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Dissimilarity Data in Statistical Model Building and
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Abstract. We explore three papers concerned with two methods for incor-
porating discrete, noisy, incomplete dissimilarity data into statistical/machine
learning models for supervised, semisupervised or unsupervised machine learn-
ing. The two methods are RKE (Regularized Kernel Estimation), and RMU
(Regularized Manifold Unfolding). Briefly put, the methods use dissimilarity
information between objects in a training set to obtain a nonnegative definite
matrix of (usually) relatively low rank, which is then used to embed the ob-
jects into a (usually) relatively low dimensional Euclidean space, where their
coordinates can then be used as attributes in learning models of various types.
Some suggestions for further work are noted.

1. Introduction

We are concerned with a particular aspect of statistical model building and
related machine learning methods. Our concern is with building models which ulti-
mately relate predictor variables or inputs, also known as attributes, to outcomes,
also known as responses or labels. These models are built from observational data
(“training sets”) of sets of inputs and their related outputs. “Direct” inputs may be
highly multivariate (e. g. as in genetic data, or images), they may be numeric-valued
inputs with various kinds of structure. Outputs may be univariate or multivariate,
they may be classifiers (two-class or multiclass [19]), they may be probabilities
of class membership (two-class or multiclass [40]). They may be real numbers or
vectors of real numbers and their correlations [39], correlated Bernoulli (0, 1) out-
puts [12], and so forth. Indirect inputs include noisy observations of the values of
bounded linear or nonlinear functionals in some reproducing kernel Hilbert space
(not considered further here), and noisy, incomplete pairwise dissimilarity informa-
tion between objects in the training set. The use of this dissimilarity information
is our topic here.

The goal is to provide principled methods for using this dissimilarity informa-
tion in regression, classification and clustering models. In clustering, there are no
labels (unsupervised learning), in classification and regression problems all of the
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training set may have labels (supervised learning) or only part of the training set
may have labels (semisupervised learning). In this latter case, the goal is typically
to provide labels for the unlabeled data in the training set (transductive learning),
or to provide labels both for the unlabeled training set data and for new objects
not in the training set (inductive learning).

The basis for our discussion is three papers [26] [7] [27] which have in
common the use of an algorithm for embedding discrete, scattered, noisy, incomplete
dissimilarity data into a dimension controlled Euclidean space in such a way that
the information can be employed as components in any learning algorithm that can
admit reproducing kernel Hilbert space (RKHS)-based components.

Two of these papers apply a new algorithm (called RKE for “Regularized Kernel
Estimation”) to practical examples. The first [26] involves the use of BLAST scores
to provide a dissimilarity score between pairs of protein sequences, which can be
used to visualize and classify proteins. (Section 2). Following this we briefly mention
a potential example of the use of the method in image data (Section 2.5). The second
practical example is the use of pedigree (relationship) data in a demographic study
of an eye condition in conjunction with other, direct information to build a risk
model (Section 3) from [7].

The embedding method discussed in [26] has the potential for dealing robustly
with data that is very much non-Euclidean. For example, consider medical images
containing tumors of varying lethality. A panel of experts is to be asked to compare
images pairwise to give a possibly crude dissimilarity score (on a scale of 1-4, say
very close, close, distant, very distant), and this information is to be used in a
learning model. If sufficient “landmark” images labeled with levels of the outcome
of interest are available, the results can be used in a semisupervised learning model,
and could be combined with other subject/image attribute information and/or
objective or other distance measurements in a risk model. The coordinates of
the embedded object can then be (implicitly) treated just like other covariates
in learning models that have an RKHS component, as is done in [7].

Section 4 considers a modification of the method in Section 2 from [27], (called
RMU for “Robust Manifold Unfolding”) where the objects are believed to sit in
a low-dimensional (generally nonlinear) manifold where the “effective” distance
between objects should be measured along the manifold, and only dissimilarity
between nearest neighbors is used. This method can be used to “unroll”, or
flatten the manifold; RMU can also have the effect of enhancing clustering by
moving near neighbors closer while relaxing the distance on further objects. This
task, generally called manifold learning and other names in the machine learning
community, has become the subject of much recent activity, but we will not attempt
a literature survey here. The RMU differs from much of the existing literature in
its regularization approach, and is conjectured to have some advantages in certain
kinds of network data when the ultimate goal is clustering.

The main content of this review is an overview of the three papers cited, while
we add commentary and discussion of their interrelationships, tuning, and open
questions. The discussion is based on the work of the author and collaborators,
with only occasional references to recent research of others based on dissimilarity
information, and represents a modest updating of [43] and an earlier Technical
Report of the same name.
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2. Dissimilarity Information and Regularized Kernel Estimation (RKE)

This Section is based on [26]. Given a set of N objects, suppose we have
obtained a measure of dissimilarity, dij , for certain object pairs (i, j). We introduce
the class of Regularized Kernel Estimates (RKEs), which we define as solutions to
optimization problems of the following form:

min
K∈SN

∑
(i,j)∈Ω

L
(
wij , dij , d̂ij(K)

)
+ λJ(K),(2.1)

where SN is the convex cone of all real nonnegative definite matrices of dimension
N , Ω is the set of pairs for which we utilize dissimilarity information, and L is
some reasonable loss function, d̂ij is the dissimilarity induced by K and L is
convex in K, J is a convex kernel penalty (regularizing) functional, and λ is a
tuning parameter that balances fit to the data and the penalty on K. The wij

are weights that may, if desired, be associated with particular (i, j) pairs. The
natural induced dissimilarity, which is a real squared distance admitting of an inner
product, is d̂ij = K(i, i) + K(j, j) − 2K(i, j) = Bij · K, where K(i, j) is the (i, j)
entry of K, Bij is a symmetric matrix of dimension N with all elements 0 except
Bij(i, i) = Bij(j, j) = 1, Bij(i, j) = Bij(j, i) = −1 and the inner (dot) product of
two matrices of the same dimensions is defined as: A · B =

∑
i,j A(i, j) · B(i, j) ≡

trace(AT B). There are essentially no restrictions on the set of pairs other than
requiring that they form a connected set. A pair may have repeated observations,
which just yield an additional term in (2.1) for each separate observation. If the
pair set induces a connected graph, then the minimizer of (2.1) will have no local
minima.

