`-1(x))||2||�(f`-1(x 0))||2 6
c2
M

.
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Ew[e
�u] =

1
2⇡

Z1

-1
dw1

Z1

-1
dw2e

- 1
2 (w

2
1+w

2
2)e�Cf max(0,w1)max(0,w1 cos✓+w2 sin✓).

We switch (w1,w2) by (w̃1, w̃2) = (w1,w1 cos ✓+w2 sin ✓), then we get that

Ew[e
�u] =

1
2⇡ sin ✓

Z1

0
dw̃1

Z1

0
dw̃2e

-
w̃

2
1+w̃

2
2-2w̃1w̃2 cos✓
2 sin✓2 e�Cfw̃1w̃2 .

We switch (w̃1, w̃2) by (r̃, �̃) with w̃1 = r̃ sin �̃ and w̃2 = r̃ cos �̃, then we get
that

Ew[e
�u] =

1
2⇡ sin ✓

Z
⇡/2

0
d�̃

Z1

0
r̃dr̃e-r̃

2 1-sin 2�̃ cos✓
2 sin✓2 er̃

2 �Cf
sin 2�̃
2 .

Through the known mean calculation of half normal distribution that

a
p

2p
⇡

=

Z

x>0
xdx

p
2

a
p
⇡

exp(- x2

2a2 ),

for any a, we know that

a2 =

Z

x>0
xdxexp(- x2

2a2 ),

for any a. We use this relation to calculate the integral of r̃ and we get that

Ew[e
�u] =

1
2⇡ sin ✓

Z
⇡/2

0
d�̃

sin ✓2

1 - sin 2�̃ cos ✓- �Cf sin 2�̃ sin ✓2

=
sin ✓
2⇡

Z
⇡/2

0
d↵

1
1 - cos↵ cos ✓- �Cf cos↵ sin ✓2 ,

by switching �̃ to ↵ = 2�̃- ⇡

2 . It is known that
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Z
⇠

0
d↵

1
1 - cos↵ cos ✓ =

1
sin ✓ tan-1

✓
sin ✓ sin ⇠

cos ⇠- cos ✓

◆
,

which can be verified by calculating the derivative of the right side Cho and
Saul (2009). Therefore, by setting ⇠ = ⇡

2 ,
Z
⇡

0
2d↵ 1

1 - cos↵ cos ✓ =
⇡- ✓

sin ✓ .

We define � = arccos(cos ✓+ �Cf sin ✓2) for 0 6 � 6 ⇡ under the requirement
that

-
1 + cos ✓
Cf sin ✓2 6 � 6 1 - cos ✓

Cf sin ✓2 .

Then we get that

Ew[e
�u] =

sin ✓
2⇡

⇡- �

sin � .

Since 0 6 �, ✓ 6 ⇡, now we further assume that - b

C sin✓2 6 � 6 b

C sin✓2 , then
cos ✓- b 6 cos� 6 cos ✓+ b. For a enough small b, we have that

Ew[e
�u] 6 3(⇡- ✓)

4⇡ . (A.110)

From Cho and Saul (2009),

Ew[�u] =
2�Cf

⇡
(sin ✓+ cos ✓(⇡- ✓)).

Therefore, we combine it with Eq. (A.110) to get that

Ew[e
�(u-Ew[u])] 6 3(⇡- ✓)

4⇡ exp(-�2Cf(sin ✓+ cos ✓(⇡- ✓))

⇡
),

for - b

C sin✓2 6 � 6 b

C sin✓2 with a enough small b.
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Because for ⇡2 6 ✓ 6 ⇡, cos ✓(⇡-✓) > cos ✓ tan(⇡-✓) = - sin ✓ > 0, we always
can define c = 2Cf(sin✓+cos✓(⇡-✓))

⇡
> 0 and it monotonically decreases to zero at

✓ = ⇡. Then we define ⌫2 = c
2

2 log( 4⇡
3(⇡-✓) )

that can guarantee

E[e�(u-E[u])] 6 exp(⌫
2�2

2 ),

for |�| 6 b

C sin✓2 . This means that u follows a sub-exponential distribution and
now we can use concentration bound to derive that

P[|u- E[u]| > ✏] 6
⌦ 2e-

✏
2

2⌫2 if 0 6 ✏ 6 ⌫
2
b

C sin✓2

2e-
✏b

2C sin✓2 for ✏ > ⌫
2
b

C sin✓2

.

