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Chapter 1

HILBERT SPACE

1. Linear Spaces

A set R of elements f, g, A, . .., (also called points or vectors)
forms a linear spgce if

(a) there is an operation, called addition and denoted by the symbol
+, with respect to which R is an abelian group (the zero element of this
group is denoted by 0); AR BA

(b) multiplication of elements of R by (real or complex) numbers
~a,B, v, ...is defined such that

ao(f+g)=0of + ag,
(a +B)f =of + Bf,
a(Bf) = (aB) f,

1-f=f, 0.f=0.
Elements f;, f5, . . . , fa in R are linearly independent if the relation
1) afitafot. ...+ anfu=0
holds only in the trivial case with a; = a, . —an= 0; otherwise f3, fo, -

..., fu are linearly dependent. The left member of equation (1) is called a
linear combination of the elements fi, fs, ..., fs. Thus, linear indepen-
dence of f3, fa, ..., fn means that every nontrivial linear combination of
- these elements is different from zero. If one of the elements f3, f3, . . . , fa
is equal to zero, then these elements are evidently linearly dependent.
If, for example, f; = 0, then we obtain the nontrivial relation (1) by taking

o, =1l,ag=ag=...=an=0.

A linear space R is finite dimensional and, moreover, n-dimensional if

R contains # linearly independent elements and if any » + 1 elements of
R are linearly dependent. Finite dimensional linear spaces are studied in
linear algebra. If a linear space has arbitrarily many linearly independent
" elements, then it is infinite dimensional.
E 1
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2.  The Scalar Pljoduct

A linear space R is metrizable if for each pair of elements f, g eR there
is a (real or complex) number (f, g) which satisfies the conditions:*

@ @N=09,
(b) (al.fl+ a2f'29g) =0 (fiag) + a'2(fZ9g)’
© (f,f) 20, with equality only for /= 0.

The number (f,g) is called the scalar product® of f and g.

Property (b) expresses the linearity of the scalar product with respect
to its first argument. The analogous property with respect to the second
argument is

(b) (. Buga + Bag2) = Pu(fi80) + Igz(fags)
Property (b) is derived as follows:

(/s Br81 + Bag2) = (Big1 + Baganf) = B (g1, f) + Bsgef) =
=B (f,81) + B £, 80

The positive square root 4/ (f,/) is called the norm of the element
(vector) f and is denoted by the symbol || f|l. The norm is analogous to
the length of a line segment. As with line segments, the norm of a vector
is zero if and only if it is the zero vector. In addition, it follows that

1° Il afll=la|-lfll
This is shown by using properties (b) and (b) of the scalar product:

\\ (of, of ) = o fyof) = aa(f.f) = | a|*(£.),
from which 1° follows.
We shall prove that for any two vectors fand g,

2° ()] = IfI-ligl,
with equality if and only if £ and g are linearly dependent. We call 2° the
Cauchy-Bunyakovski inequality?, because in the two most important
particular cases, about which we shall speak below, it was first used by

Cauchy and Bunyakovski.
In the proof of 2°, we may assume that ( f, g) #0. Letting
_(re
ol

we find that for any real A,
0s(Bf g0 +2g) =M(g,8) + 2 |(fi8)| + (f,f)

1 A bar over a complex number denotes complex conjugation.

2 Translator’s Note: The phrase inner product is also used. Henceforth, we shall call R an
inner product space.

8 Translator’s Note: This is often called the Schwarz or the Cauchy-Schwarz inequality.
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On the right we have a quadratic in A. For real A this polynomial is non-
‘negative, which implies that :
‘ (i) 2 = (£.)) (88)
and this proves 2°. The equality sign will hold only in case the polynomial
" under consideration has a double root, in other words, only if
, 6f+ag=0
f‘_i forsomereal A. But thisequation implies that the vectors f'and g are lmearly
- dependent. ‘
¢ We shall derive one more property of the norm, the inequality,
3° Wf+glh 2N +lgl.
. There is equality if f=0or g =Af, A 2 0. This property is called the tri-
angle inequality, by -analogy with the inequality for the sides of a triangle in

elementary geometry.
In order to prove the triangle inequality, we use the relation

W=+ e+ =)+ (£8) +()) +(8:8)
Hence, by the Cauchy-Bunyakovski inequality

e If+gl2s IAE+ 200 1gh+ gl =/l + g}
‘which implies that

o If+gl I+ 1ligl.
For equality, it is necessary that

: &N =Irf-lgl.
If £ # 0, then, by 2°, it is necessary that
, —Af
for some A. From this it is evident that
MASL) = A1 IS,

whence 1t also follows that A 2 0.
- An inner product space R becomes a metric space, if the distance

between two points f, g € R is defined as

D[f.gl=If— gl
Tt follows from the properties of the norm that the distance function satis-
fies the usual conditions.*
" The scalar product yields a definition for the angle between two
~vectors. However, for what follows, this concept will not be needed. We
onfine ourselves to the more limited concept of orthogonality. Two vec-
5;4

tbrsf and g are orthogonal if
e (f,8) =
These conditions are

(a) Dlf,g)=Dlg,f1>0 (forf +# g),
(b) DLAf]= . . .
(&) DIfglSDIf,h1+ Dlhg]l (triangle inequality).
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3. Some Topological Concepts

In the present section we consider some general concepts which are
introduced in the study of point sets in an arbitrary metric space. We denote
a metricspace by E, and speak of the distance D [ f, g] between two elements
of E. Let us bear in mind that in what will follow we shall consider only the
case with E = R and D [f,g] = Ilf — g |, i.e., the case with the metric
generated by a scalar product. .

If £, is a fixed element of E, and p is a positive number, then the set of

all points f for which
D[ffol<p
is called the sphere in E with center f, and radius p. Such a sphere is a
neighborhood, more precisely a p-neighborhood of the point f,.
We say that a sequence of points f» eE(n = 1,2,3,...) has the limit
point f€E, and we write ’

(4)) fo—forlim fo=f
when

) lim D[ fa,f1=0.
It is not difficult to see that (1) implies

3 lim D{f,.f,]=0

where m and n tend to infinity independently. In fact, by the triangle

inequality,
inequality D[f,fou]l € D fwof1+ DLfu,f1-

But the converse is not always correct, i.e., if for the sequence fn€eE
(n =1,2,3,...) relation (3) holds, then there may not exist an element
f € E to which the sequence converges. If (3) is satisfied, then the sequence
is called fundamental. Thus, a fundamental sequence may or may not con-
verge to an element of the space. f

A metric space E is called complete if every fundamental sequence in-E
converges to some element of the space. Ifa metric space is not complete,
then it is possible to complete it by introducing certain new elements. This
operation is similar to the introduction of irrational numbers by Cantor’s
method.

