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1 Univariate Polynomial Splines

The name “spline function” was given by I. J. Schoenberg to the piecewise polynomial
functions now known as univariate polynomial splines, because of their resemblance to the
curves obtained by draftsmen using a mechanical spline — a thin flexible rod with weights or
“ducks,” used to position the rod at points through which it was desired to draw a smooth
interpolating curve. See Schoenberg [58]. A univariate natural polynomial (unp) spline, f ,
is a function on [0, 1] (any interval will do, of course), with the following properties: Given
the positive integer m, and n ≥ m points 0 < t1 < t2 < · · · < tn < 1, called “knots”

f ∈ πm−1, t ∈ [0, t1], t ∈ [tn, 1],
f ∈ π2m−1, t ∈ [ti, ti+1], i = 1, . . . , n− 1,
f ∈ C2n−2, t ∈ [0, 1],

where πk is the class of polynomials of at most degree k and Ck is the class of functions
with k continuous derivatives. Thus f is a piecewise polynomial of degree 2m− 1 with the
pieces joined at the knots so that f has 2m − 2 continuous derivatives, satisfying the 2m
boundary conditions f (k)(0) = f (k)(1) = 0 for k = m, m + 1, . . . , 2m − 1. “Natural” was
the term given by Schoenberg to functions satisfying these (Neumann) boundary conditions
which arise “naturally” from the solution to a variational problem, to be described below.

If f is represented by its polynomial coefficients, it is seen that it requires 2m coefficients
to describe f in [0, t1] and f in [tn, 1], (n−1)2m coefficients to describe f in the n−1 intervals
[ti, ti+1], i = 1, . . . , n − 1, for a total of 2mn unknowns. The continuity conditions provide
(2m− 1)n conditions, which can be shown to be linearly independent, leaving n conditions
to specify f completely. These conditions can be provided by specifying the values of f at
t1, . . . , tn.

Interpolating (unp) splines have been of interest to numerical analysts at least since
Schoenberg’s 1964 work. Suppose that f is some function which possesses a Taylor expan-

sion with remainder to order m − 1, and let fn be the unp spline of interpolation to f at
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the points t1, . . . , tn. Then fn and its first m − 1 derivatives tend point-wise to f and its
first m − 1 derivatives as n gets large, provided the ti’s are distributed “nicely,” and if f
possesses 2m continuous derivatives and satisfies the Neumann boundary conditions, then
all 2m of the derivatives of fn will converge to those of f . Integrals of fn also converge to
integrals of f , and this fact can be used to generate quadrature formulas; see Schoenberg
[59]. These favorable approximation theoretic properties, as well as the fact that splines
are easy to compute, have led to their popularity among numerical analysts. Interpolating
splines are frequently the functions of choice when it is desired to represent everywhere a
function whose values are given exactly only on a finite set of points. Piecewise polynomial
functions satisfying other boundary and continuity conditions are also called splines. The
scholarly work of Schumaker [60] provides a history of interpolating splines from a numer-
ical analyst’s point of view. Prenter [54] describes their role in the numerical solution of
differential equations and DeBoor [11] is the standard reference on algorithms for generating
(univariate) splines.

Splines are of interest to statisticians for the same reasons that they are of interest to
numerical analysts, as well as because of their favorable properties in smoothing noisy data.
The two major types of splines of interest for smoothing noisy data as a function of one
variable are regression splines and smoothing splines. We will discuss these in turn, and
then go on to some other spline models.

2 Regression Splines

To discuss regression splines, we first want to describe the B-splines (B stands for “basis”).
B-splines can be conveniently defined in terms of truncated power functions and divided dif-
ference operators. Given a function f(·) and “knots” ti, . . . , ti+k define the divided difference
operator [ti, . . . , ti+k]f(·) as

[ti, ti+1]f(·) =
f(ti+1)− f(ti)

ti+1 − ti
,

[ti, ti+1, ti+2]f(·) =

[

f(ti+2)− f(ti+1)

ti+2 − ti+1

−
f(ti+1)− f(ti)

ti+1 − ti

]

/(ti+2 − ti),

and so forth. For fixed x, we will let f(·) = (· − x)k−1
+ be the truncated power function,

where (u)+ = u if u ≥ 0 and 0 otherwise. Then the B-spline of degree k − 1 for the knots
ti, . . . , ti+k is defined as

Bi(x) = (ti+k − ti)[ti, . . . , ti+k](· − x)k−1
+ ·

For example, for k = 2,

B2(x) =
(ti+2 − x)+ − (ti+1 − x)+

ti+2 − ti+1

−
(ti+1 − x)+ − (ti − x)+

ti+1 − ti
,
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which is a tent function on [ti, ti+2]. Bi(x) is a piecewise polynomial of degree k− 1 and can
be shown to possess k − 2 continuous derivatives, be zero outside [ti, . . . , ti+k], and positive
in the interior. The B-splines of degree k− 1 can also be obtained as projections on the real
line of the volumes of convex polyhedra in k dimensions. Figure 1 illustrates this for k = 2.
B-splines with coalescing knots are allowed; the effect is to reduce the continuity conditions
at the multiple knots. If the ti’s are equally spaced, then one can also get the B-splines
by shifting and rescaling the convolution of k uniform densities, and then the B-splines for
k ≥ 1 will be hill functions. Given k and a set of knots t1, . . . , tN+k, one can define a set of N
B-splines B1, . . . , BN where Bj is the B-spline of degree k− 1 with knots tj, . . . , tj+k. These
N functions provide a basis for a space of smooth functions with k−2 continuous derivatives
and may be used as regression functions when one wants to fit a smooth function without
otherwise specifying its form. Specifically, suppose we are given data y = (y1, . . . , yn), from
the model

yi = f(xi) + ǫi, i = 1, . . . , n, (1)

where f is known to be “smooth” and ǫ = (ǫ1, . . . , ǫn) ∼ N(0, σ2I). Given knots t1, . . . , tN+k

and the corresponding B-splines of degree k − 1, one may estimate f as fN , where

fN ∼
N
∑

l=1

clBl

by doing ordinary least-squares regression, that is, choosing c = (c1, . . . , cN) to minimize

n
∑

i=1

(

yi −
N
∑

l=1

clBl(xi)