Although it is usually natural to require the observed dissimilarity information
{dij} to satisfy dij ≥ 0 and dij = dji, the general formulation above does not require
these properties to hold. The observed dissimilarity information may be incomplete
(with the restriction noted), it may not satisfy the triangle inequality, or it may
be noisy. It also may be crude, as for example when it encodes a small number of
coded levels such as “very close”, “close”, “distant”, and “very distant”.

2.1. Numerical Methods for RKE. In this section, we describe a specific
formulation of the approach in Section 2, based on a linearly weighted l1 loss, and
use the trace function in the regularization term to promote dimension reduction.
The resulting problem is as follows:

(2.2) min
K�0

∑
(i,j)∈Ω

wij |dij − Bij · K| + λ trace(K).

Trace was used as a regularizer in [17] in a different approach to obtain K, which
limited K to a linear combination of prespecified kernels. We show how the present
formulation can be posed as a general convex cone optimization problem and also
describe a “newbie” formulation in which the known solution to (2.2) for a set
of N objects is augmented by the addition of one more object together with its
dissimilarity data. A variant of (2.2), in which a quadratic loss function is used in
place of the l1 loss function, is described in the supplementary material published
with [26].
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2.1.1. General Convex Cone Problem. We specify here the general convex cone
programming problem. This problem, which is central to modern optimization
research, involves some unknowns that are vectors in Euclidean space and others
that are symmetric matrices. These unknowns are required to satisfy certain
equality constraints and are also required to belong to cones of a certain type.
The cones have the common feature that they all admit a self-concordant barrier
function, which allows them to be solved by interior-point methods that are efficient
in both theory and practice.

To describe the cone programming problem, we define some notation. Let Rp

be Euclidean p-space, and let Pp be the nonnegative orthant in Rp, that is, the set
of vectors in Rp whose components are all nonnegative. We let Qq be the second-
order cone of dimension q, which is the set of vectors x =

(
x(1), . . . , x(q)

)
∈ Rq

that satisfy the condition x(1) ≥ [
∑q

i=2 x(i)2]1/2. We define Ss to be the cone of
symmetric positive definite s × s matrices of real numbers. Inner products between
two vectors are defined in the usual way and we use the dot notation for consistency
with the matrix inner product notation.

The general convex cone problem is then:

(2.3) min
Xj ,xi,z

ns∑
j=1

Cj · Xj +
nq∑
i=1

ci · xi + g · z

(2.4) s.t.
ns∑

j=1

Arj · Xj +
nq∑
i=1

ari · xi + gr · z = br, ∀r

Xj ∈ Ssj
∀j ; xi ∈ Qqi ∀i; z ∈ Pp.

Here, Cj , Arj are real symmetric matrices (not necessarily positive semidefinite) of
dimension sj , ci, ari ∈ Rqi ; g, gr ∈ Rp; br ∈ R1.

The solution of a general convex cone problem can be obtained numerically
using publicly available software such as SDPT3 [37] and DSDP5 [3].

2.1.2. RKE with l1 Loss. To convert the problem of equation (2.2) into a convex
cone programming problem, we may, without loss of generality, let Ω contain m
distinct (i, j) pairs, which we index with r = 1, 2, . . . , m. Define IN to be the N -
dimensional identity matrix and em,r to be vector of length 2m consisting of all
zeros except for the rth element being 1 and (m + r)th element being −1. If we
denote the rth element of Ω as

(
i(r), j(r)

)
, and with some abuse of notation let

i = i(r), j = j(r) and w ∈ P2m with w(r) = w(r + m) = wi(r),j(r), r = 1, . . . , m,
we can formulate the problem of equation (2.2) as follows:

minK�0,u≥0 w · u + λIN · K

s.t. dij − Bij · K + em,r · u = 0, ∀r,(2.5)
K ∈ SN , u ∈ P2m.

2.2. Embedding. In the example in [26] there are N = 280 (labeled) proteins
from four different members of the globin family, and the dij were from a subset
of the

(
N
2

)
pairs, the pairs chosen so that each protein was paired with about 55

of the others. The dij were obtained from BLAST scores. Figure 1 gives plots of
the log eigenvalues of K for λ over several orders of magnitude. It can be seen that
there is very little difference between λ = 0.1 and λ = 10. It can also be seen that
the first three or at most four eigenvectors will contain a very large fraction of the
trace of K. This is convenient in this example because it means that the result can
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Figure 1. Left five panels: log scale eigensequence plots for five
values of λ. As λ increases, smaller eigenvalues begin to shrink.
Right panel: first ten eigenvalues of the λ = 1 case displayed on a
larger scale.

be visualized readily. For this example λ was taken as 1. Truncating all but the first
three eigenvalues in K determines an embedding in Euclidean three-space, which,
however, is only determined up to a rotation, since only the distances between
objects are relevant. A convenient choice for the embedding goes as follows: Let
Z280×3 = Γ280×3Λ

1/2
3×3 where Γ280×3 is the 280×3 matrix of the three leading vectors

of K and Λ3×3 the 3 × 3 diagonal matrix with the three leading eigenvalues in the
diagonal. The ith row of Z then gives the three coordinates z(i) = (z1(i), z2(i), z3(i))
of the ith object, i = 1, . . . , 280. The method automatically centers the collection
of the x(i) at 0. Figure 2 gives a plot of the embedding of the 280 proteins. In
this example the four colors represent four subfamilies within the globin family;
the labels alpha-globin, beta-globin, myoglobin and a heterogenous subfamily are
known. It can be seen that these globins could be clustered or if some members of
this population were not labeled, they could be identified fairly accurately by any
one of several methods.

2.3. ‘Newbie’ Formulation. Consider the situation in which a solution KN

of (2.2) is known for some set of N objects. We wish to augment the optimal kernel
(by one row and column), without changing any of its existing elements, to account
for a new object. That is, we wish to find a new “pseudo-optimal” kernel K̃N+1 of
the form

(2.6) K̃N+1 =
[

KN bT

b c

]
� 0,
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Figure 2. 3D representation of the sequence space for 280 pro-
teins from the globin family. Different subfamilies are encoded with
different colors: Red symbols are alpha-globin subfamily, blue sym-
bols are beta-globins, purple symbols represent myoglobin subfam-
ily, and green symbols, scattered in the middle, are a heterogeneous
group encompassing proteins from other small subfamilies within
the globin family. Here, hemoglobin zeta chains are represented
by the symbol +, fish myoglobins are marked by the symbol �,
and the diverged alpha-globin HBAM RANCA is shown by the symbol
*. Hemoglobin alpha-D chains, embedded within the alpha-globin
cluster, are highlighted using the the symbol �.