If each neighborhood of f€E contains infinitely many points of a
set M in E, then fis called a limit point of M. If a set contains all its limit
points, then it is said to be closed. The set consisting of M and its limit
points is called the closure of M and is denoted by M.
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If the metric space E is the closure of some countable subset of E, then
E is said to be separable. Thus, in a separable space there exists a countable
*set N such that, for each point.f € E and each > 0, there exists a point
g € N such that
Dif,gl <

4. Hilbert Space

A Hilbert space H is an infinite dimensional inner product space which
is a complete metric space with respect to the metric generated by the inner
product. This definition, similar to those in preceding sections, has an
axiomatic character. Various concrete linear spaces satisfy the conditions
" in the definition. Therefore, H is often called an abstract Hilbert space,
and the concrete spaces mentioned are called examples of this abstract
space.

One of the important examples of H is the space /2. The construction
of the general theory, to which the present book is devoted, was begun for
this particular space by Hilbert in connection with his theory of linear
integral equations. The elements of the space /2 are sequences (of real or
complex numbers)

f=0a}r, g={mh. s

such that
el -]
Do lxa|2< oo, S mnlp< oo, ...
n=1 ne=i
The numbers x;, Xs, Xs, ..., are called components of the vector f or

coordinates of the point f. The zero vector is the vector with all components
zero. The addition of vectors is defined by the formula

f+8&={xn+y}
The relation

0

Z‘l | Xn + yn|2< o0
follows from t%e inequality
‘ |x+y|2£2|x[2+2 ]|yl
~ The multiplication of a vector /by a number A is defined by
Af = xa}?.
The scalar product in the space /2 has the form

(f,8)= Elan—’n-
The series on the right converges absolutely because
lxp| < §|x*+ 1y %
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The inequality
[(f8)] = Ifl-Tgl

now has the form

Sl s J3 b [

and is due to Cauchy.

The space /2 is separable. A particular countable dense subset of /2
consists of all vectors with only finitely many nonzero components and
with these components rational, i.e., the components are of the form
¢ + in where ¢ and 7, are rational numbers. :

- In addition, the space /2 is complete. In fact, if the sequence.of vectors
SO == - (k=1,2,3,...)
is fundamental, then each of the sequences of numbers
{xﬁk)}/‘:;x (”l =1,23,.. ')
is fundamental and, hence, converges to some limit x, (n = 1,2, 3,...).
Now, for each & > 0 there exists an integer N such that forr > N,s > N

N
D) — X9 2 <e.
n=1

Consequently, for every m,

m
I3 x0 —xP2<e,
n=1

Let s tend to infinity to obtain

A/E[x"’—-x,,]“ se

But because this is true for every m,

Elx(')-x Pse

n=1

Hence, it follows that

beo
=) el?, QZT):‘:{? < 2 ;\&:{dzf 2%‘/"(;;

g} T/ i r}
f(k)—>f. = ’Cn'xf, f)d('n'
Thus, the completeness of the space /2 is established.

As we demonstrated, the space /2 is separable. Originally, the require-
ment of separability was included in the definition of an abstract Hilbert
space. However, as time passed it appeared that this requirement was not
necessary for a great deal of the theory, and therefore, it is not included
- in our definition of the space H.

and, since > 0 is arbitrary,
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But the requirement of completeness is essential for almost all of our
considerations. Therefore, it is included in the definition of H. The appro-
priate reservation is made in the cases for which this requirement is super-

~ fluous.
The space 2 is infinite dimensional because the unit vectors

e = {l, 0, 0,. . .},
e =10,1,0,...,
~{0,0,1,.. ),

are linearly independent. The space /2 is the infinite dimensional analogue
of E,, the (complex) m-dimensional Euclidean space, the elements of which
are finite sequences

f = {Xn};",
and most of the theory which we present consists of generalizations to H
of well-known facts concerning E,,.

5. Linear Manifolds and Subspaces

\ One often considers particular subsets of R (and, in particular, of H).
- Such a subset L is called a linear manifold if the hypothesis f, g € L implies

that of + Bg €L for arbitrary numbers o and 8. One of the most common

methods of obtaining a linear manifold is the construction of a linear

envelope. The point of departure is a finite or infinite set M of elements of
R. Consider the set L of all finite linear combinations

afitafot+...+onfa

of elements £}, f, - . . , fu of M. This set L is the smallest linear manifold
which contains M. It is called the linear envelope of M or the linear mani-
fold spanned by M. If R is a metric space, then the closure of the linear
envelgpe of a set M is called the closed linear envelope of M.

In what follows, closed linear manifolds in H will have a partlcularly
important significance. Each such manifold G is a linear space, metrizable
with respect to the scalar product defined in H. Furthermore, G is complete.
In fact, every fundamental sequence of elements of G has a limit in H
because H is complete, and this limit must belong to G because G is closed.
From what has been said, it follows that G itself is a Hilbert space if it
contains an infinite number of linearly independent elements; otherwise
G is a Euclidean space. Therefore, G is called a subspace of the space H.




8 : 1. HILBERT SPACE

6. The Distance from a Point to a Subspace

Consider a linear manifold L which is a proper subset of H. Choose a
point heH and let
E) -——infllh —fll.

The question arises as to whether there exists a point g e for which
lh—gl=
In other words, is there a point in L nearest to the point 2?5
We prove first that there exists at most one point geL such that
8 = || h — g|. Assume that there exist two such points, g’ and g”. Since
g +g8" eL, we have

| ’ ” ||
S b
on the other hand
I " 1 l
h—8 T8 < h—g' | +llh—g"| =8.
“ 8 < Lih—g' i+ k=gl
Consequently,
n_ 8 8 _s
e

and therefore
h;&iﬁﬂ=hm—yu+Mh—fw

But this is the triangle inequality with the sign of equalnty Since
h—g' #0

h—g" =xh—g")
for some A 2 0. If A = 1, the proof is complete If A % 1, then

we have

b= g -
1 -2
so that heL, which contradlcts our assumption. Thus, our assertion is

proved.

But, in general, does there exist a point g € L. nearest to the point 4?
In the most important case, the answer is yes, and the following theorem
holds. ,

THEOREM: If G is a subspace of the space H and if

8 =infllh — f1,
feG ’ .

5 Translator’s Note. The case with & €L is trivial. Henceforth, the author assumes without
saying so that A¢L
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then there exists a vector g € G (its uniqueness was proved above) for which
' Ik — gl = 3.

Proof: According to the definition of the greatest lower bound, there
. exists an infinite sequence of vectors {gx};°, in G, for which

lim [|A —gn || = 8.

‘Now,
‘ +g 1,. 1,
h—8n T8 < ih—g, | +=llh —gal.

“ 5 2H 8mll 2H &nll
Therefore ,

fim h_&%}& < 5,
and since '

2 B

we have

lim h_g_____,,,-;g,,’= 3.

In the easily proved relation,

218 + 211" 1 = I + L1+ 1F = I,

let
f'=h—gn [f'=h—gn
to obtain ‘
2
I gn— g 2 =211 — gull® +2||h—gnn2—4”h—5m—§l£" ,
Therefore, i

lim ”gn —gm” =0.

- myn—>©

So the sequence of vectors {gx};° converges tosome vector g € G. It remains
to prove that '

Ih—gll=38.
. Now
nlingllg — gl =0, lill} A —gall =3
and
- lh—gli = lh—gnl +Ig—gnl;
consequently

lh—gll = 8.