Therefore, for a small error ✏, we can consider that

P[|u- E[u]| > ✏] 6 2e-
✏

2
2⌫2 .

The concentration inequality also applied to the average of r independent ran-
dom variable ui, which are defined for r independent wi. It shows that

P[|
1
r

rX

i=1

ui - E[u]| > ✏] 6 2e-
r✏

2
2⌫2 . (A.111)

Therefore, we obtain the concentration bound for fixed�(f`-1(x)) and�(f`-1(x 0)).
Next, we show the result for a setM. When ||�(f`-1(x))||2||�(f`-1(x 0))||2 is bounded

and the angle between �(f`-1(x)) and �(f`-1(x 0)) lies in (0,⇡) meaning there is no
collinearity, then we have an upper bound ⌫M for ⌫ depending on that two condi-
tions. Therefore, we similar choose T balls with radius � to cover M as in the proof
for Theorem A.29. Let {�i}

T

i=1 denote the centers of these balls. Then using (A.111)
and union bounds, for any two centers, such as �1 and �2, with probability at least
1 - 2exp

⇣
log(T 2)- r✏

2

8⌫2
M

⌘
,

|K̂
`(�1,�2)-K

`(�1,�2)| 6
✏

2 . (A.112)



175

Then for the function u(x, x 0) = K̂
`(f`-1(x), f`-1(x 0))-K

`(f`-1(x), f`-1(x 0)), we
have the inequality from partial derivative that

|u(x, x 0)-u(x0, x 0
0)| 6 L�K

(||�(f`-1(x))-�(f`-1(x0))||2+ ||�(f`-1(x 0))-�(f`-1(x 0
0))||2),

(A.113)
where

L�K
= arg max

�(f`-1(x)),�(f`-1(x 0))2M

||
1
r

rX

i=1

@�K(�(f`-1(x))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0))Twi)

- Ew
@�K(�(f`-1(x))Tw)

@�(f`-1(x)) �K(�(f`-1(x 0))Tw)||2

= ||
1
r

rX

i=1

@�K(�(f`-1(x⇤))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Twi)

- Ew
@�K(�(f`-1(x⇤))Tw)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Tw)||2.

We also have that

EL2
�K

=
1
r2

rX

i=1

E||
@�K(�(f`-1(x⇤))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Twi)||
2
2

-
1
r2 ||Ew

@�K(�(f`-1(x⇤))Tw)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Tw)||22

6 1
r2

rX

i=1

E||
@�K(�(f`-1(x⇤))Twi)

@�(f`-1(x)) �K(�(f`-1(x 0⇤))Twi)||
2
2.

Since �K is ReLU, ||� 0
K
||1 6 1, therefore we get that

EL2
�K

6 1
r
E|�K(�(f`-1(x 0⇤))Tw)|||w||

2
2.

Again, since w follows a normal distribution that is symmetric, we choose axis
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to satisfy �(f`-1(x 0⇤)) = e1||�(f`-1(x 0⇤))||2. Then we do a calculation,

EL2
�K

6 1
r
||�(f`-1(x 0⇤))||2

Z1

0
dw1

�Z1

-1
dw2...

Z1

-1
dwd(w1

dX

j=1

w2
j
)p(w2, ...,wd)

✏

p(w1)

=
1
r
||�(f`-1(x 0⇤))||2

Z1

0
dw1{w

3
1 + (d- 1)w1)p(w1)}

=
1
r
||�(f`-1(x 0⇤))||2

Z1

0
dw1{(d+ 3)w1p(w1)}

=
1
r
||�(f`-1(x 0⇤))||2

p
2(d+ 3)p
⇡

6
p

2(d+ 3)cMp
⇡r

Therefore, by Markov’s inequality,

P(L�K
> ✏

4�) 6 EL2
�K

16�2

✏2 6 16
p

2(d+ 3)cM�2
p
⇡✏2r

.