(where b ∈ RN and c is a scalar) that solves the following optimization problem:

minc≥0,b

∑
i∈Ψ wi |di,N+1 − Bi,N+1 · KN+1|(2.7)

s.t. b ∈ Range(KN ), c − bT K+
Nb ≥ 0,

where K+
N is the pseudo-inverse of KN and Ψ is a subset of {1, 2, . . . , N} of size

t. The quantities wi, i ∈ Ψ are the weights assigned to the dissimilarity data for
the new point. The constraints in this problem are the necessary and sufficient
conditions for K̃N+1 to be positive semidefinite.

Suppose that KN has rank p < N and let KN = ΓΛΓT , where ΓN×p is the
orthogonal matrix of non-zero eigenvectors and Λ is the p × p matrix of positive
eigenvalues of KN . By introducing the variable b̃ and setting b = ΓΛ1/2b̃, we can
ensure that the requirement b ∈ Range(KN ) is satisfied. We also introduce the
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scalar variable c̃, and enforce c ≥ c̃2 by requiring that

(2.8) Z
def=

[
1 c̃
c̃ c

]
∈ S2.

Using these changes of variable, the condition c − bT K+
Nb ≥ 0 is implied by the

second order cone condition:

x
def= [c̃ b̃T ]T ∈ Qp+1.

Further we define the N × (p + 1) matrix Σ def= [0N : 2ΓΛ1/2], where 0N is the
zero vector of length N , and we let Σi· be the row vector consisting of the p + 1
elements of row i of Σ. We use KN (i, i) to denote the (i, i)th entry of KN and define
the weight vector w ∈ P2t with components w(r) = w(t + r) = wi(r), r = 1, . . . , t.
We then replace problem (2.7) by the following equivalent convex cone program:

min
Z�0,u≥0,x

w · u

s.t.
[

1 0
0 0

]
· Z = 1,

[
0 0.5

0.5 0

]
· Z −

[
1
0p

]
· x = 0,

(2.9) di,N+1 − KN (i, i) −
[

0 0
0 1

]
· Z + Σi· · x + et,r · u = 0, ∀r=1,2,...,t,

(2.10) Z ∈ S2, x ∈ Qp+1, u ∈ P2t,

where i = i(r) as before. Note that the constraints on Z ensure that it has the form
(2.8). The d̂i,N+1 are given by d̂i,N+1 = Bi,N+1 · KN+1 and are used to insert the
newbie in the original embedding coordinate system.

2.3.1. Embedding of new protein sequences. We next illustrate how the newbie
algorithm worked to visualize unlabeled protein sequences in the coordinate space
of training data obtained by RKE. We used the following protein sequences as our
test data: (1) Hemoglobin zeta chain (black circle), (2) Hemoglobin theta chain
(black star). Figure 3 displays the positions of these two test protein sequences
with respect to 280 training sequences. We observe that the black circle clusters
nicely with the rest of the hemoglobin zeta chains, whereas the black star, is located
closer to beta-globins. Additionally, 17 Leghemoglobins (black triangles) were used
as test data and were found to cluster tightly within the heterogeneous globin
group. More details, including the scientific implications of the clustering are found
in [26]. In this example one striking result here is the fact that a simple 3D plot
is sufficient for visual identification of the subfamily information. Also, note that
the Leghemoglobins cluster tightly together despite the fact that no dissimilarity
information between pairs of Legemoglobins was used.

2.4. Classification Overlay: The Multicategory Support Vector Ma-
chine. In examining Figure 2 it is clear that if a sufficient number of labels were
given, a fairly successful classification algorithm could be built on this data, es-
pecially if a “none of the above” category is allowed. The Multicategory Support
Vector Machine (MSVM) [19] is a good way of doing this. We first very briefly
describe the two category SVM and then the MSVM in the general case, where x
represents an attribute vector in some space X . Then we return to the application
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Figure 3. Positioning test globin sequences in the coordinate sys-
tem of 280 training sequences from the globin family. The new-
bie algorithm is used to locate one Hemoglobin zeta chain (black
circle), one Hemoglobin theta chain (black star), and seventeen
Leghemoglobins (black triangles) into the coordinate system of the
training globin sequence data.

of building an MSVM on embedded dissimilarity data. See [19] for further informa-
tion and the properties of the MSVM, and a good place to look for the properties
of the SVM as well as the MSVM.

The class labels yi are either 1 or -1 in the two class SVM setting. Similar
to penalized likelihood estimators, the SVM is obtained as the solution to an
optimization problem in a reproducing kernel Hilbert space (RKHS). The reader
unfamiliar with RKHS may want to skip forward to Section 3.2 and return here
later. The SVM methodology seeks a function f(x) = h(x) + b with h ∈ HK , an
RKHS with reproducing kernel (RK) K(·, ·) and b, a constant minimizing

(2.11)
1
n

n∑
i=1

(1 − yif(x(i)))+ + λ‖h‖2
HK

,

where (x)+ = max(x, 0) and ‖h‖2
HK

denotes the square norm of h in HK . According
to [15], the minimizer h is of the form h(x) =

∑n
i=1 ciK(x, x(i)) for some c =

(c1, · · · , cn). (1 − τ)+ is known as the hinge function. If HK is the d-dimensional
space of homogeneous linear functions h(x) = w ·x with ‖h‖2

HK
= ‖w‖2, then (2.11)

reduces to the linear SVM. λ = λSV M is a tuning parameter. The classification rule
φ(x) induced by f(x) is φ(x) = sign(f(x)).

For ease of exposition, assume that all misclassification costs are equal and
there is no sampling bias in the training data set, and consider the k-category
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classification problem. (For the general case see [44] [45].) In the MSVM, the
observation yi is coded into a k dimensional vector with 1 in the j position if
object i is in class j and −1

(k−1) in the other positions. For instance, if example i

falls into class 1, yi = (1, −1
(k−1) , · · · , −1

(k−1)) ). Thus the components of each yi are
required to sum to zero. Accordingly, we define a k-tuple of separating functions
f(x) = (f1(x), · · · , fk(x)) with the sum-to-zero constraint,

∑k
j=1 f j(x) = 0 for any

x in Euclidean d space. Each component f j(x) can be expressed as hj(x) + bj with
hj ∈ HKj . For expository purposes we assume they are in the same RKHS denoted
by HK .