But, by the hypothesis of the theorem, || 2 — g || 2 8. Thus, the theorem
“is proved.
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7. Projection of a Vector on a Subspace

Let G be a subspace of H. By the preceding section, to each element
h € H there corresponds a unique element g € G such that

(1) k=gl =inflh—g'].
g2eG

Considering # and g as points, we say that g is the point of the subspace
G nearest the point 4. If the elements g and 4 are considered as vectors, then
it is said that g is the particular vector of G which deviates least from A.
Now, using (1), we show that the vector 4 —g is orthogonal to the subspace
G; i.e., orthogonal to every vector g’ € G.

For the proof we assume that the vector A—g is not orthogonal to
every vector g'€ G. Let

(h—g,80) =0 #0 @ﬁle

We define the vector
_ e
Im_fwh=@fg—Gi5& "g“@;m&)=
= Ih =gl = s - 8,80 ~ (g —g) + V(;.::,) -
.
o — = g“”‘é‘fﬁ!ﬁﬁ’

Ih—g*l <lh—gl, ’
which contradicts (1).

From the proof it follows that 4 has a representation of the form®

h=g+f,

where g € G and Jis orthogonal to G (in symbols, f | G). It follows easily
that

IAIR=1gI?+ 12

It is natural to call g the component of h in the subspace G or the projection
of hon G.”

¢ Translator’s Note:. It is easy to prove that this representation is unique. The author uses
the uniqueness later.
? This contrasts with the situation in analytic geometry, where a projection is a number and
a component is a vector.  Here projection and component are equivalent terms,
X
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We denote by F the set of all vectors f orthogonal to the subspace G.
We show that F is closed, so that F is a subspace. In fact, let fneF
(n=1,2,3,...) and f» —f. Then (fu,g) =0 and '

(/,8) = (f —/n.8)

Jn absolute value, the right member does not exceed

If—fall - ligl

which converges to zero as » — oo. Hence, (f, g) =0, so that fe F and
the manifold F is closed.

el gy

“""j  The subspace F is called the orthogonal complement of G and is

expressed by
)] F=HoG.
It is easy to see that
29 G =HoF.
Both relations (2) and (2') are expressed by the equation
H = G@®F,

because H is the so-called direct sum of the subspaces F and G (in the given
case, the orthogonal sum).

In general, a set M < H is called the direct sum of a finite number
of linear manifolds M, <« H(k =1, 2, 3, ..., n) and is expressed by

M = M]_@Mg@. . .@Mn
if each element g€ M is represented uniquely in the form

g=gt+tg+...+4n

where g, eM; (k =1,2,3...,n). Itis evident that M is also a linear
manifold.

It will be necessary for us to consider direct sums of an infinite number
of linear manifolds only in cases for which the manifolds are pairwise
orthogonal subspaces of the given space. This is done as follows.

DEFINITION: Let {H,} be a countable or uncountable class of pairwise
orthogonal subspaces of H. Their orthogonal sum

2 ©H,
is defined as the closed linear envelope of the set of all finite sums of the form
H, ®H,®....

Often it is necessary to determine the projection of a vector on a
finite dimensional subspace. We consider this question in some detail. Let
- Gbean n-dimensional subspace and let
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(3) 81,82 -..,8n
be 7 linearly independent elements of G. Since any # +1 elements of G are
linearly dependent, each vector g’ € G can be represented (uniquely) in the
form

8 =AMg1 + A8+ ...+ Mgn.

In other words, G is the linear envelope of the set of vectors (3).

We choose an arbitrary vector #€ H and denote by g its projection
on G. The vector g has a unique representation,

g=o1g + o8+ ...+ angn;
According to the definition of a projection, the difference #—g=f must
be orthogonal to the subspace G, i.e., fis orthogonal to each of the vectors
g1 82 - - . » @n. Therefore,

@ (f,gd=h80) — 1(81,8) — 2a(g2,8) — ... — an(gn, &) =0
(k=1,2,3,...,n).
This is a system of # linear equations in the unknowns o, a, . . ., ay. We
have shown that it has a unique solution for each vector A. Therefore,
the determinant of this system is different from zero®. This determinant

(81,81) (82,81 ... (gn,81)

(81,89) (82,89 ... (8n,89)
(g1, 820 s8)=1| ... ...
(81,8n) (82,8n) - - . (gn,&n)
is called the Gram determinant of the vectors gy, g3, . . . , gn. Itiseasyto see
that if the vectors gy, g, . .., gn are linearly dependent, then the Gram
determinant is equal to zero. Hence, for the linear independence of the
vectors it is necessary and sufficient that their Gram determinant be differ-
ent from zero.

We proceed to determine the number
8 = mln Ih—g"Il

We shall express -4 by means of the Gram determinant. As above let g be
the projectionof hon Gandletf = h — g. Thend = || f|| = || A — g || and

2= () =Uh),
8 Translator’s Note: In (4), suppose that (h,g;) =0 for k=12,3,...,n Inother words,
‘let A1 G. Then ||glf = llaygy + ... +angull® = Zak[(alg., g+ ...+ (angn, 8] =
= Z' a,,(h 1) = 0 so that g = o,y + a8 + . + (lngn = 0. Since gy, . .., &n are linearly

mdependent a;= ag=...ap= 0. This proves that the homogeneous system al(gl, g+ v
+'anlgn, gx) = 0 (k = 1 2 3,...,n) has only the trivial solution o, = ... = a,=0. Con-
sequently, the determinant of the system is not zero.
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|
since (f,g) =0. Letg =a,;8; + a3gs + ... + angn, Where the g, are as in
equation (3), to obtain

) 82 = (h, h) — 01(81, h) — aa(gush) —. .. — an(gn, h).

The determination of 82 is reduced to the elimination of the quantities o,
from equations (4) and (5). This elimination yields
(h,h) — & (gn,h) (83,h) ... (gn,h)
(h,8) (218D (8581 ... (gngy) ~0
(h, gn) (gl,gn) (gz, gn) oo (8ns8n)
Hence, .
(6) 52 = I'(h,g1,8s. . -agn)_ e
F(gbgﬂy LR ,g”)
This is the formula we wished to obtain.

Since I'(g,) =(g1,8:1) > 0 (forg; #0), it follows from formula (6)
that the Gram determinant of linearly independent vectors is always
positive. This fact can be regarded as a generalization of the Cauchy-
Bunyakovski inequality, which asserts that :

r (g 1,8 2) > 0
for linearly independent vectors g; and g,.

8. Orthogonalization of a Sequence of Vectors

Two sets M and N of vectors in H are said to be equivalent if their
linear envelopes coincide. Therefore, the sets M and N are equivalent if
and only if each element of one of these sets is a linear combination of a
finite number of vectors belonging to the other set.

If the elements of the set M are pairwise orthogonal vectors, and if
each of the vectors is normalized, i.e., if each has norm equal to one, then
the set M is called an orthonormal system. If, in addition, the set M is
countable, then it is also called an orthonormal sequence.

