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Abstract
In order to detect multiple sclerosis (MS) subjects from healthy controls (HCs) in magnetic resonance imaging, we devel-
oped a new system based on machine learning. The MS imaging data was downloaded from the eHealth laboratory at
the University of Cyprus, and the HC imaging data was scanned in our local hospital with volunteers enrolled from com-
munity advertisement. Inter-scan normalization was employed to remove the gray-level difference. We adjust the mis-
classification costs to alleviate the effect of unbalanced class distribution to the classification performance. We utilized
two-level stationary wavelet entropy (SWE) to extract features from brain images. Then, we compared three machine
learning based classifiers: the decision tree, k-nearest neighbors (kNN), and support vector machine. The experimental
results showed the kNN performed the best among all three classifiers. In addition, the proposed SWE+ kNN
approach is superior to four state-of-the-art approaches. Our proposed MS detection approach is effective.
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1 Introduction

Multiple sclerosis (MS) is a chronic demyelinating dis-

ease, caused by damage to the insulating cover of nerve

cells in central neural system.1–4 The symptoms are differ-

ent within individuals, mainly involving physical disabil-

ity5 and mental problems.6 Specifically, the patients may

be afflicted with vision disturbance,7 retinal damage,8

impaired color vision,9 muscle weakness,10 fatigue,

depression,11 etc.

With the conventional magnetic resonance imaging

(MRI) technique it is difficult to detect severe tissue dam-

age, due to the normal-appearing white matter

(NAWM),12–14 that is, the abnormal white matter (WM)

areas appear normal. This clinic-radiological paradox is a

challenge for neuroradiologists. There is a need for novel

techniques that may offer a better diagnosis rate in moni-

toring MS than human interpretation.

Considering that computer vision (CV) performs better

than human eyes in many fields, such as face recognition,
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video security, and satellite surveillance, scholars have

applied CV in detecting and monitoring the progress of

MS. Murray et al.15 developed a texture analysis system

for MS. They extracted image features using the multiscale

amplitude-modulation frequency-modulation (MAMFM)

method. They used the support vector machine (SVM) as a

classifier. Siddiqui et al.16 developed an automated and

intelligent medical decision support system for brain scan

classification. They employed discrete wavelet transform

(DWT), principal component analysis (PCA), and the

least-square support vector machine (LS-SVM). Phillips

et al.17 proposed using wavelet entropy (WE) for patholo-

gical brain detection. They also proposed a Hybridization

of Biogeography-based optimization and Particle swarm

optimization (HBP) for classifier training. Khotanlou and

Afrasiabi18 used the genetic algorithm (GA) to select effec-

tive features in MS lesions. The similarity index (SI) of the

SVM classifier is determined as the fitness function of the

GA. Tachinaga et al.19 developed a computer-aided diag-

nostic system for detecting MS regions by tri-linear inter-

polation (TLI), k-means clustering (KMC), and the SVM.

Deshpande et al.20 used adaptive dictionary learning to

detect lesions of MS. Nayak et al.21 combined DWT, prob-

abilistic PCA (PPCA), and the random forest (RF) for

brain image classification.

WE is a relatively new texture analysis method that has

been already used in neuroimaging for not only disease

characterization and quantification, but also subtle signal

intensity variations. Saritha et al.22 combined WE with a

spider-web plot to classify MR brain images. Phillips

et al.17 used WE and HBP in order to detect pathological

brains. Zhou et al.23 used WE and the feature selection

method, and they detected abnormal brain images with an

accuracy of 100.00%.

Nevertheless, WE calculates entropy values over each

subband obtained by DWT. Du et al.24 pointed out that

DWT is of translational variance. Therefore, it is natural to

replace DWT with stationary wavelet transform (SWT),

which is of translational invariance. This means that even

if the brain image was not registered correctly (maybe with

one pixel error), the DWT coefficients may change signifi-

cantly while SWT coefficients remain unchanged. This

overwhelming advantage makes SWT outperform DWT in

many fields. The combination of SWT and entropy is the

so-called stationary wavelet entropy (SWE).