The MSVM is defined as the vector of functions fλ = (f1
λ, · · · , fk

λ ), with each
hk in HK satisfying the sum-to-zero constraint, which minimizes

(2.12)
1
n

n∑
i=1

∑
r �=cat(i)

(fr(x(i)) +
1

k − 1
)+ + λ

k∑
j=1

‖hj‖2
HK

,

where cat(i) is the category of yi. It is not hard to show that the k = 2 case
reduces to the usual two category SVM. The target for the MSVM is fλ(x) =
(f1

λ(x), · · · , fk
λ (x)) with f j(x) = 1 if pj(x), the probability that an object with

attribute vector x is in category j, is bigger than the other pl(x) and f j(x) = − 1
k−1

otherwise. Simulations in [19] and elsewhere demonstrate how well this target can
be hit. Each fr(x) has a representation

∑n
i=1 cirK(x, x(i)) + br, and class r is

assigned if fr(x) > f j(x), j 	= r.
We return to application to embedded dissimilarity data (z’s). If we let the

reproducing kernel for HK be KλRKE
, the embedding kernel, we have (from Section

2.2) that K(z, z(i)) = KλRKE
(z, z(i)) = z · z(i), so that the fr(z) are hyperplanes

in the embedding coordinate system. Note that classification based on hyperplanes
will be invariant under rotations of the coordinate system, as it should be. For the
embedded data in Figure 2 it is likely that hyperplanes would provide a reasonable
classifier. In general, hyperplanes may not provide a reasonable classifier, and in
that case it would be desirable to build a nonparametric MSVM on the embedded
coordinates. To insure that the resulting classification does not depend on the
orientation of the embedding system, it is sufficient to choose an RK based on
a radial basis function (RBF), in which case K(z, z(i)) = r(‖z − z(i)‖), for an
appropriate r. See Section 3 and the Appendix for more on RBF’s. Note that
if we begin with dissimilarity data for labeled, or partly labeled data, embed the
observations in Euclidean d-space and then apply the MSVM to make an automatic
classifier, there are two tuning parameters, λRKE , and λSV M , for the penalty
functional in the RKHS determined by the RBF. See Section 3 for more on tuning.
Recently, [34] give a novel take on clustering with the distance matrix corresponding
to KRKE .

2.5. Image Similarity and Dissimilarity. Consider the problem of com-
paring shapes of images, for example the shape of some image of a region of the
brain (after registration) with the goal of, say, classifying normal subjects and those
with some condition. The κ index [48] provides a measure of similarity. With some
abuse of notation let κ be the matrix with ijth entry κij = 2Si∩Sj

Si+Sj
where the Si

and Sj are the areas or volumes of region i and region j respectively and Si ∩ Sj is
the volume of their intersection, κij ∈ [0, 1]. Let K = κκ, and let Kd be obtained
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by setting all but d eigenvalues of K to 0. Then Kd may be used as in Section
2.2 to embed the n images into a d-dimensional Euclidean space. [18]. Nonnegative
definite similarity matrices have in recent years been frequently used in statistical
model building for images; for a recent example see [31]. A recent discussion of
the use of noisy (indefinite) similarity matrices and methods for transforming them
to kernel matrices can be found in [5]. If there is missing data, but the available
data is accurate, matrix completion procedures [4] could be used to fill in the miss-
ing values. Alternatively suppose that the set of κij are noisy and incomplete, one
could set dij to 1 − κij and use RKE to get a Kernel matrix. The RKE method is
computer intensive but deals with both noisy and incomplete data simultaneously
in a transparent way, and appears to be quite robust to missing data - in theory, at
least, only requiring that the set of pairs with observations be a connected set. It
makes it easy to choose the eigenvalue cutoff point either by visual inspection, by a
requirement to keep a certain fraction of the trace of K, or, by tuning methods, par-
ticularly ones that respect the ultimate use of the embedded data in further analysis
via regression methods. However, comparative experiments, either theoretical or on
observational quality data sets, are yet to be done.

A different take on dissimilarities between functonal brain network images
based on FDG-PET scans is found in [18].

3. Incorporating Dissimilarity Data into an SS-ANOVA Model

This section is primarily based on [7]. We begin with Smoothing Spline ANOVA
(SS-ANOVA) models [46] [13] [21] [38] which are are a well known approach
to penalized likelihood regression given heterogenous attribute variables, with the
ability to model their various interactions. In [12] an SS-ANOVA model was built to
estimate the probability that a member of a study cohort in the Beaver Dam Eye
Study (BDES) has a particular eye condition (retinal pigmentary abnormalities,
a precursor to age-related macular degeneration, AMD) as a function of several
risk factors. In the BDES a large fraction of people in the study had relatives
in the study, and it is known that AMD tends to run in families. The pedigree
(familial relationship) structure has been carefully documented in BDES, and this
provided an incomparable opportunity to use a measure of genetic distance to assign
pairwise distances between people in pedigrees, and to develop and demonstrate an
approach to incorporating this information into an SS-ANOVA model with the use
of the RKE of [26]. Recently genetic markers have been found that are associated
with a risk of AMD. See [14] [29] and other references cited in [7]. A set of two
genetic markers relevant to AMD were also available and are easily incorporated
into an SS-ANOVA model, so that the relative influence of the original covariates,
the genetic markers and the pedigree information could be assessed. The embedding
structure of the pedigree data is quite different than what was seen in [26], but the
method of incorporation of dissimilarity data here is applicable to a wide variety of
circumstances, while at the same time raising issues for further work.