Suppose, given a finite or infinite sequence of independent vectors

(1) ) l 81,82« s8ny. .. .
- We:show how to construct an equivalent orthonormal sequence of vectors
2 €1, €25+« v s Cily
For the first vector, we take
1= gl ’
&gl

the norm of which is equal to one. The vectors e, and g, generate the same
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[}
(one dimensional) subspace E;. The vector e, is constructed in two steps.
First, we subtract from the vector g, its projection on E, to get
hy = g3 — (85, €1)es, ‘
which is orthogonal to the subspace E;. Since the vectors (1) are linearly
independent, g, does not belong to E,, so that 4, = 0. Now let
hs
e, = .
TN
The vectors e; and e, generate the same (two dimensional) subspace E, as’
do the vectors g, and g,. We now construct the vector e;. First, we subtract
from g, its projection on E; to get
hs = g5 — (g3, €1)e1 — (g3, €r)es,

which is different from zero and orthogonal to the subspace E,, i.e., s is

orthogonal to each of the vectors e, and e,. Next we let
hy

e .
[l A5

We continue in the same way. If the vectors

€1,€3...,6n
have been constructed, then we let » X@
n o
Py = - s €1) €xs
1 = &nt1 g;l(gn+1 %) €k
and ‘
hn+l
Cpyl = .
T -

The n}cthog described is called orthogonalization.®

In-the solution of many problems concerning manifolds generated by
a given sequence of vectors, preliminary orthogonalization of the sequence
turns out to be very useful. We illustrate this in the problem considered in
the preceding paragraph. That problem concerned the determination of
the distance from a point 2€H to a linear” manifold G, which:was the ,
closed linear envelope of the given sequence (1). We shall show how
elegantly this problem is solved if the system (1) is orthogonalized before-
hand.

® Often, in particular cases, one does not bother to normalize the system (2) of pairwise
orthogonal elements which is equivalent to the system (1). The transition from (1) to such an
orthogonal system likewise is called orthogonalization. (See Section 11 below.)
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Assume given the orthogonal sequence (2) and a vector 2 € H. Foreach
integer n, the vector 4 can be expressed in the form

h =k2_31(h, ey e+ fa

where the vector fa is orthogonal to each of the vectors ey, es, . . . , en. The
vector

3) Sn =kz:1(h, € e
belongs to the set of vectors
(4) )‘lel + /\geg + ...+ Anen

and, of these vectors, s, is nearest to the vector h. The distance from s,
to his
5) Sp=min|h —Ne; — ey —... —Menll=|full =

= J e = % [t edts.

_ This is the distance from the point % to the linear envelope G of the set con-
sisting of the first n vectors of the sequence (2). If instead of the linear
combination of the nth order (4), we wish to find the linear combination of
the (n + 1)th order,

) €yt peer + ..o+ Bppi1€hyns
which is nearest to the vector &, then we must take the vector
n+1

Sn+x =I§1(h,ek)ek.

Thus, we do not change the coefficients in the linear combination (3).
Rather, we merely add one more term,
' (B, €ny1)enis
to the right member of (3). ‘
""" These considerations show that, being given the infinite orthonormal
sequence (2), it is appropriate to-associate with each vector heH the

' infinite series

©6) ,,Z.,(h’ exes.
Equation (5) yields the important inequality
® ) !
) 2| (e P < AP,

The convergence of the series

" e
k=1
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implies that

n

Is,—sullt= 3 |(he)l*  (m<n)

k=m+1

éonverges to zero as m, n — o, i.e., the series (6) converges in H.** We
- see that the square of the distance from the point 4 to the manifold G is

A “2_fv__;1|(h’ek)l2

and that the vector 4 belongs to the manifold G if and only if there is equality
in formula (7).

We shall say that a system of vectors is closed in H if its linear envelope
is dense in H. From our considerations, the orthonormal system (2) is
closed in H if and only if '

® k1= 3] e

for each AeH. Following V. A. Steklov,!! we call this equality the closure
relation.'* We show next that if the Parseval relation holds for each
vector heH, then for any pair of vectors g, 4 H, the general Parseval
relation ‘

© (8.1 = 3 (&0 (e )

holds. In fact, we have the Parseval relation for each vector g + A B

”g + ’\h ”2 =;1 | (g"/\+ Ah’ ek) Iz’

which yields
(g’g) + ’\(h’g) + Z(g:h) + |)‘ |'2(hs h) =

=§_,1{I(g, e+ A(h,er) (e, 8) + Z(g,ek)(ek,h) + A2 (B, e) 12}
and ‘
Ag) + (g h) =225 (hed (€0 8) + 1 31(8, €0 (exs h).

Since A is arbitrary, equation (9) follows.

1*We remark that convergence in H of any series fy+ fo-+ . .., where (f;, fi) = 0 (i #k)is
equivalent to the convergence of the numerical series || 112+ || fall2+ AP+ ... .

11V, A. Steklov showed for the first time the important significance of the closure relation in
various problems of analysis and mathematical physics. Before the work of V. A. Steklov, the
relation under consideration was known only for systems of trigonometric functions (the so-
called Parseval-Liapunov equation). .

13 Translator’s Note: Following rather common English practice, we shall refer to (8) hence-
forth as the Parseval relation. Some authors refer to it as the completeness relation.
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9. Complete Orthonormal Systems

The vectors of an orthonormal system cannot be linearly dependent.
Therefore, in n-dimensional Euclidean space each orthonormal system of
vectors contains at most » vectors.

We say that an orthonormal system M is complete in H if M is not
. contained in a larger orthonormal system in H, i.e., if there is no nonzero
¢ vector in H which is orthogonal to every vector of the system M. In

Euclidean n-space any orthonormal system of n vectors is complete. In
Hilbert space a complete orthonormal system contains an infinite number
of elements, and there arises the problem of the cardinality of such systems.
. This problem is solved easily for separable-spaces. We begin with them.
| THEOREM 1: If the space H is separable, then every orthonormal
system of vectors in H consists of a finite or countable number of elements.

Proof: Let o

(1) flafm fs’ she '
be a sequence of vectors which is dense in H, and let M be an orthonormal
system of vectors. We proceed to show that M can be enumerated. Let e
and e’ be distinct vectors in M. From (1) choose vectors f; and £} such that

) , le —fill <§v2
and similarly for e’ and k. We show that k&’ 5 k. In fact,
le —e'lF=llel®+ lle']*=2

so that
- V2=le—e|slle=fill +le —fi <} VZ +le —fil.
Therefore,
le' —fil > %2
so that f,. # f, and k % k’. Thus, we can associate with each vector of
M a different integer k. This proves that the set M is finite or countable.

The existence of a nondenumerable orthonormal system of vectors
in H implies that the space is not separable. An important example of this
kind will be considered later.

THEOREM 2: An infinite orthonormal sequence

3 €1, €38, ...
is complete in H if and only if the sequence is closed in H.