)2

.

If N = n, then fN will interpolate the data, and as N becomes much smaller than n, fN
will have an increasingly smooth appearance, and the residuals will tend to increase. In
principle, the knots t1, . . . , tN can be left as unknowns and chosen along with the coefficients
to minimize the above sum of squares, but in practice, with noisy data, the determination of
more than just a few knots this way is difficult and complicated by multiple local minima.
Choosing the knots when interpolating a smooth function which is given exactly seems to be
easier. See DeBoor [11]. The “eyeball” or trial and error method is also frequently used to
choose the knots. Agarwal and Studden [1] give theoretical asymptotic results on the optimal
number and location of knots for approximation to f in the model (1). Loosely speaking, if
f has two derivatives then the optimal number of knots is of the order of n1/5, so that there
will be many fewer B-splines than data points. Regression splines are easy to compute using
standard regression programs and the B-spline programs given in DeBoor [11], and if the
true f is in the span of the B-splines chosen, then the estimate of f shares all of the usual
properties of least-squares regression estimates. In general, however, the estimates of f may
be biased, with the order of the bias similar to the order of the variance if N is chosen to
minimize mean square error. See Buse and Lim [6], Poirier [53], and Winsberg and Ramsay
[96] for applications of regression splines.
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Figure 1: A convex polyhedron and its B -spline projection.
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3 Smoothing Splines

The other popular spline method for fitting the model (1) is to find f in an appropriate
space of functions to minimize the penalized least-squares (PLS)

1

n

n
∑

i=1

(yi − f(xi))
2 + λJm(f), (2)

where

Jm =

∫ 1

0

f (m)(t)dt,

for some integer m. The minimizer fλ to this problem was obtained by Schoenberg [58].
If there are at least m distinct xi’s, the solution, which is known as a smoothing spline, is
unique and is a unp spline of degree 2m− 1, with knots at distinct data points of x1, . . . , xn.
The smoothing parameter λ controls the trade-off between the fit to the data as measured by
the residual sum of squares and the smoothness, as measured by Jm. For m = 2, then f (2) is
curvature, and a small J2 corresponds to visual, or psychological, smoothness. As λ → ∞,
the solution tends to the polynomial of degree m best fitting the data in a least-squares
sense, and as λ → 0, fλ tends to the unp spline which interpolates to the data.

Figure 2 from Wahba and Wold [90] shows a model function f (dotted line), data gener-
ated according to the model (1), and a smoothing spline fit to the data (solid line) with a
value of λ which is too large. Figure 3 shows the same model f and data, and a smoothing
spline with λ too small. Figure 4 shows the same f and data, and the fitted smoothing
spline with λ chosen by ordinary cross-validation (OCV). OCV involves deleting a data
point and solving the optimization problem with a trial value of λ, computing the difference
between the predicted value and the deleted observation with this trial value of λ, accumu-
lating the sums of squares of these differences as one runs through each of the data points
in turn, and finally choosing the λ for which the accumulated sum is smallest. Generalized
cross-validation (GCV) was developed later by Craven and Wahba [9] and Golub et al. [23],
and is an improvement over OCV both on asymptotic theoretical grounds and computational
ease, although numerical results in an example like the one given can be expected to be quite
similar. Although originally these cross-validation methods for choosing λ were computa-
tionally expensive, fast O(n) transportable code is now readily available for the smoothing
spline with GCV, see the “Algorithms” section below.

4 Choosing between Regression and Smoothing Splines

We make a few remarks on the choice of regression vs. smoothing splines for smoothing
data from the model (1). Asymptotic theoretical convergence rates for the two methods
are the same under the same assumptions (compare Agarwal and Studden [1] and Wahba
[72]), provided the smoothing parameters N and λ are both chosen optimally. For very large
data sets (say n > 1000), the results for data from the model (1) are likely to be practically
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Figure 2: Model function (dashed curve), simulated data (open squares), and smoothing
spline with too large value of λ (solid curve).

Figure 3: Same as Figure 2, except λ is too small.
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Figure 4: Same as Figures 2 and 3, except λ is chosen by OCV.

nearly the same, that is, indistinguishable on an 81
2

′′
× 11′′ plot, and the regression spline

will require less storage to manipulate the results. Similar remarks concerning comparison
of the results hold for medium-to-small sample sizes if the underlying f is close to being
in the span of a small number of B-splines. (Recall that the optimal number of B-splines
is n1/5 under typical circumstances.) However it is likely that for examples like the one
shown, and for example, the multimodal cases in Craven and Wahba [9], the regression
spline with the optimal number of B-splines does not have the resolution to follow local
features that can, in fact, be followed by a smoothing spline. A hybrid approach for very
large data sets has been suggested by Nychka et al. [48], where the variational problem of
(2) is solved in a space spanned by enough B-splines to avoid losing resolution. See also Luo
and Wahba [42]. For estimation of derivatives or other local features such as maxima, the
cross-validated smoothing spline is probably the method of choice, and in fact good results
have been obtained with biomechanical data, which frequently satisfy the assumptions of
model (1) well. See Woltring [97]. Some authors have found the use of regression splines to
be useful as a smoother in such applications as projection pursuit ¡stat05862¿ where a
smoothing operation needs to be repeatedly carried out and sharp detail in the function is
not expected.