Our primary objective here is to detect MS in the brain

by the use of SWE. In addition, we used three classifiers

in the field of machine learning, for the aim of classifica-

tion. Those three classifiers were the decision tree (DT),

k-nearest-neighbor method, and SVM. The remainder of

this paper is organized as follows: Section 2 describes

the materials; Section 3 presents the methodology used;

Section 4 gives the results; Section 5 discusses the

results; Section 6 concludes this study and gives future

directions.

2 Materials
2.1 Source

The images used in this study come from two sources. The

MS images were downloaded from the eHealth laboratory

at the University of Cyprus (http://www.medinfo.cs.

ucy.ac.cy/index.php/downloads/datasets). There are 38

patients (aged 34.1 6 10.5 years, 17 males and 21 females)

in the dataset. All brain lesions were identified by experi-

enced MS neurologists, and were confirmed by radiolo-

gists. We selected the slices that were associated with

plaques, and we obtained 676 slices in total. Figure 1

shows two slices with three and five plaques, respectively.

Figure 1. Illustration of multiple sclerosis patients: (a) a slice
with three plaques; (b) a slice with five plaques (areas
surrounded by red lines denote the plaque; color online only).
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For comparison, we enroll healthy controls (HCs) in the

same range of age and gender distribution. The exclusion

criteria for all volunteers were known neurological or psy-

chiatric diseases, brain lesions, taking psychotropic medi-

cations, and contraindications to MR imaging. Figure 2

illustrates two pictures of HCs. Our study was approved by

the Ethics Committee of Southeast University, and a

signed informed consent form was obtained from every

subject prior to entering this study. The brain extraction

tool was not performed, since the MS images preserve

scalps.

2.2 Inter-scan normalization

Since the sources of the dataset are from different scanning

machines, we need to match their image intensities so as to

facilitate brain image comparability. Histogram stretching

(HS)25 was employed to increase the dynamic range of the

original brain images by the following equation26:

h(x, y)=
f (x, y)� fmin

fmax � fmin
ð1Þ

where f represents the original brain image, h is the inten-

sity normalized image, (x, y) are the coordinates of the

pixel, and fmin and fmax represent the minimum and maxi-

mum intensity values, respectively.

3 Methodology
3.1 Stationary wavelet entropy

Nguyen et al.27 developed the concept of SWE. Du et al.24

applied SWE in pathological brain detection. In this study,

we aimed to apply SWE in MS detection. SWE consists of

two major processes. Firstly, it carries out SWT on a given

image.

As Figure 3 shows, h represents the high-pass filter

(HPF) and l the low-pass filter (LPF); the m-level SWT

decomposition is implemented through bypassing all sub-

bands through h and l. The filters are recursively dilated at

scale 2m, and then 2m–1 zeros are inserted among these

coefficients.28–30 Mathematically, the four subbands LL,

LH, HL, and HH obtained as follows:

LLm+1 =(LLm)*r(gm)*c(gm) ð2Þ

LHm+1 =(LLm)*r(lm)*c(hm) ð3Þ

HLm+1 =(LLm)*r(hm)*c(lm) ð4Þ

Figure 2. Illustrations of healthy controls.

Figure 3. Block diagram of stationary wavelet transform.
(l and h represent the low-pass and the high-pass filters,
respectively, m represents the decomposition level, L and H
represent the low-pass and high-pass result, respectively, *r

represents the row-wise filter and *c represents the column-
wise filter.)
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HHm+1 =(LLm)*r(hm)*c(hm) ð5Þ

where *r represents the row-wise filter and *c represents

the column-wise filter, since the rows and columns are fil-

tered independently. The coefficients of different levels

present multiscale, multi-resolution, and translational-

invariant subbands.