Proof: (A) Let the system (3) be closed in H. Then, for each vector
of H, the Parseval relation holds. Assume that the system (3) is not com-
plete, and denote by 4 a nonzero vector which is orthogonal to each of the
vectors (3). Thus, (h,e,) =0 (k=1,2,3,...) and the Parseval relation
for h reduces to the contradiction

0F|A2=0.
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(B) We suppose now that the system (3) is complete. We choose an
arbitrary vector # € H and consider the sequence of vectors

=3 (hede, (n=1,23,..)).
k=1

By the preceding section, {s»} is fundamental, which implies that it con-
verges to some vector g. Then

@ (8, € =lim(sn,e) = (h, &) (k=1,2,3,..)

and g belongs to the closed linear envelope of the sequence (3). Conse-
quently, the Parseval relation is valid for g:

®) gt =3I (8 e = Iill(h, eI

It follows from (4) that the vector g—# is orthogonal to each vector of the
sequence (3). The assumption that this sequence is complete implies that
g—h = 0, so that g = h, and (5) takes the form

1A = ﬁ,‘ (e

We have shown that for an arbitrary vector /€ H, the Parseval relation
holds. Thus, it is proved that (3) is closed in H.

THEOREM 3: The space H contains a complete orthonormal sequence if
and only if it is separable.

Proof: (A) We assume that the space H is separable, and let N
denote a countable set of vectors which is dense in H. Deleting from the
sequence N any vector which is a linear combination of the preceding
ones, and orthogonalizing the resulting sequence, we obtain an ortho-
normal sequence M. This sequence is complete. For, let the vector heH
be orthogonal to each element of the sequence M. Then 4 is orthogonal
to each vector of N. For each € > O there exists a vector f €N such that

Ih—Sfll<e
which implies that :
h|2=Gh) =k —fh) S|k —fIl-IR] <ellhl
and
A <e.
Since ¢ > 0 is arbitrary, # = 0 and the orthonormal sequence M is com-
plete in H.

(B) We assume that (3) is a complete orthonormal sequence in H.

Let N be the set of all linear combinations of the form

e, + yPey + ... + ¥Pen n=123,..),
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where y{? = of) + ifY, and of, B’ are rational numbers. The set N is
~ countable. Foreach/ € Hand each ¢ > O there exists an integer n such that
€
<.

h "‘Z (h,ex) e
=1 2

It is possible to approximate the complex numbers (h; e, (k=1,2,3,...,n),
by numbers of the form y}?’ such that

(h e) — v }e| <

Thus, there exists a vector,
f=3Aes

in'N, for which
” h _f” <&,

and this implies that H is separable.

The question of the cardinality of a complete orthonormal system in
a separable space now can be answered completely: every complete ortho-
normal system in a separable space is necessarily an infinite sequence -- -
a so-called orthonormal basis.of the space.

Now we consider arbitrary Hilbert spaces.  First, we remark that
whatever the cardinality of an orthonormal system M, each vector f has.
" no more than a countable set of nonzero projections on the elements of
the system M. This follows from the fact that for any sequence of elements
e',e’, e, ...of M the inequality

l(f,e)l"” + ([N +Ife) P+ SIS

holds, which shows that it is possible to enumerate the set of all nonzero
numbers ( f, e) with e e M. Further, we have

THEOREM 4: Any two complete orthonormal systems in a Hilbert space
have the same cardinal number,

Proof: Let M and N be two orthonormal systems, each complete in
H, with cardinalities m and 1, respectively. Choose e eM. Atleast one of
_ the scalar products (e, f), f€N, is different from zero because otherwise
it would be possible to extend the orthonormal system N by appending
to it the vector e. On the other hand, by the remark of the previous para-
graph, there exists no more than a countable sét of elements f N for which
(e, f) # 0. We denote these elements by

(6) fhf‘% e 9fn (1 =Ens 00).
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We define a function ¢ with domain M such that o(e) is the set of vectors,
(6), for which (e, f) # 0. The function ¢ is at least single valued and at
most countably valued. This function maps M onto a set of countable
subsets of N. Each f* €N satisfies f * € ¢ (e*) for some e* €M, since for
each f* €N there exists an element e* € M which is not orthogonal to the
element f*. From what has been said it follows that

mzun
Reversing the roles of the systems M and N, we get

nzm
And so
m=nun,

and the theorem is proved.’® The following definition is based on this
theorem.

DEFINITION: The dimension of a Hilbert space H is the cardinality of a
complete orthonormal system in H.

It is not necessary to make a separate definition of the dimension
of a subspace G = H. The dimension of an arbitrary linear manifold
L < H is defined as the dimension of the corresponding subspace L.

If two Hilbert spaces H and H' have the same dimension, then they
are isomorphic in the sense that there exists a one-to-one correspondence
between H and H' having the following property. If the elements f, ge H
correspond to the elements f', g’ € H', respectively, then (1) of + Bg
corresponds to of” + Bg’ and (2) (f; ©u = (f’, g)u In fact, since the
spaces H and H' have the same dimension they possess complete ortho-
normal systems of identical cardinalities. We choose any one-to-one
correspondence between the elements of these two orthonormal systems
and extend this correspondence to the linear envelopes of the orthogonal
systems under consideration in such a way that condition (1) is satisfied.
Then condition (2) is automatically satisfied, which permits one to get, by
passage to the limit, the required correspondence for all the elements of
the spaces Hand H'.

From the proof it follows that any separable space is isomorphic to
the space /2. It is evident that two Hilbert spaces of different dimensions
are not isomorphic. Therefore, two abstract Hilbert spaces (similarly, two
abstract Euclidean spaces) differ from each other only in their dimensions.

18 The actual construction of a complete orthonormal system in a non-separable space re-
quires transfinite induction.
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e 10. The Space L?

Let (a, b) denote a finite or infinite interval'* on the real axis.” We
denote by L(a, b) (or simply by L?) the set of all complex valued Lebesgue
measurable functions fdefined on (a, b) such that | f|2is Lebesgue integrable
on (a, b). We do not regard as distinct elements of L? a pair of functions
which differ only on a set of measure zero.

It follows by means of the inequality

lo+B* =2]af*+2]B[®

H

that f + g € L* whenever f, g € L2 Furthermore, for each complex number
-Aand each f e L? it follows that A f e L2, Thus, L? is a linear space and the
zero element is a function which is equal to zero almost everywhere in
(a, b). In this linear space the scalar product is defined by the formula

(f8) = f fHzZ0) .

The existence of the integral on the right side is a consequence of the

inequality
laB| = %|a|2+%lﬁ|2.
In the present case, the inequality

(Lo =11 lgl

b b
s A/ [1r@ypar J [1g@pa

This inequality was obtained by Bunyakovski for Riemann integrals.

~ Now we show that L? is complete, from which it will follow that L?
a Hilbert space. Let the sequence of functions fure L2 (n = 1, 2, 3 )

¢ fundamental, i.e., let

" has the form

b
[rog@ar

b

Lm | |fa(2) —fu(®) [*dt =

m, n—»
hen there exists an infinite sequence-of integers
ki<ky<ky<...<k,<...,

4 Instead of an interval, the domain of definition of the function could be any measurable
t (of finite or infinite measure) on the real axis, on the plane, or in Euclidean n-space.
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for which
flfer(t) — fuOrdr <'817 r=1,2,3,...).