7



5 Splines As Bayes Estimates

Smoothing splines can be interpreted as Bayes estimates if one views f as a sample function
from a zero mean Gaussian stochastic process. Loosely speaking, the stochastic pro-

cess can be described as f (m) = b×white noise. Then it can be shown that for each x the
conditional expectation of f(x) given the data y1, . . . , yn is fλ(x) with λ = σ2/nb. See Kimel-
dorf and Wahba [38] and Wahba [74]. It can be seen from these references (and originally
from the work of Parzen [52]) that there is a duality between Bayes estimates given discrete
data on continuous-time stochastic processes and the solution to variational problems like
(2), which extends to a very general class of penalty functionals. In particular, the splines in
the remainder of this article which can be obtained as the solution to a variational problem
also have interpretations as Bayes estimates.

6 Multivariate Splines

There are several generalizations of univariate splines to several variables. The multivariate
B-splines are generalizations of the univariate B-splines, which are piecewise polynomials,
satisfy certain continuity conditions, and have compact support. The thin-plate smoothing
splines generalize the univariate polynomial splines as the solution to a variational problem,
and are popular in meteorology, computational vision, and other applications for smooth-
ing two- and three-dimensional noisy data. They are not piecewise polynomials, however.
The tensor product smoothing splines also generalize the univariate splines as the solution
to a variational problem, and are the foundation for the smoothing spline ANOVA. We will
discuss each of these separately.

7 Multivariate B-Splines

The multivariate B-splines in d variables are piecewise polynomials of degree k − 1, which
are 0 outside a convex polyhedron and positive inside. They can be obtained as projections
of the volume of convex polyhedra in k+ d dimensions onto Euclidean d-space. See DeBoor
[10] and Hollig [29]. Tensor products of B-splines are special cases of multivariate B-splines.
In two dimensions, by a tensor product B-spline we mean a function of two variables, say
x1 and x2 of the form f(x1, x2) = Bi(x1)Bj(x2). The multivariate B-splines have found
applications in computer-aided design and other fields where it is desired to model a smooth
surface in two or three dimensions given exact values of it at a finite number of points.
Tensor products of B-splines have also been used as a basis for bivariate regression where
the data are given on a regular grid.
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8 Thin-Plate Splines

The thin-plate splines are a popular generalization of the unp splines as solutions to a
variational problem. In two dimensions (d = 2), with m = 2, the variational problem
leading to the thin-plate spline is: Find f ∈ H to minimize the PLS

1

n

n
∑

i=1

(yi − f(x1(i), x2(i)))
2 + λJ2

2 (f),

where

J2
2 (f) =

∫ ∞

−∞

∫ ∞

−∞

(f 2
x1 x1

+ 2f 2
x1 x2

+f 2
x2 x2

)dx1dx2.

(3)

H is an abstract function space of functions of two variables for which (3) is finite, defined
in Meinguet [46]. In d dimensions with general m, the variational problem becomes: Find f
in H (a space of functions of d variables) to minimize the PLS

1

n

n
∑

i=1

(yi − f(x1(i), . . . , xd(i)))
2

+λJd
m(f),

(4)

where

Jd
m(f) =

∑

α1+···+αd=m

m!

α1! . . . αd!

×

∫ ∞

−∞

. . .

∫ ∞

−∞

(

∂mf

∂xα1

1 . . . ∂xαd

d

)2

dx1 . . . dxd.

(5)

It is necessary that 2m − d > 0. An explicit representation for fλ, the solution to this
variational problem, was given by Duchon [12] and Meinguet [46], and is discussed further
in a smoothing context by Wahba and Wendelberger [89]. The solution is known to lie in
the span of a certain set of n +m easily generated functions; see the “Algorithms” section
for transportable software. Let xi = (x1(i), . . . , xd(i)), and let ∆ be the Laplacian operator,
that is, ∆ = ∂2/∂x2

1 + · · · + ∂2/∂x2
d. Then fλ has the property that ∆mfλ(x) = 0 for all

x 6= x1, . . . ,xn. This is a generalization of the analogous property of the unp spline in one
variable, namely, ∆mfλ ≡ f

(2m)
λ = 0 for x 6= x1, . . . ,xn, since fλ is a polynomial of degree

2m− 1 in the intervals between the knots. In several dimensions fλ is a linear combination

of

(

d+m− 1
d

)

monomials in the d variables x1, . . . , xd of total degree less than m, and

n other functions each of which is a Green’s function for the mth iterated Laplacian. The
thin-plate spline is also a Bayes estimate, and loosely speaking, one can think of the prior
as f satisfying ∆m/2f = b× white noise. The thin-plate spline appears to be a particularly
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useful tool for smoothing data from diffusion processes and other phenomena that may be
thought of as representing the solution to an elliptic partial differential equation driven by
white noise. The thin-plate spline is also a special case of an estimate of one of the “intrinsic
random functions” of Matheron [44]; see Duchon [12]. The integral over d-space in (5) can
be replaced by an integral over a bounded region Ω containing the data points (see Dyn
and Wahba [13]) and then the minimizer will satisfy Neumann boundary conditions on the
boundary of Ω. For d = 1, the solution inside Ω coincides with the unp spline previously
described, but for d > 1, the minimizer of (4) satisfies the Neumann boundary conditions
only at ∞, and the two multivariate thin-plate splines will be different.