Then using Eq. (A.113), with probability at least 1 - 16
p

2(d+3)cM�
2

p
⇡✏2r

,

|u(x, x 0)- u(x0, x 0
0)| 6

✏

2 .

This inequality combined with Eq. (A.112) enables us to conclude that

sup
�(f`-1(x)),�(f`-1(x 0))2M

|K̂
`(f`-1(x), f`-1(x 0))-K

`(f`-1(x), f`-1(x 0))| 6 ✏.

with probability at least 1 - 16
p

2(d+3)cM�
2

p
⇡✏2r

- 2exp
⇣

log(T 2)- r✏
2

8⌫2
M

⌘
. Recall that

T = (4diam(M)/�)d, so the probability has a format of 1 - 1�
2 - 2�

-2d for �. By
setting � = 2

1

1
2+2d , we have the probability as 1 - 2

2d
2+2d
1 

2
2+2d
2 . So the probability is

at least
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1 - 210
✓
cM(d+ 3)diam(M)2

✏2r

◆ d

1+d

exp
�
-

r✏2

8(1 + d)⌫2
M

�
.

The relation between random feature Cutajar et al. (2017) and inducing points
approximation Salimbeni and Deisenroth (2017)

First, we review the algorithm in Salimbeni and Deisenroth (2017) based on inducing
points and doubly stochastic variational inference.

In the background section, we introduced that a L layer DGP can be represented
by

p(y, {F`}L
`=1) =

nY

i=1

p(yi|f
L

i
)

LY

`=1

p(F`|F`-1),

where F` 2 R
n⇥d for 0 6 ` < L and FL 2 R

n⇥1, with F`|F`-1
⇠ N(0,K`(F`-1, F`-1)).

In Salimbeni and Deisenroth (2017), they further define an additional set of
m inducing points Z` = (z`1, ..., z`

m
) for each layer 0 6 ` < L. We use the notation

u` = f`(Z`-1) for the function values at the inducing points. Since we have d output
on layer `, we use U` 2 R

m⇥d for the function value matrix at the inducing points.
By the definition of GP, the joint density p(F`, U`) is a Gaussian distribution given
inputs from previous layer. Therefore, we have the joint posterior of y, {F`, U`}L

`=1 is

p(y, {F`, U`}L
`=1) =

nY

i=1

p(yi|f
L

i
)

LY

`=1

p(F`|U`; F`-1, Z`-1)p(U`; Z`-1).

The posterior of {F`, U`}L
`=1 is intractable, so the authors in Salimbeni and Deisen-

roth (2017) define the variational posterior

q({F`, U`}L
`=1) =

LY

`=1

p(F`|U`; F`-1, Z`-1)q(U`),
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with q(U`) =
Q

d

j=1 q(U`.j) and q(U`.j) ⇠ N(m`

j
, S`

j
). Then they calculate the

evidence lower bound of the DGP, which is

ELBODGP = E
q({F`,U`}L

`=1)


p(y, {F`, U`}L

`=1
q({F`, U`}L

`=1)

�
.

Based on the definition of q({F`, U`}L
`=1), we can simplify ELBODGP and show

that it is equal as

ELBODGP =
nX

i=1

E
q(fL

i
)[log p(yi|f

L

i
)]-

LX

`=1

KL[q(U`)|p(U`; Z`-1)]. (A.114)

From Salimbeni and Deisenroth (2017), after marginalizing the inducing vari-
ables from each layer analytically, we can show that

q({F`}L
`=1) =

LY

`=1

q(F`|m`, S`; F`-1, Z`-1) =
LY

`=1

N(F`|µ`,⌃`) =
LY

`=1

dY

j=1

N(F`.j|µ̃`j , ⌃̃
`

j
).