From this inequality it follows that the set of points of the interval (a, b)
for which

firas® 101 25,

has measure less than er For s =1,2,3,..., let I, denote the set of
points ¢ € (a, b) such that
| fg 12O — Jie, O | <2,,

fiass® =i ] <t

.................

The complement of 7, with respect to the interval I = (a, b) has measure

Zw 11
I—1)< — =,
m( S) o 2.\”-—1

Since In < I, < ..., lim I, = I'’* exists and
m(I — I*) =0,

The sequence { f; (£)},%, converges uniformly on each set I,. This follows
from the inequality

n-1

iold) ~Fin)] Z Voni® —fo0 < Z
which is valid for e I,. Consequently, {f, ()}, converges on I* (ie.,
almost everywhere in 7). Let

2m = (r>m>y)

lmf () (el®),
/= {'Bw (tel—1%.

Since {f} was assumed to be a fundamental sequence, for each ¢ > 0
there exists an integer N(e) such that

110y~ fu 1t 5 1fy— i 18 <€ -

Is(a)
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for m, k, > N(e), where I(a) = I, if the interval (a, b) is finite and I(a) =
L 0 (—a, o) otherwise. In I(a), convergence of the sequence { f; (£)},%, is
uniform. Therefore, in the integral, passage to the limit is legitimate and
we obtain

[0 —rordr s m>N@).

Ig(a)
It follows that
[ 11y —fy 1t 5

Is

where s is arbitrary. Hence
[ty = £yt 5

This implies that f,, — f €L?, so that feL? Since e > O is arbitrary, we
have proved also that ‘

b
lim ||f.(0) —f(?)|*dt = 0.

m—» 0
a

In the process of the proof, we have obtained the following fact: if
the sequence fn €L®(n =1,2,3,...) converges to f in norm, ie., if
| fa — fll =0 (n = o), then there ex1sts a subsequence { f;, (1)}, whxch
converges to f(f) almost everywhere. Furthermore, if a proper set of
arbitrarily small measure is removed from the interval (a, b), then in the
remaining set the subsequence {f;,(#)},2, converges to f (¢) uniformly.

We remark that it is possible to consider the space L%a, b) as a sub-
space of L¥aj,b,) if a, <a <b £ b, and, in particular, as a subspace of
L*(— oo, o0). For this, it is necessary to extend each function feL? (a, b)
beyond the limits of the interval (a, b) by defining f(¥) to be zero for ¢
outside of (a, b).

Convergence in the metric space L2 is called convergence in the mean

and is denoted by
S =Li m. Su(2),
if
b

lim | |f(t) —fu(?)|2dt =0

n—y 0
a

(1.i.m.) is an abbreviation for limes in medio, i.e. limit in the mean).
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11. Complete Orthonormal Systems in L2

In the present paragraph, we show that there exist complete ortho-
normal sequences in L%a, b), where a and b are finite or infinite. Hence,
by Theorem 2, Section 9, it will follow that the space L? is separable. It
would be possible to prove this latter fact immediately. In fact, using the
definition of the Lebesgue integral, it is not difficult to prove that the linear
envelope of the set of functions f'such that f = 1 on some finite interval and
S = 0 outside, is complete in L2 Hence, the separability of L2 follows.

A. We begin with the space L*0, 2=). In this space, the functions

1
VE’G"“ (Zi:k=0s1’ 23“')

form an orthonormal system. We wish to show that this trigonometric
system is complete. Assume there exists f € L¥0, 2x) such that

[Irw1ar=20
0

and
2m
M [fOera=0  (xk=1,23,..).
0

It follows by means of integration by parts that the function

Fo) = [ fydr
0

satisfies the equations
27
@) f{F(t) ~Cle™dr=0 (+k=1,2,3,..)
0

for any constant C. We specify this constant so that equation (2) holds
also for k = 0. Since the function

S(t)=F—-C
is continuous, the well-known theorem of Weierstrass applies: for each
¢ > 0 there exists a trigonometric sum

ot) = 3 de™
k= -n
such that
|P() —a(®)]| <e.

Therefore, using relation (2), we obtain
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[1e@pd= [ 3B (00) — o) ar s
0 0

< eJ' |B(1)|dt < s\/ZrA/J‘VD(t) |2dt

27

f|¢(t)|2dt < 2me2,

whence

Since ¢ > 0 is arbitrary, thls implies that @ (r) = 0, so that F(f) = Cand
S (® = 0 almost everywhere Thus, the completeness of the trigonometric
system is proved.

B. We consider now the space L*a, b), where (a, b) is an arbitrary
finite interval. The orthogonalization of the sequence of functions

1,1t 2,

yields the sequence of polynomials

| d"{(t —a)(t—b)}*

» dt*

where C, are certain positive constants. These are the well-known Legendre
polynomials. They are usually considered for a = —1, b = 1. The com-
pleteness of this orthonormal system may be proved in the same way
as the completeness of the trigonometric system.

C. We consider the space L¥(— oo, o0). The orthogonalization of-
the system

(k=0,1,2,...),

2 g t

e Zte %t ®
yields the sequence of Tchebysheff-Hermite functions,

Il

# dke—t' _
o) =(— 1)"8’7 =H,()e * (k=0,1,2,...),
where H,(t) is the so-called Tchebysheff-Hermite polynomial of degree k.
The Tchebysheff-Hermite functions satisfy the relations

f WOROd={ G 7 Gy

so that they are pairwise orthogonal but not normalized. We prove next
that the sequence of Tchebysheff-Hermite functions is complete. Assume
there exists a nonzero function f € L¥— oo, oo) such that
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ff(z) ouf)dt =0 (k=0,1,2,...)

or, equivalently, such that

..—.t .,
3) f @) e edt =0 (K=0,1,2,..)).
We introduce the function
Flz) = f f)e Ter

which, it is evident, exists for every complex z. The function F(z) has the
finite derivative

F'(2) = f g

Since this equation holds everywhere in the complex plane, F(z) is an entire
function. But, by (3)

-"
F®(0) = f fOe ityfdt =0  (k=0,1,2,...)
so that F(z) is identically zero. Therefore,
ff(t)e‘%e"xdt —0 (— o0 < x < 00).

Multiplying this equality by e~*”, where y is real, and integrating with
respect to x from —w to w, we get

ff(t)e‘;sin_“’(t;”dt =0
=y

which is valid for every real y and ». Hence, as is proved in analysis
courses, it follows that f(#) = 0 almost everywhere, and this contradicts
our original assumption.

, D. In the space L*0, ), we have the orthonormal system of
Tchebysheff-Laguerre functions

e Lk(t)

‘/’k(t) (k = 0: 1’ 2’ v ')’

where the L,(¢) are the T chebysheﬁ”—Laguerre polynomials which are defined
by the formulas
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k
L) =e‘§t7c(t"e") k =0,1,2,..).

The completeness of this system can be proved by an argument based on
the completeness of the Tchebysheff-Hermite system. We leave this to the
reader.

12. The Space L?

Let a non-decreasing function of bounded variation o (f) (— o0 <t < o)

be given. We assume that it is left-continuous:
o(t—0)=0(d).