9 Tensor Product Smoothing Splines

The space of functions of one variable referred to in connection with the univariate smoothing
spline is known in the approximation theory literature as Wm

2 and is a reproducing kernel
Hilbert space of functions with square integrable mth derivative. To smooth functions of
two variables, one can define a tensor product space H = Wm

2 ⊗Wm
2 which consists of sums

and limits of sums of functions of the form f(x1, x2) = f1(x1)f2(x2) with f1 and f2 in Wm
2

and find f ∈ H to minimize the PLS

1

n

n
∑

i=1

(yi − f(x1(i), x2(i)))
2 + λJ(f),

where now

J(f) =

∫ 1

0

∫ 1

0

(

∂2mf

∂xm
1 ∂x

m
2

)2

dx1dx2

+ other terms.

The other terms involve lower-order derivatives and guarantee that the solution will be
unique under general conditions. Generalizations to d variables can be made. See Mansfield
[43], Wahba [73], and Wahba [85]. These splines are piecewise polynomials in d variables,
where the boundaries of the pieces are horizontal and vertical lines drawn through the data
points. These splines have interested statisticians because of their role in the development
of the smoothing spline ANOVA which is described in Section 14.

10 Splines on the Circle and the Sphere

Splines on the circle can be obtained by supposing that f is periodic with a representation
of the form:

f(x) = a0 +
∞
∑

ν=1

aν cos 2πνx+
∞
∑

ν=1

bν sin 2πνx,
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∞
∑

ν=1

(a2ν + b2ν)(2πν)
2m < ∞,

and finding f to minimize the PLS

1

n

n
∑

i=1

(yi − f(xi))
2 +

∫ 1

0

(f (m)(u))2du.

A closed-form expression for fλ as a piece-wise polynomial which satisfies m periodic bound-
ary conditions may be obtained by using the fact that

∞
∑

ν=1

(cos 2πνz cos 2πνx

+sin 2πνz sin 2πνx)(2πν)−2m

=
∞
∑

ν=1

cos 2πν(z − x)(2πν)−2m

and this latter infinite series has a closed-form expression in terms of the 2mth Bernoulli

polynomial; see Craven and Wahba [9].
The Bayes model here is

f(x) = a0 +
∞
∑

ν=1

(αν cos 2πνx+ βν sin 2πνx),

where the αν , βν are independent, zero mean normal random variables with Eα2
ν = Eβ2

ν =
b(2πν)−2m. This Bayes model also can be thought of as satisfying f (m) = b× white noise,
along with the periodic boundary conditions. A periodic smoothing spline with equally
spaced data points can also be shown to be a kernel estimate. With unequally spaced data
points in the general case there is an approximately equivalent variable kernel estimate;
see Silverman [64].

The spherical harmonics Yls, s = −l, . . . , l, l = 0, 1, . . ., play the same role on the sphere
as sines and cosines on the circle. See Sansone [57] for more on spherical harmonics. The
spherical harmonics are the eigenfunctions of the surface Laplacian ∆ on the sphere, with

∆Yls = −l(l + 1)Yls,

which is analogous to
d2

dx2
cos 2πνx = −(2πν)2 cos 2πνx.

Splines on the sphere are defined as the solution to the variational problem: find f ∈ H (an
appropriate space) to minimize the PLS

1

n

n
∑

i=1

(yi − f(Pi))
2 + λ

∫

S

(∆m/2f)2dP,
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where S is the sphere, and P is a point on the sphere. A closed-form expression is available
for fλ in the cases m = 2, 3 (Wendelberger [95]). Approximate closed-form expressions may
be found in Wahba [76, 77]. The corresponding Bayes model is

f(Pi) = θ +
∞
∑

l=0

l
∑

s=−l

flsYls(Pi),

where E[f 2
ls] = b[l(l + 1)]−m. This can also be viewed as ∆m/2f = b× white noise. Splines

on the sphere have a number of interesting applications in geophysics and meteorology; see
for example Shure et al. [62]. Vector smoothing splines can also be defined on the sphere
and are useful in estimating horizontal vector fields from discrete, noisy measurements on,
for example, the horizontal wind field, the magnetic field, etc.; see Wahba [79].

11 Reproducing Kernel Hilbert Space and General Smooth-

ing Spline Models

The polynomial smoothing spline, thin-plate spline, spline on the circle and spline on the
sphere share a common feature: they are all solutions to the PLS based on noisy data
from model (1) in some well-defined model spaces. The domains of these spline functions
are different and model spaces are chosen accordingly with suitable smoothness properties.
Specifically these model spaces are reproducing kernel Hilbert spaces ¡stat00479¿

(RKHS) (see Wahba [86], Gu [19] and Wang [92]). For example, the domain and model
space for polynomial smoothing splines are [0, 1] and Wm

2 respectively. This section presents
a general smoothing spline model with a RKHS on an arbitrary domain as the model space.
The general smoothing spline model provides a unified framework for the developments of
theory, inference and software.