In the next process, the randomness of the subbands is

measured by the Shannon entropy A, defined as follows:

A= �
X

i

X 2
i logX 2

i ð6Þ

Here A represents the entropy and Xi represents the ith ele-

ment of a given subband. Note that for an m-level decom-

position, there are in total (3m+ 1) subbands, and thus a

vector of (3m+ 1) elements was formed.

3.2 Classification

We compared three classifiers in this study. Firstly, the DT

was employed. The DT is a tree-like structure.31 Each node

represents a test over an attribute, each branch denotes its

outcome, and each leaf node denotes a class label.32–34

The path from the root node to the leaf node can be seen as

a classification rule. The goal of the learning method for

the DT is to create a DT model that predicts the value of a

target class label on the basis of the input attributes.35 C4.5

was used, which is an extension of the earlier ID3 algo-

rithm.36 C4.5 chooses at each node the attribute that most

effectively splits the samples into subsets that are enriched

in one class or the other. Here information gain was chosen

as the splitting criterion. We chose the attribute with the

largest normalized information gain to make the test.

Then, C4.5 recurred on the smaller sub-lists. We set the

maximum number of splits to four.

The second algorithm we used is the k-nearest neigh-

bors (kNN) method. The input contains k closet training

data. The output is a class membership, by which a new

instance is assigned to the class that is most common by a

majority vote of its k neighbors.37–39 Figure 4 shows an

illustration of kNN, where the new instance (blue circle)

should be classified as the yellow square class, because

there are three yellow squares and two green diamonds in

the dashed circle.

kNN is a type of lazy learning, that is, all computation

is deferred until the new-instance classification stage.40 In

this binary classification problem, it is beneficial to set k to

an odd number, so as to avoid tied votes.41,42 The bootstrap

method was used to set the optimal value of k. Euclidean

distance was employed to measure the distance.

The last classifier is the SVM. It generates a hyperplane

to achieve a desired separation.43–45 It is commonly known

that a larger margin will provide a lower generalization

error.46–48 In practical situations where linearly separable

data are impossible, the soft margin concept was intro-

duced so that the separation is as clear as possible.49

Quadratic programming (QP) was used as the learning

method.

The unbalanced class distribution is due to the difficulty

of acquiring MS data and the ease of acquiring healthy

brain data. To solve the effect of unbalanced class distribu-

tion to the classification performance, we adjust the mis-

classification costs.50

3.3 Statistical experiment

All the classifications were performed on a 10-fold cross-

validation in order to avoid overfitting and achieve an out-

of-sample estimation. We used 10-fold since it is the most

commonly used. The flowchart of 10-fold cross-validation

is shown in Figure 5. Therefore, the classification perfor-

mances do not depend on the training data. All the pro-

grams were developed using the platform of MATLAB

with ‘‘wavelet design & analysis’’ and ‘‘classification lear-

ner’’ apps.

Following general rules, the positive means were iden-

tified and the negative means rejected. Hence, the true

positive (TP) means a MS patient is correctly identified as

MS, the false positive (FP) means healthy people were

incorrectly identified as MS, the true negative (TN) means

healthy people were correctly identified as healthy, and

the false negative (FN) means MS patients incorrectly

identified as healthy. Four measures are used as follows:

Sensitivity= TP=(TP+FN ) ð7Þ

Specificity= TN=(TN +FP) ð8Þ

Precision= TP=(TP+FP) ð9Þ

Accuracy= (TP+ TN )=(TP+ TN +FP+FN ) ð10Þ

Figure 4. Illustration of k-nearest neighbors. (Color
online only.)
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4 Results
4.1 Stationary wavelet transform

Figure 6 shows the two-dimensional discrete wavelet trans-

form (2D-DWT) result of a MS image. Here Figure 6(a)

shows the original brain image and Figure 6(b) presents

the DWT results. In contrast, Figure 7 shows the 2D-SWT

result of a MS image. Figure 7(a) shows the original MS

brain image. Figures 7(b)–(h) illustrate the seven subbands

of two-level SWT.