Such a function is often called a distribution function. With the aid of the
function o (¢) it is possible to construct a measure analogous to the Lebesgue
measure but differing from it in that the length b—a of the interval [a, b],
(a Sb)*¢ is replaced by the o-length o(b+0)—o(a). Some points may have
o-length different from zero (points of jumps of o(¢) ) and some proper
intervals may have o-length equal to zero (intervals of constancy of o(%) ).
The measure determined by the o-length is called the o-measure; the
o-measurable functions and the corresponding Lebesgue-Stieltjes integral
are constructed from it.

We consider the linear space of all c-measurable functions ffor which
the Lebesgue-Stieltjes integral

[irords @

exists, and metrize it by means of the metric generated by the scalar product

9= 10F@do). .

This linear space is complete, so that it is a Hilbert space. It is denoted
by LZ. Special significance is possessed by characteristic functions. A
characteristic function is equal to one in a certain finite interval of positive
o-length and is equal to zero outside of that interval. We do not exclude
improper intervals here. The linear envelope of the set of all characteristic
functionsis dense in L2, Using this fact, it is easy to prove that L? is separable.

The case of a distribution function o(¢) for which each integral

sk=f #do(f) (k=0,1,2,..)

15 For g = b, we get an improper interval, i.e., a point.
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exists is of great interest. Because of mechanical considerations these

integrals are called moments of the distribution function o(#). If o(r) has

only a finite number of points of increase, then the Stieltjes integral be-

comes a finite sum. We do not consider this uninteresting case. '
Orthogonalizing the sequence,

1,0, 2,...,
in L% we get a sequence of polynomials {P,(#)}i-, (where Py(?) is a poly-
nomial of degree k), which satisfy the relations

N (0 (k#m),

[ P@Payaoy={ ] G
This polynomial sequence is said to be orthonormal with respect to the
distribution function o(¢). If the function o(f) is absolutely continuous

and if
o' (1) =w(?)
then the orthonormality relations can be written in the form

[ PP owoa =] GZW
In this case, it is said that the polynomials P,(¢) are orthonormal with
respect to the weight w(t). For instance, the Tchebysheff-Hermite poly-
nomials are orthogonal (but not normalized) with respect to the weight
et (— oo <t < o0).

If the interval of orthogonality is finite (i.e., if o(f) is constant for
t <a and for > b), then the orthogonal polynomials P,(f) form a complete
system. This is proved with the aid of the theorem of Weierstrass in exactly
the same way as in the proof of the completeness in L%(a, ) of the sequence
of Legendre polynomials.

If the interval of orthogonality is infinite, then the system of orthogonal
polynomials P,(f) may fail to be complete. We restrict ourselves to one
example, which is due to Hamburger.!®* Consider the interval (0, oo).
The orthogonal polynomials on this interval with respect to the weight

no/i”
w()=e e
is an incomplete system because the function

i . Athnt 4w
f)=ent+m gin VY- " T °
() In2t 4 =

1¢ H. Hamburger [1].
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satisfies the relations
f Fg(OwRdt=0  (k=0,1,2,...).

1]

13. The Space of Almost Periodic Functions

We consider the set of all functions of the form ¢ (— oo <t < o),
where the parameter A is real. We denote by L the linear envelope of this
set, i.e., the collection of all “polynomials” of the form

T

Adding to L the limits of sequences of functions of L which are uniformly
convergent on the entire real axis, we get a certain set B of continuous
functions. As H. Bohr proved, a continuous function f(f) defined on the
real axis belongs to the collection B if and only if it is almost periodic, i.e.,
if for each £ > O there exists a real number / = I(¢) such that in every inter-
val of length / there is at least one number  for which
[+ —f)]<e (- o0<t<oo)

We can metrize the linear system L, by defining the scalar product of

two polynomials

o = 3,

g() = 33 B,en
s=1

as
l T
(f, 8 =lim = f FOz@dt =
T—® 2T T
mn 1 T mn
= li —— it(Ar - us) —_ .
lm > 4857 [ % wdi= D> s0,m)4 B,
r,s=1 —T rs=1
where

—_ 0 (’\ #= l"‘)s
e = {1 A =p).

When L is closed by means of the metric generated by this scalar
product, we get a certain complete Hilbert space B* which contains B as a
linear manifold. The space B2 is not separable. This follows from the fact
that in B2there exists a continuum of orthonormal vectors e (— oo <A < ),
whereas (see paragraph 9) every orthonormal system in a separable space
contains a finite or countable number of vectors.



ChapterII

LINEAR FUNCTIONALS AND BOUNDED
LINEAR OPERATORS

_14. Point Functions

Two kinds of point functions are considered in elementary treatments of
3- and n-dimensional spaces: scalar functions, the values of which are (real
or complex) numbers, and vector functions, which relate the points of a
space to other points of the same or another space. In the present book we
shall study point functions in Hilbert space. In correspondence with the-
indicated division of the functions of elementary analysis into scalar func-
tions and vector functions, we introduce in H so-called functionals and
operators. The appropriate definitions follow. '

Let D denote a subset of the space H. A function @ which relates to
each point f €D a definite complex number @ (f) is called a functional in
the space H with domain D. A function T which relates to each element
f €D a particular element 7f = g eH is called an operator? in the space H
with domain D. The set 4, consisting of all g = Tf, where f runs through
D, is called the range of T. Sometimes we shall denote the domain of a
functional @ by D, and, correspondingly, the domain and range of an
operator T by D, and 4 respectively.

The identity operator, i.e., the operator which maps each vector into
itself, we shall denote by E. The operator which maps every vector into
zero, we shall denote by O.

If the operator 7 maps each pair of different elements of D into a
pair of different elements of 4, then T has an inverse operator, which maps
the elements of 4 into elements of D. The inverse operator is denoted by
the symbol T-!, and T~ 'g = fif and only if f = Tg. Moreover,

DT"’ = AT’ AT—-l = DT‘
We shall consider two functionals (or operators) to be equivalent if

their domains coincide and if for each element of their common domain,
the values of these functionals (or operators) coincide.

! Sometimes it is necessary to consider also functions which map elements of the space H
into elements of some other Hilbert space. These functions are also called operators. They will
not be encountered often in this book.