(A.115)
Here,

µ̃`
j
= �(F`-1)Tm`

.j

⌃̃
`

j
= K

`(F`-1, F`-1)- �(F`-1)T (K`(Z`-1, Z`-1)- S.j)�(F`-1)

with �(F`-1) = K
`(Z`-1, Z`-1)-1

K
`(Z`-1, F`-1).

From Eq. (A.114), we only need to get q(fL
i
) from q({F`}L

`=1) for sample i with
1 6 i 6 n. In Salimbeni and Deisenroth (2017), they point out that based on the
format of Eq. (A.115),

q(fL
i
) =

Z
· · ·

Z LY

`=1

q(F`
i.|m`

i., S`i,; F`-1
i. , Z`-1)dF`-1

i. ,
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which means that the ith marginal of the final layer of the variational DGP for
sample i depends only on the ith marginals of all the other layers.

Proof of Theorem 2

Theorem A.30. Using the variational approximation Salimbeni and Deisenroth (2017)
for the posterior of a DGP defined on {K̂

`
}
L

`=1 with inducing points, we obtain exactly the
same variational posterior q({F`}L

`=1) and evidence lower bound ELBO as the variational
posterior for N(S).

Proof. To show the equivalence of evidence lower bound, we only need to guarantee
that q(F`

i.|m`

i., S`i,; F`-1
i. , Z`-1) and KL[q(U`)|p(U`; Z`-1)] are the same as the relevant

values for N(S) for all 1 6 i 6 n and 1 6 ` 6 L. We also need to show the
equivalence between variational posterior q({F`}L

`=1) for the two methods. All
those can be satisfied by showing the equivalence that q(F`|m`, S`; F`-1, Z`-1) and
KL[q(U`)|p(U`; Z`-1)] are the same as the relevant values for N(S) for all 1 6 ` 6 L.
For both two methods, since for each layer `, the d outputs are independent, so
the posterior distribution can be decomposed into a product of d terms and the
KL divergence can be decomposed into a summation of d terms. We only need to
prove the result for a single j with 1 6 j 6 d and a single `with 1 6 ` 6 L.

Based on Eq. (A.115), for q(F`.j|m`

.j, S`.j; F`-1, Z`-1), the mean and variances are

µ̃`
j
= �(F`-1)Tm`

.j

⌃̃
`

j
= K̂

`(F`-1, F`-1)- �(F`-1)T (K̂`(Z`-1, Z`-1)- S.j)�(F`-1)

with �(F`-1) = K̂
`(Z`-1, Z`-1)-1

K̂
`(Z`-1, F`-1). We can decompose the kernel

into K̂
`(Z`-1, Z`-1) = �`(Z`-1)�`(Z`-1)T . Now we choose the number of inducing

points m as m = r, then we have a square matrix �`(Z`-1) with each entry is
independently identically from a distribution based on the random feature weight
vector wj and the random inducing points Z`-1

i. .
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For continuous �K and �, every entry in�`(Z`-1) is absolutely continuous with
respect to Lebesgue measure since we can define density function. Then based on
random matrix theory Rudelson (2008); Tao (2012), the square matrix �`(Z`-1) is
almost surely invertible. Therefore, we treat �`(Z`-1) as an invertible matrix in
following analysis.

Replace K̂
`(Z`-1, Z`-1) by �`(Z`-1)�`(Z`-1)T , we have that

µ̃`
j
= �`(F`-1)(�`(Z`-1)T�`(Z`-1))-1�`(Z`-1)Tm`

.j

⌃̃
`

j
= �`(F`-1)�`(F`-1)T - �(F`-1)T (�`(Z`-1)�`(Z`-1)T - S.j)�(F`-1)

Through simple algebra, we get that

µ̃`
j
= �(F`-1)Tm`

.j

⌃̃
`

j
= �(F`-1)TS.j�(F`-1)

(A.116)

Since �`(Z`-1) is invertible, we define

m`

.j = �
`(Z`-1)µ`

j,new

S.j = �
`(Z`-1)⌃`

j,new
�`(Z`-1)T ,

and plug them into Eq. (A.116) then we get

µ̃`
j
= �`(F`-1)µ`

j,new

⌃̃
`

j
= �`(F`-1)⌃`

j,new
�`(F`-1)T .