A general smoothing spline model assumes that data are generated from model (1) where
the function f belongs to a RKHS H defined on an arbitrary domain X . With a well-defined
quadratic functional penalty J(f), the model space is decomposed into H = H0 ⊕H1 where
H0 consists of functions with J(f) = 0 (i.e. not penalized, see Gu [19]). Furthermore
J(f) = ||P1f ||

2 where P1 is the orthogonal projection operator onto H1. Usually H0 is a
finite dimensional space with basis functions denoted as φ1, . . . , φp. Both H0 and H1 are
RKHS’s with their reproducing kernels (RK) denoted as R0 and R1 respectively.

The smoothing spline estimate fλ of f is the minimizer in H of the PLS

1

n

n
∑

i=1

(yi − f(xi))
2 + J(f). (6)

The representer theorem (Kimeldorf and Wahba [38] and Wahba [86]) states that, when
T = {φν(xi)}

n
i=1

p
ν=1 is of full column rank, the unique minimizer of (6) is given by

fλ(x) =

p
∑

ν=1

dνφν(x) +
n
∑

i=1

ciξi(x), (7)
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where ξi(x) = R1(xi, x) are called representers, and ci’s and di’s are coefficients. Computation
of the smoothing spline estimate will be discussed in the “Algorithms” section below.

The prior of the corresponding Bayes model for the general spline model is

F (x) =

p
∑

ν=1

ανφν(x) + b
1

2U(x),

where α1, . . . , αp
iid
∼ N(0, κ), U(x) is a zero-mean Gaussian stochastic process with covariance

function R1(x, z), and αν ’s and U(x) are mutually independent. With λ = σ2/nb, the
posterior mean limκ→∞ E(F (x)|y) = fλ(x) (Wahba [86]). Therefore the smoothing spline
estimate is a Bayes estimate with an improper prior on elements in the null space H0.

12 Choosing The Smoothing Parameter, Confidence

Intervals, Diagnostics and Hypothesis Tests

GCV appears to be the most popular method for choosing the smoothing parameter λ from
the data in the context of smoothing splines, for various theoretical and practical reasons; see
Craven and Wahba [9], Li [39], Speckman [65, 66], Utreras [68], Wahba [72, 83], and Wahba
and Wang [87]. GCV can be obtained from OCV by an invariance argument by rotating the
system to a standard coordinate system, doing OCV, and rotating back. (Ordinary leaving
out one is not invariant under rotations of the observation coordinate system.)

Let A(λ) be the influence matrix associated with fλ, that is, A(λ) satisfies






fλ(x1)
...

fλ(xn)






= A(λ)







y1
...
yn






.

An explicit representation of A in the unp case can be found in Craven and Wahba [9], and
in general in Wahba [86]. The GCV estimate λ̂ of λ is obtained as the minimizer of

V (λ) =
(1/n)||(I − A(λ))y||2

((1/n)Tr(I − A(λ)))2
.

An alternative approach for choosing the smoothing parameter is the generalized maximum
likelihood (GML) method that estimates λ as the minimizer of

M(λ) =
yT (I − A(λ))y

[det+{(I − A(λ))}]
1

n−p

,

where det+ represents the product of the nonzero eigenvalues. The GML criterion may
be derived using the connection between smoothing spline models and Bayes models, or the
connection between smoothing spline models and linear mixed effects ¡stat05862¿ models
(see Wahba [86] and Wang [91]).
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A(λ) has many of the properties of the influence or hat matrix in ordinary least-

squares regression, and this can be used to build a theory of confidence intervals and
spline regression diagnostics.

Trace A(λ) can be viewed as the “degrees of freedom for signal.” The posterior covariance
matrix of (fλ(x1), . . . , fλ(xn))

T is σ2A(λ) and this fact has been used to construct Bayesian
confidence intervals based on σ̂2A(λ̂), where σ̂2 = RSS(λ̂)/Tr(I − A(λ̂)). See Wahba [80].
These Bayesian confidence intervals appear to have useful frequentist properties if interpreted
“across the function,” rather than pointwise; see Hall and Titterington [24], Nychka [47],
Silverman [64], and Wahba [78]. Note that Bayesian confidence intervals can be constructed
for the function f as well as its projections onto H0 and H1 at any point in the domain.
Details can be found in Wang [92].

Eubank [17] has proposed methods for detecting outliers and influential observations,
by exploiting the influence matrix analogy. See also Silverman [64]. For example, letting
ǫj(λ̂) be the jth residual, it is suggested that the quantities

Tj = ǫj(λ̂)/{σ̂(1− ajj(λ̂))}
1/2

be called “studentized residuals” and an observation be considered an outlier if |Tj| exceeds
an appropriate critical value from a Student’s t-distribution with approximate degrees

of freedom Tr(I − A(λ̂)).
Nonparametric models may be used to check whether there is a significant departure

from a parametric model. Wahba [86] considered the following hypothesis for the general
spline model

H0 : f ∈ H0, H1 : f ∈ H and f /∈ H0.

For the polynomial smoothing spline with H = Wm
2 , H0 corresponds to f ∈ πm−1. Cox,

Koh, Wahba and Yandell [8] proposed the locally most powerful test ¡stat05862¿, and
Wahba [86] proposed GML and GCV tests. See Liu and Wang [40] for a comparison of these
tests, and Liu, Meiring and Wang [41] for an extension to non-Gaussian data.