30
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If the domain D of the operator T contains the domain Dj of the
operator S, i.e., if Dg < Dy, and if

If = Sf
for each f € Dy, then T is called an extension of S and we write
S<T.
The concept of an extension of a functional is defined analogously.
Motivated by the notion of a continuous function, we make the follow-
ing definition of the continuity of an operator T is continuous at a point.
Jfo €Dy if

lim Tf = Tf, (feDy).
f~fo

An equivalent condition is that for each € > 0, there exists § = 8(¢) > 0
such that if f satisfies the inequality,

”f_ﬁ) ” < 8’ feDT5

ITf — Thll<e

‘The continuity of a functional is defined analogously.
If the element /o does not belong to Dy but lim Tf = go exists as
f —f, with f €Dy, then the operator T can be defined for f,, by letting
Tf, = g,. Proceeding in exactly the same way with all such elements f,,
we arrive at the so-called extension by continuity of the operator T. This
extension is uniquely defined for each operator T. The extension by con-
tinuity of a functional is defined analogously.
We shall introduce below notation relating to so-called linear func-
"tionals and linear operators, which are the basic objects of our study.
Here we consider only the operator analogue of a “function of a
function”. Let Sand T be two operators such that the range of T intersects
the domain of S (i.e., let 4, " Dg 7 0). In this case we define the product
ST of the operators S.and T as the operator such that
STf = S(If)
for each element f in its domain, which is defined as the set of all f € D, for
which TfeDs. The product T'S is defined analogously whenever the set
4¢ N Dyis non-empty. It is clear that ST and TS are not generally equiva-
lent because their domains may be different, and, moreover, even if g
is an element belonging to both domains, it is possible that

STg#TSg.
Since it is difficult to give a reasonable completely general definition
of the commutativity of two operators, we restrict ourselves here to the

then
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case in which at least one of the two operators S and 7 is defined everywhere
in H. Let Dg=H. Then S and T are commutative if

ST<TS .
i.e., if feDy implies both SfeD; and
STf=TSf.
In particular, if both operators are defined everywhere in H, then S and
T are commutative if and only if ST=TS.

15. Linear Functionals

A functional @ is said to be linear if:
(a) its domain D is a linear manifold and

| P(ef +Pg) = aP(f) +£P(g)
for f,g €D and any complex numbers « and B;
(b) the inequality

sup |@(f)] <oo
feD, /151

is satisfied.
The left member of this inequality is called the norm of the functional @
and is denoted by the symbol || @ |ip or, if D = H, simply by || @ ||.

If f €D and f = 0 then, by the definition of the norm of a functional,

S
| } *(i7)
Hence, for feD,
0y [P =1Plp ISl

Relation (1) shows that the linear functional @ is continuous. In fact, by (1),

|2(f) —2(f) | =12(/—f)| =1 ®Pllp - ILf =l

29 p.

for £, fo €D.

From(l)italsofollowsthat?iffeDand||f|| s 1,then

| EIGIEREDS |

with strict inequality if || /|| < 1. Therefore, the norm || @ ||, can be defined
by

@ sup |2(f)|=12lp,

feD, I fli=1
or, equivalently, by?
, |2(N)]
2 sup —— = || D|lp.
@) Jeb A1 >

* Translator’s Note: The condition f# 0should be included in (2°). Similar conditions should
be added in many other relations which occur below, This task is left to the reader.
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If @ and ¥ are two linear functionals with domains of definition
D, and Dy, then « ¢ + 8 ¥, where « and B are constants, is also a linear
functional, with the intersection Dy, N Dy of the domains Dy and Dy
as domain (of course, only the case when D, N Dy contains elements
different from f = 0 offers much interest).

If the functional @ satisfies the condition (a) listed above, which states
that @ is homogeneous and additive, and if ® is continuous at any one point
" f,e D, then @ also satisfies condition (b) above, i.e., ® is bounded and,
therefore, @ is a linear functional. In fact, if @ is continuous at f; then for
each & > 0 there exists € > O such that

' |®(h) —D(f)] <8
for || — £yl < ¢ and h eD. For each feD such that f50,
(i) - o) -oua
e =" ) = P ) 29
Since the vector—e—z +fo = h satisfies the relation || h—f,/|=¢ we have, for

feD, A1 ,
' )
@ ()] <~E—Hf|l;
in other words, for feD and f# 0,
|2()] _ 38
< -
I/l €
This proves that @ is bounded.
If the linear manifold D on which the linear functional @ is defined is
not closed, then it is possible to extend @ by continuity to the closure of

D. This extension, as is easy to see, leads to a unique linear functional
with the same norm as the initial functional.

16. The Theorem of F. Riesz

The following theorem of F. Riesz provides a representation for each
linear functional in H..
THEOREM: Each linear functional ® in the Hilbert space H can be

expressed in the form
@ (h) = (h.f),

where f is an element of H which is uniquely determined by the functional
&®; furthermore,
@l =111
Proof: We denote by G the set of all elements g € H for which

®(g)=0.
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By the linearity of the functional @, the set G is a linear manifold. Further-
more, G is closed, so that G is a subspace. In fact, if gne G,nzl, and
g —>g then, by the continuity of @, , :

?(g) = lim ®(zu),

N~y 0

so that @ (g) 0 and ge G. If G=H, then the functional @ is equal to
zero everywhere, and the theorem of Riesz is proved by taking f=0. We -
now suppose that G = H. Then there exists a nonzero element f,eH © G.
We consider elements of the form o

2(h)fo— 2(fo) b
where /4 runs through H. These elements belong to G because

S[D(h)fy — B (fo) h] = B (h) P(fo) —B(fo) P(h) =0
Since fobec H © G,
(M) fo — 2(f) . fo) =0

and
°0- (b o)
If we set
?(fy)
= Gutd
then it follows from the equality just obtained that
O(h) =(h.f).

This is the required representatlon of the functional &.
We now prove that fis unique. Assuming the contrary, we have the

equation
hf )= ("), _
for he H, where f' 7 f”. But this is impossible since the substitution of
h=f'—f" yields the contradiction,
If'—f"1#=0.
It remains to be proved that

el=1sI.
It follows from the equation

o(h) =, f)
AN TART.

el = sl
On the other hand, taking & = f, we get:

() =I/17

“that

which yields



17. A CRITERION FOR THE CLOSURE IN H OF A GIVEN SYSTEM OF VECTORS 35

whence it follows that .
' N0z Ifll
Thus the theorem of F. Riesz is proved.

We consider now a linear functional ¥ with domain Dy, closed in H.
Then D is a subspace of H and the theorem of F. Riesz asserts the existence
of a unique element g € Dy such that

3) w(h)=(hg) (heDy)

~and '
1 #llpy = gl

By means of (3), the linear functional ¥ may be extended to the whole
space H without increasing the norm.® Any other extension of the linear
functional ¥ to the whole space H increases the norm of the functional.
In fact, if @ is any extension of ¥ to the whole space, then

®(h) = (h.f)
and

el =IrI.
For heDy,

so that f—g | Dy. Because geDy,
WfI2=lglt+If—gl?

121211 ¥lpgs
where there is strict inequality if f # g.

which implies that

~ 17. A Criterion for the Closure in H of a Given System of Vectors

According to the definition in Section 8, a system M of vectors is
closed in H if it is possible to approximate each s H to any degree of
accuracy by means of a linear combination of vectors belonging to M.

THEOREM: In order that the system M be closed in H, it is necessary
and sufficient that a linear functional ® in H which vanishes for all ge M,
be identically equal to zero.

Proof: The necessity is an immediate consequence of the continuity
of the linear functional. In order to prove the sufficiency, let us assume that
the system is not closed. Then there exists 3 > 0 and a vector h, € H for
which

inf |hy — ayg1— 38— . . . — angnll =8> 0 (g;eM).

n, at

% Since any linear functional can be extended to the whole space without increasing the norm,
one usually considers a linear functional as being defined on the whole space when the domain
is not specified. :