4.2 Classifier comparison

The confusion matrix of DT, kNN, and SVM are listed in

Table 1. Their performances measured by sensitivity, spe-

cificity, precision, and accuracy are shown in Table 2.

Those four measures were defined in Section 3.3.

4.3 Comparison to state-of-the-art methods

In this experiment, we compared SWE with other state-of-

the-art feature extraction methods, such as MAMFM+

SVM,15 DWT+ PCA+LS-SVM,16 WE+HBP,17 and

DWT+ PPCA+RF.21 Again, 10-fold cross-validation

was used. The comparative analysis is listed in Table 3.

Table 3 shows that MAMFM+ SVM15 achieves a

sensitivity of 94.08%, a specificity of 93.64%, a precision

of 91.91%, and an accuracy of 93.83%. The DWT+
PCA+LS-SVM method16 achieves a sensitivity of

95.86%, a specificity of 96.48%, a precision of 95.43%,

and an accuracy of 96.21%. The WE+HBP method17

achieves a sensitivity of 96.15%, a specificity of 97.16%,

a precision of 96.30%, and an accuracy of 96.72%. The

DWT+ PPCA+RF method21 achieves a sensitivity of

96.01%, a specificity of 96.70%, a precision of 95.72%,

and an accuracy of 96.40%. Finally, the proposed

SWE+ kNN method achieves a sensitivity of 96.15%, a

specificity of 99.32%, a precision of 99.09%, and an accu-

racy of 97.94%.

4.4 Computation time

The computation time is also an important measure to

evaluate different classification models. Our computation

was implemented on a laptop with 2.20 GHz Intel�
Core� i3-2330M CPU and 8 GB RAM. The operating sys-

tem was 64-bit Windows 7 Ultimate with service pack 1.

The ‘‘generate code’’ button in the panel of the

Figure 5. Flowchart of 10-fold cross-validation.

Table 1. Confusion matrix comparison.

Method Confusion matrix

DT 654 22
15 865

� �

kNN 650 26
6 874

� �

SVM 658 18
20 860

� �

DT: decision tree; kNN: k-nearest neighbors; SVM: support vector

machine.

Table 2. Evaluation comparison (unit: %).

Method Sensitivity Specificity Precision Accuracy

DT 96.75 98.30 97.76 97.62
kNN 96.15 99.32 99.09 97.94
SVM 97.34 97.73 97.05 97.56

Bold means the best.

DT: decision tree; kNN: k-nearest neighbors; SVM: support vector

machine.
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‘‘classification learner’’ app was clicked to automatically

generate the MATLAB code for training classifiers and

validation predictions. Two commands, ‘‘tic’’ and ‘‘toc’’,

were employed to start and read elapsed time from a stop-

watch timer. The results are illustrated in Figure 8. The

computation times of the DT, kNN, and SVM are 0.7847

6 0.1216, 1.1613 6 0.2566, and 1.3031 6 0.2788 seconds

(mean 6 standard deviation), respectively.

5 Discussion

After comparing Figures 6 and 7, we observed that SWT

could extract more features than DWT, which is the main

cogent reason why SWT performs better than DWT. Thus,

every pixel in the seven bands represents an individual

feature. To reduce the number of features, entropy was

calculated over each subband. Finally, seven entropy val-

ues were obtained for each brain image.

The results in Tables 1 and 2 show clearly that the DT

achieves a sensitivity of 96.75%, a specificity of 98.30%,

a precision of 97.76%, and an accuracy of 97.62%. kNN

achieves a sensitivity of 96.15%, a specificity of 99.32%,

a precision of 99.09%, and an accuracy of 97.94%. The

SVM achieves a sensitivity of 97.34%, a specificity of

97.73%, a precision of 97.05%, and an accuracy of

97.56%. In all, kNN performs the best in terms of specifi-

city, precision, and accuracy, while the SVM performs the

best in sensitivity. The DT performs the worst in all four

measures. Thus, we can conclude that kNN yields the best

classification performance among the three methods. This

is because SWE can obtain a very low-dimensional feature

space for the imaging data, and kNN is most suitable for

processing this kind of data.51,52 In this study, we used

Euclidean distance; nevertheless, there are some other dis-

tance measures, for instance, the hamming distance,

Pearson coefficient, Spearman coefficient, etc. Thus, we

shall try to develop an automatic method to select the opti-

mal distance measure.