13 Partial Splines

Consider the model

yi = f(xi) +

q
∑

j=1

βjΦj(xi, zi) + ǫi,

where xi ∈ X , zi = (z1(i), . . . , zd(i))
T , f belongs to a RKHS H, and Φj’s are known functions

of x and the concomitant variables z. An estimate of β = (β1, . . . , βq)
T and f may be

obtained by finding f ∈ H and β ∈ Eq to minimize the PLS

1

n

n
∑

i=1

(

yi − f(xi)−

q
∑

i=1

βjΦj(xi, zi)

)2

+J(f).
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Let Sn×q be the matrix with i, jth entry Φj(xi, zi). If the n × (p + q) matrix (T : S) is of

full column rank, then there will be a unique minimizer (fλ, β̂). Such models are extremely
flexible and are attractive in a variety of applications; see Engle et al. [16], Ansley and
Wecker [2], Shiau et al. [61], and Wahba [81] and references cited therein. Properties of the
estimate of β have been studied by many authors; see, for example, Heckman [27] and Rice
[56].

14 Smoothing Spline ANOVA

One way to generalize univariate splines is to consider tensor product model spaces as illus-
trated in the section on tensor product of polynomial smoothing splines. Analogous to the
classical multi-factor ANOVA, a smoothing spline ANOVA (SS ANOVA) decomposes a mul-
tivariate function (or equivalently a tensor product space) into main effects and interactions
which facilitates model selection and interpretation.

Consider model (1) where f is a function of d variables x1 ∈ X1, . . . , xd ∈ Xd, and
X1, . . . ,Xd are arbitrary sets. Let x = (x1, . . . , xd) and X = X1×· · ·×Xd. The construction
of an SS ANOVA model starts with a tensor product space H(1) ⊗ · · · ⊗ H(d) on X where
H(k) is a RKHS for f as a function of xk. If each space H(k) contains constant functions,
then f can be decomposed into

f = µ+
d
∑

k=1

fk(xk) +
∑

k<l

fkl(xk, xl) + . . .+ f1...d(x1, . . . , xd), (8)

where µ represents the grand mean, fk(xk) represents the main effect of xk, fkl(xk, xl) repre-
sents the two-way interaction between xk and xl, and the remaining terms represent higher-
order interactions. When all Xk’s are finite discrete sets, the above decomposition corre-
sponds to the classical multi-factor ANOVA. SS ANOVA is a general modeling technique
rather than some specific decompositions. Different forms of SS ANOVA decompositions
may be constructed for different purposes. The decomposition (8) is perhaps the simplest
and most common form of the SS ANOVA decomposition. Other forms of decompositions
can be found in Wang [92].

SS ANOVA decomposes the tensor product space H(1) ⊗ · · · ⊗H(d) into some orthogonal
subspaces (Wang [92]). The number of subspaces increases exponentially as the dimension
d increases. To tackle this curse of dimensionality problem ¡stat05862¿, high-order
interactions are often removed from the model space for ease of interpretation. A model
containing any subset of subspaces of the SS ANOVA decomposition is an SS ANOVA
model. An SS ANOVA model with main effects only corresponds to the well-known additive

model ¡stat05862¿ (Hastie and Tibshirani [25]). For a given SS ANOVA model, after
reorganization the model space can be written as

M = H0 ⊕H1 ⊕ · · · ⊕ Hq, (9)

15



where H0 is a finite dimensional space consisting of functions which are not going to be
penalized, and H1, . . . ,Hq are orthogonal RKHS’s with RKs Rj for j = 1, . . . , q. The
estimate fλ of f is the minimizer in M of the PLS

1

n

n
∑

i=1

(yi − f(xi))
2 +

q
∑

j=1

λj‖Pjf‖
2,

where Pj is the projector operator onto Hj and λj’s are smoothing parameters. The repre-
senter theorem still holds. The estimate fλ is again a Bayes estimate with an improper prior
on elements in the null space H0. Bayesian confidence intervals may be constructed for the
overall function f as well as its components at any point in the domain. The smoothing
parameters can be selected using the GCV or GML method. See Gu [19] and Wang [92] for
details.

One major issue when applying the SS ANOVA methodology is the selection of the model
space M since the number of subspaces increases quickly. One may select M for ease of
interpretation and/or using prior knowledge. Bayesian confidence intervals for components
may be used to remove “insignificant” ones. Gu [19] developed geometric diagnostic tools for
the selection of components based on their estimates. Replacing the squared norm ‖Pjf‖

2

by the norm ‖Pjf‖ in the PLS, Zhang and Lin [100] developed the component selection and
smoothing operator (COSSO) method for simultaneous selection and estimation of an SS
ANOVA model. See also Chen [7].

15 Splines As Penalized Likelihood Estimates

All smoothing spline and SS ANOVA models in the previous sections assume data are gener-
ated from the nonparametric regression model (1) where the main interest is to estimate the
mean function f . There are many other statistical models where the likelihood depends on
a function f and the main interest is to estimate f nonparametrically. Suppose that f ∈ M
where M is a RKHS. Then a penalized likelihood (PL) estimate of f is the minimizer in
M of

−l(f) + λJ(f), (10)

where l(f) is the log-likelihood. Many problems fall under the framework of penalized
likelihood estimation. We discuss a few of them below.