3.1. Penalized Log Likelihood for Bernoulli Responses. For the protein
classification problem of [26], the SVM is ideal – it returns an estimated class label
accurately when classes are easily separable, and concentrates the calculational
work on identifying the separation boundary - it does not estimate a probability of
class membership and it is not sensitive to outliers. If classes are easily separable,
as in [26], the log odds ratio will be ±∞ leading to numerical instabilities in
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estimating the log odds ratio. In various kinds of medical problems, it is desired
to estimate the probability of class membership, such as some phenotype, when
attribute vectors and relationships influence response, but by no means guarantee
it. We will discuss the Bernoulli case where there are two classes, and it is desired
to estimate p(x) = Prob(y|x = 1) using a penalized log likelihood model. We
estimate instead the log odds ratio (a.k.a. logit) f(x) = log p(x)

1−p(x) and recover
p(x) from p(x) = ef(x)/(1 + ef(x)). Given yi, x(i), i = 1, 2, · · · , n, y ∈ {0, 1},
x = (x1, x2, · · · , xd) the negative log likelihood in the Bernoulli case is given by

(3.1) L(y, f) =
n∑

i=1

−yif(x(i)) + log(1 + ef(x(i)))

and the penalized log likelihood estimate of f is obtained by finding f in some
prescribed function space to minimize

(3.2) I(f) = L(y, f) + λJ(f)

where J(f) is a penalty functional on f and λ = λMAIN is a (main) tuning
parameter which balances fit to the data and complexity/wiggliness of f , or signal-
to-noise ratio, in the Bernoulli case. The multicategory penalized likelihood case is
discussed in [41]. In the two category case, if the data is coded as ±1 (as opposed
to {0, 1}), then the negative log likelihood becomes log(1 + e−yf ) and may be
directly compared to the hinge function (1 − yf)+ of Equation (2.11). See [41].
The negative log likelihood and the hinge function have quite different properties.
Recently [23] have proposed a family of so-called large margin classifiers called
large-margin unified machines (LUMs), which cover a broad range of classifiers
including both the SVM and penalized likelihood, to allow “interpolation” between
their properties.

3.2. Reproducing Kernel Hilbert Spaces (RKHS). It will be seen that
RKHS methods provide a convenient and natural approach to include dissimilarity
data in regression and classification models.

We briefly review some facts concerning RKHS. Let K(s, t) be a positive
definite function on T ⊗ T . This means for any k, t1, · · · , tk ∈ T , a1, · · · , ak∑k

r,s=1 arasK(tr, ts) ≥ 0. The Moore-Aronszajn Theorem [1] tells us that to every
positive definite function K(·, ·) there corresponds a unique RKHS HK and vice
versa.

K(·, t∗) ∈ HK ∀t∗ ∈ T ,

∑
r crK(·, tr) ∈ HK ,

f ∈ HK ⇒ < f(·), K(·, t∗) >= f(t∗) ∀t∗ ∈ T ,

‖
∑

crK(·, tr)‖2
HK

=
∑

rs crcsK(tr, ts).

The closure of the span of the K(·, tr), tr ∈ T in the above norm completes
HK . It is important to note that T can be any domain whatsoever on which it
is possible to define a positive definite function. In particular, tensor sums and
products of positive definite functions are also positive definite. It is also good to
know that positive definite functions (a.k.a. Reproducing Kernels) are available
that only depend on the Euclidean distance between the two arguments.
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3.3. Smoothing Spline ANOVA (SS-ANOVA) Models. SS-ANOVA
models [46] [13] [21] [38]. are based on ANOVA decompositions of functions of
several variables. We describe the functional ANOVA decomposition is some gen-
erality. Let

(3.3) x = (x1, · · · , xd) ∈ X ≡ X (1) ⊗ · · · ⊗ X (d)

and

(3.4) f(x) = f(x1, · · · , xd), xα ∈ X (α)

Let dμα be a probability measure on X (α) and define the averaging operator
Eα on X by

(3.5) (Eαf)(x) =
∫

X (α)
f(x1, · · · , xd)dμα(xα).

The averaging operators Eα give a (unique) ANOVA decomposition of f :

(3.6) f(x1, · · · , xd) = μ +
∑
α

fα(xα) +
∑
αβ

fαβ(xα, xβ) + · · ·

where

μ =
∏
α

Eαf =
∫

· · ·
∫

f(x1, · · · , xd)dμ1(x1) · · · dμd(xd)

fα = (I − Eα)
∏
β �=α

Eβf

fαβ = (I − Eα)(I − Eβ)
∏

γ �=α,β

Eγf

...
... Eαfα = 0, EαEβfαβ = 0, etc.

The series in (3.6) is truncated at some point. Terms satisfy ANOVA-like side
conditions (identifiable). An SS-ANOVA representation with weights on kernels
looks like

(3.7) f(·) =
m∑

j=1

djφj(·) +
n∑

i=1

ciKθ(·, x(i))

where the φj are a small set of unpenalized components (parametric part), and

(3.8) Kθ(·, ·) =
d∑

α=1

θαKα(·, ·), +
∑
α≤β

θαβKαβ(·, ·) + · · ·

The kernels depending only on xα satisfy EαKα(·, xα) = 0 where the averaging
operator acts on (·) and the higher order kernels are usually tensor products of
such kernels, which will then satisfy the ANOVA side conditions.. Since ‖f‖2

HθK
=

θ−1‖f‖2
HK

, the SS-ANOVA penalty functional has the form:

(3.9) J(f) =
n∑

i,j=1

cicj

⎡
⎣ d∑

α=1

θ−1
α Kα(x(i), x(j)) +

∑
α≤β

θ−1
αβKαβ(x(i), x(j)) + · · ·

⎤
⎦

where it is understood that only the components of x(i) indicated by the subscripts
on the kernel actually enter. The θs are tuning parameters along with λ and with
an identifiability constraint. For each trial set of tuning parameters, the ci are to
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code units description
horm yes/no current usage of hormone replacement therapy
hist yes/no history of heavy drinking
bmi kg/m2 body mass index
age years age at baseline
sysbp mmmHg systolic blood pressure
chol mg/dL serum cholesterol
smoke yes/no history of smoking
Table 1. E/C covariates for BDES pigmentary abnormalities SS-
ANOVA model

be fitted. Calling the fitted result fλθ, the fitted fλθ are evaluated for the best
set of tuning parameters via a tuning criterion. When data is copious, it can be
separated into train, tune and test groups and tuned on the tuning set, but when the
sample size is moderate an internal tuning criterion is appropriate. The Generalized
Approximate Cross Validation (GACV) [47] for Bernoulli data models with RKHS
penalties is used in [7].