(A.117)

In our BNN construction for N(S), the variational posterior over V leads to
F`.j = �`(F`-1)v`

j
with v`

j
⇠ N(µ`

j,new
,⌃`

j,new
). Then we have that

F`.j ⇠ N(�`(F`-1)µ`
j,new

,�`(F`-1)⌃`
j,new

�`(F`-1)T ).
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That is identical with the results from inducing points method in Eq. (A.117).
Based on this construction, we also have that

U`.j = �`(Z`-1)v`
j

Since the KL divergence is invariant under parameter transformations, we have
that

KL(q(U`.j)||p(U`.j)) = KL(q(v`
j
)||p(v`

j
))

Proof of Theorem 3
For a kernel K` belongs to a general class, we can still use a similar technique as

in the proof of Theorem 2 to show the equivalence. However, this time we cannot
use the random feature matrix �`(F`-1)�`(F`-1)T to approximate K

`(F`-1, F`-1).
It turns out that a good replacement for �`(F`-1) to approximate the basis of
K
`(F`-1, F`-1) is K`(F`-1, Z`-1)K`(Z`-1, Z`-1)-1/2 which we will show shortly. The

proof technique for Theorem 3 is similar as the technique for Theorem 2. However,
for a general class of K`, K`(F`-1, F`-1) can be full rank which is equal to sample
size n. Therefore, the di�erence from the approximation using the rank r basis
K
`(F`-1, Z`-1)K`(Z`-1, Z`-1)-1/2 is

K
`(F`-1, F`-1)-K

`(F`-1, Z`-1)K`(Z`-1, Z`-1)-1
K
`(Z`-1, F`-1).

This is the constant o�set that does not depend on training which we mention in
Theorem 3. For the optimization of ELBO, only the diagonal terms in this o�set
matrix is used so we can also add this into BNN as a bias term with random weight
that we do not train.

Remark. After the optimization of ELBO, one can get the uncertainty estimates
from the variational posterior. If

K
`(F`-1, F`-1)-K

`(F`-1, Z`-1)K`(Z`-1, Z`-1)-1
K
`(Z`-1, F`-1)
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is not present, then one can choose V from its variational posterior and the output
estimates for every samples directly come from one pass of feed-forward neural net-
work. However, whenK

`(F`-1, F`-1)-K
`(F`-1, Z`-1)K`(Z`-1, Z`-1)-1

K
`(Z`-1, F`-1)

exists, n passes of feed-forward neural network computation for n samples need to
depend on each other to derive the outputs. In Salimbeni and Deisenroth (2017),
they also permit the prior of DGP to have a non-zero mean function, which can
lead to another o�set if the prior mean of DGP at each layer is non-zero. Similarly,
this o�set does not depend on training and can be included into BNN as a bias term
with random weights that we do not train. Another term that is usually discussed
in DGP is the noisy corruption. In this result for general kernel K in Thoerem 3, in
Salimbeni and Deisenroth (2017), the authors show that the noisy corruption can be
included into the kernel K. For our earlier result in Theorem 2, we do not include
the noisy corruption in intermediate layers, since the complexity of intermediate
function is already restricted by the rank r. It does not overfit the data so we do
not need the noisy corruption which is usually used to avoid overfitting when the
kernel basis has infinite dimension which can be super expressive.

Now we review the definition of IPB and Theorem 3, then we present the proof
for Theorem 3.

Definition A.31. For a kernel K, IPB can be constructed by choosing r additional points Z
(inducing points), taking the inputs x and outputting an r-dimension vectorK(x, Z)K(Z, Z)-1/2.