Suppose independent observations y1, . . . , yn are generated from a distribution in the
exponential family ¡stat05862¿ with density

g(yi|xi) = exp

{

yif(xi)− b(f(xi))

ai(φ)
+ c(yi, φ)

}

, i = 1, . . . , n,

where xi’s are observations of d independent variables x1, . . . , xd, and φ is a dispersion
parameter. A canonical link is assumed for simplicity. A generalized linear model

¡stat05752¿ assumes that f(x) = β0 + β1x1 + . . . + βdxd (McCullagh and Nelder [45]).
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For flexibility, the multivariate function f may be modeled nonparametrically using a model
space based on an SS ANOVA decomposition. Then the model space M is given by
(9). The function f can be estimated using the PL (10) where the log-likelihood l(f) =
∑n

i=1{[yif(xi)−b(f(xi))]/ai(φ)+c(yi, φ)}. The representer theorem still holds. The smooth-
ing parameters can be estimated using the GCV, GML or unbiased risk method. See Wahba
et al [88].

For density estimation, suppose y1, . . . , yn are iid random samples from a density function
g(y) and the goal is to estimate g(y) nonparametrically. Denote the domain of y as Y and
assume that g(y) > 0 on Y . To enforce the positivity and unity constraints of a density
function, Gu and Qiu [22] proposed to model the logistic transformation f that satisfies
g = ef/

∫

Y
efdy. Free of constraints, Gu and Qiu [22] modeled f using a RKHS with constant

functions being removed for identifiability. The function f was estimated using the PL (10)
where the log-likelihood l(f) =

∑n
i=1 f(yi)−n log

∫

Y
ef(y)dy. Since the log-likelihood involves

an integral with respect to y, the minimizer of the PL does not fall in a finite dimensional
space. Nevertheless, an approximate solution by minimizing the PL in a finite dimensional
space spanned by representers maintains the same convergence rate. See also Silverman [63].

For conditional density estimation, suppose (xi, yi) for i = 1, . . . , n are independent
observations from a conditional density g(y|x) and the goal is to estimate g(y|x) nonpara-
metrically. Let f(x, y) be the logistic transformation of g(y|x). Gu [20] modeled f using an
SS ANOVA model f(x, y) = f2(y) + f12(x, y) where the constant and the main effect of x
are removed for identifiability. Again, the function f was estimated using the PL (10) where
the log-likelihood l(f) =

∑n
i=1 f(xi, yi)− n log

∫

Y
ef(xi,y)dy.

Other applications of penalized likelihood estimation include hazard rate ¡stat05862¿

regression (Gu [21]), accelerated failure time models stat05862 (Gu [19]), semi-parametric
nonlinear mixed effects models ¡stat05862¿ (Ke and Wang [35]), and generalized non-
parametric mixed effects models (Karcher and Wang [34]).

16 Splines with Linear Inequality Constraints

Splines satisfying a family of linear inequality constraints can be found as the solution to
the problem: Find f ∈ H to minimize

1

n

∑

(yi − f(ti))
2 + λJ(f)

subject to
ai ≤ Lif ≤ bi,

where Li is a bounded linear functional. Included are discretized positivity and monotonicity
constraints; see Utreras [69] and Villalobos and Wahba [71].
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17 Histosplines

Histosplines is the name given to splines which are constructed to have a volume matching
or volume smoothing property. They were introduced into the statistical literature in the
context of density estimation by Boneva et al. [5]. They constructed a univariate spline
which had the volume matching property

∫ xi+1

xi

f(x)dx = ni/n,

where ni is the number of observations from a random sample of size n which fell in the bin
with boundaries xi and xi+1. Volume smoothing histosplines arise when one observes

yi =

∫

Ωi

fdt+ ǫi

and chooses f as the minimizer of

1

n

n
∑

i=1

(

yi −

∫

Ωi

f(t)dt

)2

+ λJd
m(f). (11)

See Wahba [77] and Dyn et al. [14] and references cited therein.

18 Linear and Nonlinear Functionals

Wahba [86] considered the following model

yi = Lif + ǫi, i = 1, . . . , n, (12)

where Li’s are known bounded linear functionals. This model allows indirect observations of
f through linear functionals. One example is Fredholm’s integral equation of the first kind

yi =

∫

K(xi, s)f(s)ds+ ǫi, i = 1, . . . , n, (13)

where K is a known function. In this case Lif =
∫

K(xi, s)f(s)ds. Another example is
Lif = f ′(xi) when observations are made on the first derivative. See O’Sullivan [49] for
more examples. The standard nonparametric regression model (1) is a special case with
Lif = f(xi) and Li in this case is called the evaluational functional.

The goal is to estimate the function f nonparametrically from noisy data. Suppose that
f belongs to a RKHS H. Then the smoothing spline estimate fλ of f is the minimizer in H
of the PLS

1

n

n
∑

i=1

(yi − Lif)
2 + λJ(f).
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The representer theorem still holds (Wahba [86]).
Sometimes observations of f are made indirectly through nonlinear functionals. Examples

in remote sensing and reservoir modeling can be found in O’Sullivan and Wahba [51], Wahba
[84] and O’Sullivan [49]. There are often constraints such as positivity and monotonicity to
the function f in a nonparametric regression model and these constraints may be enforced
by nonlinear transformations. For example, in many situations the function f in model
(13) is known to be positive (Vardi and Lee [70]). With the exponential transformation
f = exp(g) the problem reduces to the estimation of g which is constraint free and observed
through nonlinear functionals. When a function f is strictly increasing, one may use the
transformation f(x) = f(0) +