3.4. SS-ANOVA Model in the Beaver Dam Eye Study. The Beaver
Dam Eye Study (BDES) is an ongoing population-based study of age related ocular
disorders, begun in 1988. An SS-ANOVA model for association of a number of
environmental/clinical (E/C) variables based on 2585 women with complete E/C
data appears in [21]. 684 women have at least one relative also in the study
with complete E/C data, and this provides an opportunity to make use of this
relationship (pedigree) data. The predictor variables of present interest are in Table
1:

The fitted E/C model that is used in the study under discussion is

f(t) = μ + f1(sys) + f2(chol) + f12(sys, chol)
+ dage · age + dbmi · bmi
+ dhorm · I1(horm) + ddrin · I2(drin) + dsmoke · I3(smoke)

(3.10)

This is the same model that was fitted in [21] with the exception that smoke was
not included there. In this model, f1, f2 and f12 are splines.

3.5. Modeling E/C, Genetic and Pedigree Data in an SS-ANOVA
Model. In the study under discussion, logit has the representation

f(t) = μ + dSNP1,1 · I(X1 = 12) + dSNP1,2 · I(X1 = 22)
+ dSNP2,1 · I(X2 = 12)dSNP2,2 · I(X2 = 22)
+ f1(sysbp) + f2(chol) + f12(sysbp, chol)
+ dage · age + dbmi · bmi
+ dhorm · I1(horm) + ddrin · I2(drin) + dsmoke · I3(smoke)
+ fped(z).(3.11)

The first two lines in (3.11) are Genetic (SNP) data. There are two SNPS each
with three levels, (1,1), (1,2), (2,2). They are markers for ARMS2 (rs10490924)
and CFH1, two genetic locations that are known to be related to AMD. See ([14]
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[29] and references there. The next three lines are E/C variables, and the last line
contains pedigree/relationship data to be explained shortly. Figure 4(a) gives an
example of a pedigree from BDES and 4(b) gives the relationship graph for five
members of this pedigree. In Figure 4(a) it can be seen that persons 35 and 26 are
siblings, and are assigned a dissimilarity of 1 in Figure 4(b), persons 8 and 10 are
aunt and niece and are assigned a dissimilarity of 2, persons 35 and 40 are first
cousins and are assigned a dissimilarity of 3, and persons 26 and 40 are also first
cousins and assigned a dissimilarity of 3. These numbers are monotone functions of
Malecot’s kinship (coancestry) coefficient ψ [30] [24], a measure of genetic similarity
of two individuals with a common ancestor - the score is log2(2ψ). Relationship
scores go up to 5 in this study. Pairs with with no known common ancestor are
indicated with dashed edges in 4(b), and these edges will be coded with a large,
arbitrary constant, L. Since there are many disconnected pedigrees, in order to
have a connected graph for input to the RKE, a large number of unrelated pairs
are coded as L. An embedding matrix R for the subjects is obtained by solving the
same convex convex cone optimization problem as in Section 2.1:

(3.12) min
R�0

∑
(i,j)∈Ω

|dij − Bij(R)| + λRKEtrace(R).

RλRKE
(i, j) then gives a (unique up to rotation) embedding z(i), i = 1, · · · , n of the

subjects, as in Section 2.2. Tuning of λRKE will be described later. For each trial
value of λRKE , 95% of the trace is retained while small eigenvalues are deleted.
Figure 5 shows the embedding of the five persons in the relationship graph of
Figure 4(b). These five persons can be embedded in three dimensions but not all
five person subgraphs have this property. These embeddings will go into fped(z)
in the extended SS-ANOVA model of (3.11). The horizontal axis (z3) of this plot
is order of magnitudes larger than the other two axes. The unrelated edges in
the relationship graph occur along this dimension, while the other two dimensions
encode the relationship distance. Unlike in Section 2.4 it is fairly clear that we do not
want to build a linear model on the embedded points z(i). Since only the distances
‖z(i) − z(j)‖ are relevant, we can “kernelize” a function defined on the embedding
space using any RK that only depends on the distances, that is, any radial basis
function (RBF). The Matern family of RBF’s is a convenient two parameter family
with m, an order parameter, and α, a scale parameter (not to be confused with
variable subscripts α); m and α are tuning parameters to be chosen. In the present
work a Matern kernel of order m = 3 was chosen. It is

(3.13) Kz(z∗, z′) = r3(‖z∗ − z′‖)

where

(3.14) r3(τ) =
1
α7 exp{−ατ}[15 + 15ατ + 6α2τ2 + α3τ3].

If a newbie is not in a pedigree, then Kz(znewbie, z(j)) will be very small or 0 for
all j. Equation (3.8) becomes

(3.15) Kθ(·, ·) =
d∑

α=1

θαKα(·, ·), +
∑
α≤β

θαβKαβ(·, ·) + · · · + θzKz(·, ·).

and Kθ(·, x(j)) of Equation(3.7) becomes Kθ(·, x(j) : z(j)), that is, Kθ(x, x(j)))
becomes Kθ(x : z, x(j) : z(j).
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(a) Example pedigree.

(b) Relationship graph. Edge labels are dissimilarities de-
fined by the kinship coefficient (sibling/parental=1, avun-
cular=2, first cousins=3,...). Dotted edges indicate unre-
lated pairs.

Figure 4. An example pedigree from the BDES and a relation-
ship graph for five subjects. Colored nodes are subjects assessed
for retinal pigmentary abnormalities (red encodes a positive re-
sult). Circles are females and rectangles are males.
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Figure 5. Embedding of relationship graph in Figure 4 by RKE.
The horizontal axis of this plot is order of magnitudes larger than
the other two axes. The unrelated edges in the relationship graph
occur along this dimension, while the other two dimensions encode
the relationship distance.

3.6. Tuning. We have the following tuning parameters:

• λMAIN of of Equation (3.2) which controls the tradeoff between the
goodness of fit and the size of the penalty functional in a penalized
likelihood model. This governs the signal-to-noise ratio given the other
parameters in J

• θα, θαβ . . . and θz of Equation (3.15) subject to a single side condition so
that they are identifiable in the presence of λMAIN

• λRKE of Equation (3.12) used to get the positive definite function provid-
ing the embedding of the dissimilarity information.