Theorem A.32. Using the variational approximation Salimbeni and Deisenroth (2017)
for the posterior of a DGP defined on {K

`
}
L

`=1 with inducing points, we can obtain the
same variational posterior q({F`}L

`=1) and evidence lower bound ELBO as the variational
posterior for N(S) (with IPB) except a constant o�set that does not depend on training.

Proof. To show the equivalence of evidence lower bound, we only need to guarantee
that q(F`

i.|m`

i., S`i,; F`-1
i. , Z`-1) and KL[q(U`)|p(U`; Z`-1)] are the same as the relevant

values for N(S) for all 1 6 i 6 n and 1 6 ` 6 L. We also need to show the
equivalence between variational posterior q({F`}L

`=1) for the two methods. All
those can be satisfied by showing the equivalence that q(F`|m`, S`; F`-1, Z`-1) and
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KL[q(U`)|p(U`; Z`-1)] are the same as the relevant values for N(S) for all 1 6 ` 6 L.
For both two methods, since for each layer `, the d outputs are independent, so
the posterior distribution can be decomposed into a product of d terms and the
KL divergence can be decomposed into a summation of d terms. We only need to
prove the result for a single j with 1 6 j 6 d and a single `with 1 6 ` 6 L.

Based on Eq. (A.115), for q(F`.j|m`

.j, S`.j; F`-1, Z`-1), the mean and variances are

µ̃`
j
= �(F`-1)Tm`

.j

⌃̃
`

j
= K

`(F`-1, F`-1)- �(F`-1)T (K`(Z`-1, Z`-1)- S.j)�(F`-1)

with �(F`-1) = K
`(Z`-1, Z`-1)-1

K
`(Z`-1, F`-1).

We use r to refer the number of inducing points and we denote the IPB block
matrix K

`(F`-1, Z`-1)K`(Z`-1, Z`-1)-1/2 as IP`(F`-1), then we notice that

µ̃`
j
= IP`(F`-1)K`(Z`-1, Z`-1)-1/2m`

.j

⌃̃
`

j
= IP`(F`-1)K`(Z`-1, Z`-1)-1/2S.jK

`(Z`-1, Z`-1)-1/2IP`(F`-1)T

+K
`(F`-1, F`-1)-K

`(F`-1, Z`-1)K`(Z`-1, Z`-1)-1
K
`(Z`-1, F`-1).

(A.118)

We have discussed the second term in ⌃̃
`

j
which is a constant o�set that does

not depend on training. Therefore we assume it to be zero in following analysis
then we get the exactly same result as our variational posterior approximation for
N(S) when IPB is used.

We define

m`

.j = K
`(Z`-1, Z`-1)1/2µ`

j,new

S.j = K
`(Z`-1, Z`-1)1/2⌃`

j,new
K
`(Z`-1, Z`-1)1/2,

and plug them into Eq. (A.118) then we get



184

µ̃`
j
= IP`(F`-1)µ`

j,new

⌃̃
`

j
= IP`(F`-1)⌃`

j,new
IP`(F`-1)T .

(A.119)

In our BNN construction for N(S), the variational posterior over V leads to
F`.j = IP`(F`-1)v`

j
with v`

j
⇠ N(µ`

j,new
,⌃`

j,new
). Then we have that

F`.j ⇠ N(IP`(F`-1)µ`
j,new

, IP`(F`-1)⌃`
j,new

IP`(F`-1)T ).

That is identical with the results from inducing points method in Eq. (A.119).
Based on this construction, we also have that

U`.j = IP`(Z`-1)v`
j
= K

`(Z`-1, Z`-1)1/2v`
j

Since the KL divergence is invariant under parameter transformations, we have
that

KL(q(U`.j)||p(U`.j)) = KL(q(v`
j
)||p(v`

j
))

Proof of Theorem 4

The post-training ANOVA decomposition is

In
T
(xT ) =

Y

i2T

(Ixi
- E

n

xi
)
Y

j/2T

E
n

xj
f(x1, ..., xp), (A.120)