From Table 3, Murray et al.15 used MAMFM+ SVM

to detect lesions in MS images; in our experiment we used

the same method, ‘‘MAMFM+ SVM,’’ to detect MS

brain images from healthy brain images. Thus, the results

Table 3. Comparative results (unit: %).

Method Sensitivity Specificity Precision Accuracy

MAMFM + SVM15 94.08 93.64 91.91 93.83
DWT + PCA + LS-SVM16 95.86 96.48 95.43 96.21
WE + HBP17 96.15 97.16 96.30 96.72
DWT + PPCA + RF21 96.01 96.70 95.72 96.40
SWE + kNN (proposed) 96.15 99.32 99.09 97.94

MAMFM: multiscale amplitude modulation frequency-modulation; SVM: support vector machine; DWT: discrete wavelet transform; PCA: principal

component analysis; LS: least square; WE: wavelet entropy; HBP: hybridization of biogeography-based optimization and particle swarm optimization;

PPCA: probabilistic PCA; RF: random forest; SWE: stationary wavelet entropy; kNN: k-nearest neighbors.

Figure 6. Two-dimensional discrete wavelet transform of a
multiple sclerosis image: (a) original Image; (b) DWTresult.
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Figure 7. Two-dimensional discrete wavelet transform of a multiple sclerosis image: (a) original image; (b) LL2; (c) LH2; (d) HL2; (e)
HH2; (f) LH1; (g) HL1; (h) HH1.
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of MAMFM+ SVM in this study are different from those

of Murray et al.15 In addition, we can observe that our

SWE+ kNN approach gives better performances in terms

of all four measures than MAMFM+ SVM,15 DWT+
PCA+LS-SVM,16 WE+HBP,17 and DWT+ PPCA

+RF.21 This directly validates the effectiveness of our

method. The reason may be two-fold. Firstly, we used an

advanced feature extraction technique—SWE—that com-

bined both SWT and Shannon entropy; thus, SWE pro-

vides our system with a more efficient feature. Secondly,

kNN is a simple technique, but it presents almost perfect

classification results due to the small-dimension (only

seven features) classification task.

From Figure 8, we observe that the SVM takes the

longest time of 1.3031 seconds, kNN takes the second

longest time of 1.1613 seconds, and the DT costs the least

time of 0.7847 seconds. The results are in line with our

expectation. The training of the SVM needs to solve an

optimization equation.53 kNN does not need training

time, since it only stores the feature vectors during the

training phase.54 Nevertheless, it needs to calculate the

distance k times in the validation phase.55 For the DT, it

has a simple tree-like structure and we also limit the max-

imum split number to four; in addition, the training algo-

rithm C4.5 can prune branches to make a smaller tree.

All of these help the DT to run as the fastest algorithm

among the three. In practical use, the computation time

will be reduced, since training will not be carried out for

each new instance.

6 Conclusion and future directions

In this study, we developed a MS detection method based

on SWE and kNN. The results showed its effectiveness.

In the future, we shall carry out the following

researches: (i) acquire more MS imaging data to re-

validate our algorithm; (ii) test other inter-scan normaliza-

tion methods, such as histogram equalization; (iii) test

other advanced entropic forms, for example, Tsallis

entropy56 and multiscale entropy57; (iv) test other

advanced classifiers: the extreme learning machine,58 ker-

nel SVM,59 probabilistic neural network,60 and convolu-

tional neural network61; (v) test an improved training

algorithm for the DT, that is, C5.0 for Unix/Linux and

See5 for Windows.62
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