• Parameter(s) in the RBF r(z) that will be used to build the regression
on the embedding coordinates. If a member of the Matern family is used,
those parameters are the scale α and the order m

The embedding tends to be fairly insensitive to λRKE over several orders of
magnitude, so generally only a small number of values of log λRKE need to be
considered, similarly if a member of the Matern family is to be used, only a small
number of order parameters m need to be tried. The results are invariably most
sensitive to λMAIN , and can be very sensitive to scale factors in kernels, such as
the Matern parameter α, and so these need to be chosen carefully. In this work, the
GACV tuning method for Bernoulli data with RKHS penalty [47] [22] was used to
choose these parameters. The GACV is a prediction oriented method targeted to
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minimize the Kullback-Liebler distance between the fit and the “true” but unknown
model, derived from a leaving-out-one argument, but much easier to compute.

3.7. Qualitative Results. An important goal of the study was to explore
the relative contribution of each source of data. Since there are three sources of
information: (S=SNPS, P=Pedigrees,C= Environmental/Clinical) there were seven
models to consider:

• S = SNPS (genetic data) only
• C = Environmental/Clinical (E/C) data only
• S + C
• P = Pedigrees only
• S + P
• C + P
• S + C + P

Figure 7 gives the ROC Curves for the S + C + P model and the three models
with two sources of information. Figure 6 plots the area under the ROC curve
(AUC) for all seven models.

We can see the relative importance of clinical/environmental variables, certain
genetic information, and pedigree information in modeling risk of pigmentary
abnormalities in the BDES. The approach has promise for many other applications
where relationship or dissimilarity information is available along with covariate
information. Recently [10] [8] [9] have approached the same problem of including
pedigree relationship information along with other covariate information in breeding
data sets in a model with Gaussian outcomes which has many similarities and some
differences with the present approach. Their approach directly uses a measure of
genetic distance which is actually a Euclidean distance and thus there is no step
analogous to RKE.

4. Dissimilarity Data and Regularized Manifold Unrolling

Within the last few years there has been much interest in data that is believed
to lie in a low dimensional possibly nonlinear manifold in a high dimensional space.
Figure 8 gives a picture of the (in)famous Swiss roll, which is a highly stylized
depiction of this situation and quoted by many authors. The import of the figure
is that determining Euclidean distances or dissimilarities between the data points
would make points that are far apart when measured along the manifold (or a
corresponding graph) appear wrongly close if measured in Euclidean coordinates.
Rather, distances or dissimilarities should be measured along the manifold. Figure
8 was constructed by “rolling up” the two dimensional data in Figure 9. So, simply
put, given the data in Figure 8 contaminated by noise, can you recover (unroll,
flatten) to get an estimate of the unrolled data in Figure 9?

See the references in [27] for various approaches [36, 33, 2, 11, 16] to unrolling
the Swiss roll, and many real applications. More recently, [49] discuss manifold
unrolling and give further references. In [27] we show that small modifications to
the RKE of Section 2 can be used to efficiently “unroll” the Swiss roll. Let Ωk be
the set of pairs of points that are neighbors according to some criterion indexed by
k, for example, k-nearest neighbors, although other criteria can be used. The goal
is to embed the data in such a way that pairs that are not in Ωk are as far apart
as possible while the end product embedding respects the dissimilarity information
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Source Models

for pairs in Ωk. Several equivalent formulations of the solution to this problem are
given; here we only describe one. The optimization problem is:

(4.1) min
R�0

∑
(i,j)∈Ωk

wij |dij − Bij · R| − 2λ trace(R).

subject to E · R = 0, where E is the N × N matrix with all entries as 1.
Given R = RλRMU

and the neighbor index k the embedding proceeds as in the
previous sections, and a newbie algorithm proceeds similarly, except that the newbie
is embedded using only nearest neighbors according to the criterion determined
by k. Given the embedding, supervised (and semisupervised) learning algorithms
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Figure 10. Swiss Roll with Noisy Data Unrolled

including the Support Vector Machine and SS-ANOVA models can be built using
the embedded coordinates and newbies in conjunction with an RBF kernel for the
embedded coordinates. The same tuning issues exist as we have seen so far, with
the addition of the neighbor index k. This program has not been carried out to our
knowledge, but it would be interesting to see how it might work on problems for
which the RMU is more appropriate than the RKE for embedding. Certainly the
two approaches can be compared on the same data set.

Here we just show plots of the embedding for the unrolled noisy Swiss roll.
Noisy data was added to the Swiss roll by modifying 20% of the pairwise distances
by a uniform random number between .85 and 1.15; the results of the unrolling
are given in Figure 10. The k index was taken as k-nearest neighbor and chosen
subjectively, as was λ here. The eigenvalues of the resulting RRMU are plotted on
a log scale in Figure 11. Two large eigenvalues make clear that that the unrolled
figure sits in a two-dimensional space. The hanging eigenvalue is computational
zero and reflects the constraint E · R = 0.

4.1. Regularized Manifold Unfolding and Social Network
Graphs. A graph G is a vertex or node set and an edge set which contains the pair
(i, j) if node i is connected to node j. Edges may have weights, but for this discussion
we will assume that weights are 1. Recently a large literature has arisen with the
goal of clustering the nodes, based on what amounts to embedding the nodes in a d-
dimensional Euclidean space, and then using a standard clustering algorithm such as
k-means. Let W be the n×n matrix with i, jth entry 1 if (i, j) is in the edge set and
0 otherwise, and let D be the diagonal matrix with (i, i)th entry Dii =

∑
k Wik. The

normalized graph Laplacian L is defined as L = I − D−1/2WD−1/2. Let Z be the
n× d matrix with columns the eigenvectors corresponding to the d largest absolute
eigenvalues. The ith node is assigned the d Euclidean coordinates the ith row of Z.