Theorem A.33. If there exist inputs clusters {T⇤
j
}
k
⇤

j=1 such that f⇤(x) =
P

k
⇤

j=1 g
⇤
j
(xT⇤

j
) with

k⇤ at the order of polynomial in p and c = maxk
⇤

j=1 |T
⇤
j
| = O(log p), then there exists a

trained AddNN that predicts y well and restricts the number of possible interactions at
polynomial in p. Further, if every sub neural network has L layers with d hidden units,
then the computation complexity of measure (A.120) is at most nck⇤d2L-1, which is also
polynomial in p.
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Proof. In that case, there exists a trained AddNN f which is f̂(x) =
P

k
⇤

j=1 ĝj(xT⇤
j
)

with the same k⇤ and inputs clusters {T⇤
j
}
k
⇤

j=1. For such f̂, without knowing the
truth, every possible interaction is a subset of one inputs cluster T⇤

j
for some j.

Therefore, the number of possible interactions is bounded by
P

k
⇤

j=1 2|T
⇤
j
| 6 k⇤2c, so

it is polynomial in p. For an interaction among a subset S, we have that

In
S
(xS) =

Y

i2S

(Ixi
- E

n

xi
)
Y

j/2S

E
n

xj
f̂(x1, ..., xp)

=
Y

i2S

(Ixi
- E

n

xi
)
Y

j/2S

E
n

xj

k
⇤X

m=1

ĝm(xT⇤
m
)

=
k
⇤X

m=1

Y

i2S

(Ixi
- E

n

xi
)
Y

j/2S

E
n

xj
ĝm(xT⇤

m
)

=
X

m:S✓T⇤
m

Y

i2S

(Ixi
- E

n

xi
)
Y

j/2S

E
n

xj
ĝm(xT⇤

m
),

because for m that S 6✓ T⇤
m

, then there exists an i0 2 S such that i0 /2 T⇤
m

, then

Y

i2S

(Ixi
- E

n

xi
)
Y

j/2S

E
n

xj
ĝm(xT⇤

m
) = 0

because (Ixi0
- E

n

xi0
)ĝm(xT⇤

m
) = ĝm(xT⇤

m
)- ĝm(xT⇤

m
) = 0. We can further simply

In
S
(xS),

In
S
(xS) =

X

m:S✓T⇤
m

Y

i2S

(Ixi
- E

n

xi
)
Y

j/2S

E
n

xj
ĝm(xT⇤

m
)

=
X

m:S✓T⇤
m

Y

i2S

(Ixi
- E

n

xi
)

Y

j/2S,j2T⇤
m

E
n

xj
ĝm(xT⇤

m
).

Therefore, the computation complexity of In
S
(xS) is equal to the computation

complexity for
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[m:S✓T⇤
m

8
<

:
Y

i2S

(Ixi
- E

n

xi
)

Y

j/2S,j2T⇤
m

E
n

xj
ĝm(xT⇤

m
)

9
=

; , (A.121)

which is the union of |m : S ✓ T⇤
m
| functions where each function involves the

calculation of feed-forward neural network and empirical evaluation. Therefore, to
compute all interactions, we need to compute the union of (A.121) for all possible
interactions S. Because every possible interaction is a subset of one inputs cluster
T⇤
j

for some j, we can exchange the order of unions and we get that the computation
complexity for all interactions is equal as evaluating

[m [S✓T⇤
m

8
<

:
Y

i2S

(Ixi
- E

n

xi
)

Y

j/2S,j2T⇤
m

E
n

xj
ĝm(xT⇤

m
)

9
=

; . (A.122)

To compute [S✓T⇤
m

⌦Q
i2S

(Ixi
- E

n

xi
)
Q

j/2S,j2T⇤
m

E
n

xj
ĝm

�
xT⇤

m

�↵
for some m, we

only need to compute

Mn

T⇤
m
(xT⇤

m
) =

Y

i2T⇤
m

Ixi
ĝ
�
xT⇤

m

�
,

which involves all the evaluations of the feed-forward neural network. To eval-
uate