DISSIMILARITY DATA 805

0 100 200 300 400 500 600 700 800 900
−25

−20

−15

−10

−5

0

5

10

15

lo
g(

λ ν)

ν

Figure 11. Eigenvalues of the embedding kernel

See, for example [32]. (Note that only the eigenvectors, and not the eigenvalues are
used in the embedding there.) In these comments, we take a different view, which
may be more appropriate for social networks, where the edges represent connections
between people. Bearing in mind the “Six degrees of separation” of people, which
posits that everyone on the planet is connected to everyone else through a path of
at most 6 edges, we adopt the point of view that in order to cluster people, we only
need to consider a very few degrees of separation, say, persons who are connected
through at most, say k = 2 or k = 3 edges, and, if people are “further apart” than
k edges we want to move them even further apart. Thus dij in (4.1) is either 1 or
2 if k = 2, and omitted otherwise; analogously if k is chosen to be 3. Alternatively
the dij could be normalized to take account of all distinct paths of length less or
equal to k joining node i and node j. It can be argued that Regularized Manifold
Unfolding using RRMU for embedding, as discussed here and in more detail in [27],
provides an appealing alternative to the usual spectral clustering in the case where
more than k edges is considered very far away, and pairs of points which are far
away want to be pushed even more far away.

5. Conclusions, Further Work

The three papers discussed here together provide an approach to statistical
model building/machine learning which incorporates scattered, noisy dissimilar-
ity information and other information into nonparametric regression/classification
models based on positive definite functions and reproducing kernel Hilbert spaces.
In recent years there has been a huge growth in the literature in the use of dissim-
ilarity information. As of this writing google provides over 4000 hits for the phrase
“dissimilarity data” with the words “machine” and “learning, and the surface has
only begun to be scratched.
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Combinations of medical image modalities along with patient attribute infor-
mation including clinical/environmental and genetic variables to build models to
predict outcomes, including multiple correlated outcomes, is a rich area for explo-
ration as data becomes available. Modern genetic data sets can include hundreds
of thousands of genetic markers or gene expression information, providing serious
challenges to figure out patterns or clusters of important variables [35] which when
added to other information, can best be used to predict medical associations or
outcomes of interest. Interacting effects of various sources of data often need to
be realistically included. Analysis of network data along with attributes of various
kinds assigned to nodes, which could be time-dependent, scattered or noisy or have
censored or missing information [28] present interesting challenges in model build-
ing. An important key to success with observational dissimilarity data is to bring
to the analysis definitions of what constitutes “dissimilarity” that are meaningful
for the context at hand.

We have only discussed penalties in an RKHS, (other than [35]) but various
kinds of quadratic, 	1 and other penalties appear in the literature, designed
for particular model structures. These models generally require multiple tuning
parameters which balance goodness of fit to constraints on the model.

For unsupervised data, the tuning parameter(s) in RKE may be chosen by CV2,
a cross validation approach involving leaving out pairs [6] Section A.2, [25] Section
3.5, or [42]. The pattern of eigenvalues appearing in [27] is relatively insensitive to
λ over several orders of magnitude near the minimum. This may be a result of the
fact that there are four very distinct groups of tightly clustered points and they can
be embedded well in just three or four dimensions. However, if the RKE is part of a
supervised or semisupervised model, it may be advisable to tune it along with the
other tunable parameters of the model according to the target of the model, and
in this case the estimated target of the model can be sensitive to the RKE tuning
parameters. The problem of tuning complex models with differing objectives has
some open questions. One of them is related to the issue of tuning to optimize
prediction and tuning to optimize variable selection - not always the same, see [20].

Statistical model building and machine learning areas are experiencing a rapidly
growing literature, spurred on by the availability of large training sets and increasing
computer power. Nevertheless, many different data structures and models remain
to be carefully studied. Theoretical properties should be obtained where possible
and efficient computational algorithms must be developed. New models need to be
tested on realistic simulated data, and finally applied to extract information from
observational training sets of interest and importance.
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[37] R.H. Tütüncü, K.C. Toh & M.J. Todd, Solving semidefinite-quadratic-linear programs using
SDPT3, Mathematical Programming 95 (2003), no. 2, 189–217.

[38] G. Wahba, Spline models for observational data, SIAM, 1990, CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, v. 59.

[39] , Multivariate function and operator estimation, based on smoothing splines and
reproducing kernels, Nonlinear Modeling and Forecasting, SFI Studies in the Sciences of
Complexity, Proc. Vol XII (M. Casdagli and S. Eubank, eds.), Addison-Wesley, 1992, pp. 95–
112.

[40] , Smoothing splines in nonparametric regression, Encyclopedia of Environmetrics
(A. El-Shaarawi & W. Piegorsch, eds.), vol. 4, Wiley, 2001, pp. 2099–2112.

[41] , Soft and hard classification by reproducing kernel Hilbert space methods, Pro-
ceedings of the National Academy of Sciences 99 (2002), 16524–16530, Open Source at
www.pnas.org/content/99/26/16524, PMCID: PMC125262.

[42] , Dissimilarity data and regularized kernel estimation in classification and clus-
tering, Talk, Duke University, March 31, 2004, 2004, Available via the TALKS link at
http:www.stat.wisc.edu/ wahba.

[43] , Encoding dissimilarity data for statistical model building, J. Statistical Planning and
Inference (2010), 3580–3596, PMCID: PMC2929577 [available on 2011/12/1].

[44] G. Wahba, Y. Lin, Y. Lee & H. Zhang, Optimal properties and adaptive tuning of standard
and nonstandard support vector machines, Nonlinear Estimation and Classification (D. Deni-
son, M. Hansen, C. Holmes, B. Mallick, and B. Yu, eds.), Springer, 2002, pp. 129–148.

[45] G. Wahba, Y. Lin, Y. Lee, H. Zhang, D. Nychka & W. Wong, The 2003 Wald lectures, with
discussion, Tech. Report 1080, Department of Statistics, University of Wisconsin, Madison
WI, 2003.

[46] G. Wahba, Y. Wang, C. Gu, R. Klein & B. Klein, Smoothing spline ANOVA for exponential
families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy,
Ann. Statist. 23 (1995), 1865–1895, Neyman Lecture.

[47] D. Xiang & G. Wahba, A generalized approximate cross validation for smoothing splines with
non-Gaussian data, Statistica Sinica 6 (1996), 675–692.



DISSIMILARITY DATA 809

[48] X. Xie, M. Chung & G. Wahba, Magnetic resonance image segmentation with thin plate
spline thresholding, Tech. Report 1105, Department of Statistics, University of Wisconsin,
Madison WI, 2006.

[49] X. Xu & A. Goldberg, Introduction to semi-supervised learning, Morgan Claypool, 2009.

Department of Statistics, University of Wisconsin-Madison

E-mail address: wahba@stat.wisc.edu