Q
i2S

(Ixi
- E

n

xi
)
Q

j/2S,j2T⇤
m

E
n

xj
ĝm

�
xT⇤

m

�
for S ✓ T⇤

m
, the computation only in-

volves basic addition operation given Mn

T⇤
m

. Therefore, we show that the evaluation
of all possible interactions has the same computation complexity as evaluating

[m {Mn

T⇤
m
(xT⇤

m
)} = [m{

Y

i2T⇤
m

Ixi
ĝ
�
xT⇤

m

�
}. (A.123)

For every member in the union regarding m, the evaluation complexity is
n|T

⇤
m|d2L-1 6 ncd2L-1. Therefore, the computation complexity regarding (A.120)

for all possible interactions based on model f̂ is bounded by nck⇤d2L-1, which is
polynomial in p when k⇤ is polynomial in p and c is the order of O(log p).
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Remark 1. When the truth function f⇤ is additive, the function class of AddNN
includes a member that can compute interactions and outputs from the model
e�ciently while the function class of an arbitrary NN make it impossible to learn
such a model and always involve computation that is exponential in p. In practice,
we always use group Lasso type penalty on the first layer to encourage each sub
neural network to depend on few inputs to approach the truth function f⇤.

Remark 2. We can use the measure in Zeiler and Fergus (2014) as well, which can
be seen as choosing one sample baseline instead of the average baseline in (A.120).
In other words, now we use operation �xi

(x0
i
) to replace E

n

xi
in (A.120) based on one

sample x0 for 1 6 i 6 n. Then the computation complexity of measure (A.120) does
not depend on n both for AddNN and NN. In that case, the number of possible
interactions for AddNN is still at polynomial in p and the number is exponential
in p for an arbitrary NN. Also, the computation complexity of measure (A.120) is
k⇤d2L-1 for AddNN and (k⇤d)2L-1 for an arbitrary NN with L layers and k⇤d hidden
units where the NN requires k⇤2(L-1) times more computation. The choice of En as
baseline, compared to �(x0), is better for comparison with the population and can
lead to a useful measure ||In

T
(xT )||2,n (the empirical `2 norm of the interaction), which

can be used to detect the interactions. We give an example of their di�erence for
explanation in the decision making process. For one who is interested in making an
investment with x1 dollars, the E

n baseline informs that, based on this investment,
how much more one can earn than the average of the money that people earn. On
the other side, the �(x0) baseline informs that, at the current investment with x0

dollars, if all other factors do not change, how much more one can earn if he/she
decides to invest x1 - x0 more dollars.

Model details for experiments

We discuss more details about Bayesian additive Neural Network (AddNN) imple-
mentation and provide more experimental results. In our experiments, we use 10
small(sub) neural networks, where each has 2 hidden layers.

Implementation Details: Our Bayesian Neural Network is a sum of 10 small
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neural networks and each small network consists of 3 layers. An input feature
vector is passed through 10 sub-neural networks followed by addition operation
to give a final scalar output. For each sub-neural network, we use 2 to 5 neurons
for the first hidden layer and 5 to 20 neurons for the second hidden layer. We train
the Bayesian Neural Network with batch size = 100 and 0.01 initial learning rate
with exponential decay until the validation error converges. In order to pick sparse
interpretable variables, we impose group Lasso for the first layer with respect to
each input neuron, which associates with sub neural network. The group Lasso
penalty hyper-parameter depends on the sparsity and addition structure. In our
experiments, it ranges from 0.001 to 1.0.

BANN learns the sparse additive structure: To show our Bayesian additive
neural network can learn the sparse addition structure of the function and the
interaction, we provide one example of learning Friedman function f1. We plot the
learned matrix of the input layer and the first hidden layer, which can be seen in
Fig A.1.
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Figure A.1: BANN learns the additive structure of the function f1. The rows of
visualized matrix correspond to the neurons of the input layer and the columns
correspond to the 10 sub neural networks, each has 2 hidden units. The sparsity of
the matrix demonstrates the sparse interaction between the neurons of the input
layer.
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