∫ x

0
exp{g(s)}ds to enforce the monotonicity constraint (Wang

[92]).
Ke and Wang [36] considered the following nonparametric nonlinear regression model

yi = Ni(f1, . . . , fr) + ǫi, i = 1, . . . , n, (14)

where fk belongs to an RKHS Hk on an arbitrary domain Xk for k = 1, . . . , r, and Ni’s
are known nonlinear functionals on H1 × · · · × Hr. Model (14) contains both model (12)
and the SS ANOVA model as special cases. Assume that Hk = Hk0 ⊕ Hk1 where Hk0 =
span{φk1, . . . , φkpk} consists of functions which are not penalized. The smoothing spline
estimates of f1, . . . , fr are minimizers of the PLS

1

n

n
∑

i=1

(yi −Ni(f1, . . . , fr))
2 +

r
∑

k=1

λk‖P1kfk‖
2,

where P1k is a projection operator from Hk onto H1k, and λk’s are smoothing parameters.
For a special case when Ni depends on fk’s through a nonlinear function and some

bounded linear functionals, Ke and Wang [36] showed that the representer theorem still
holds. In general the solution to the PLS does not fall in a finite dimensional space. Ke and
Wang [36] extended the Gauss-Newton method to infinite dimensional spaces and used the
Gauss-Seidel algorithm to estimate each function iteratively.

19 Semiparametric Models

A semiparametric model contains both parametric and nonparametric components. Often in
practice there is enough knowledge to model some components parametrically while leaving
some uncertain and/or nuisance component unspecified. The partial spline is a semipara-
metric model.

Wang [92] considered the following semiparametric linear regression model

yi = sTi β +
r
∑

k=1

Lkifk + ǫi, i = 1, . . . , n, (15)

where s is a q-dimensional vector of independent variables, β is a vector of parameters, Lki

are bounded linear functionals, and fk’s are unknown functions. In addition to the partial
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spline, model (15) contains the varying-coefficient model (Hastie and Tibshirani [26]) and
the functional linear model (Ramsay and Silverman [55]) as special cases. A vector spline
model may also be represented as a special case of model (15) (Wang [92]).

Assume that fk belongs to a RKHS Hk on an arbitrary set Xk, and Hk = Hk0 ⊕ Hk1

where Hk0 = span{φk1, . . . , φkpk} consists of functions which are not penalized. The PLS
estimates of β and f1, . . . , fr are minimizers of

1

n

n
∑

i=1

(yi − sTi β −
r
∑

k=1

Lkifk)
2 +

r
∑

k=1

λk‖P1kfk‖
2,

where P1k is a projection operator from Hk onto H1k, and λk’s are smoothing parameters.
Again the representer theorem holds.

To allow for nonlinear dependence on both parameters and nonparametric functions,
Wang and Ke [93] considered the following semiparametric nonlinear regression model

yi = Ni(β,f) + ǫi, i = 1, . . . , n, (16)

where β is a vector of parameters and f = (f1, . . . , fr) are unknown functions. Model (16)
contains many existing statistical models such as nonlinear regression, nonlinear nonpara-
metric regression, projection pursuit, and single and multiple index models as special cases.
Its extension to clustered data also contains shape invariant models as a special case.

With the same assumptions for model spaces of fk’s as above, the PLS estimates of β
and f are minimizers of

1

n

n
∑

i=1

(yi −Ni(β,f))
2 +

r
∑

k=1

λk‖P1kfk‖
2.

Wang and Ke [93] developed an algorithm using Gauss-Newton and Gauss-Seidel methods.

20 Algorithms and Software

This is an area of active research and we only briefly mention a few results. In one dimension
the unp spline has special structure which allows fast algorithms for computing both the
spline and the GCV estimate of λ. Transportable code CUBGCV based on the fast algorithm
proposed by Hutchinson and DeHoog [32] may be found in Hutchinson [31]; this algorithm
with some additions is incorporated in GCVSPL of Woltring [98]. Literature connecting the
Markov properties of the unp spline and its relationship to Kalman filtering has suggested
fast algorithms; an early reference is Weinert and Kailath [56]. Older code (ICSSCV) for
the unp spline with the GCV estimate of λ can be found in the IMSL library [4]. In more
than one variable, the special structure of the one-dimensional case does not appear to exist
and more general methods are required. The bidiagonalization approach of Elden [15] and
the truncated singular value decomposition ¡stat02351¿, Bates and Wahba [3] may
be used to speed the calculation. Transportable code for thin-plate splines using thin-plate
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basis functions is available in Hutchinson [30], and for partial thin-plate splines and general
problems using the truncated singular value decomposition, in GCVPACK (Bates et al. [33]).
GCVSPL, GCVPACK, code for generating B-splines based on DeBoor [11] and other spline
code may be obtained via an electronic mail daemon on the arpanet by writing netlib@anl-
mcs.arpa. The message “send index” will cause instructions for the use of the system to be
returned to the sender.

For models under the framework of RKHS, either based on the representer theorem or
approximation, the spline estimates are usually represented as linear combinations of basis
functions in a finite dimensional space not subject to penalty and representers. Consequently
the estimation involves computation of coefficients of the linear combinations and smoothing
parameters using the GCV or GML criterion. For example, the estimate of the general
smoothing spline model is given in (7) where the coefficients c = (c1, . . . , cn)

T and d =
(d1, . . . , dp)

T are solutions to

(Σ + nλI)c+ Td = y,

T Tc = 0.

Algorithms can be found in Gu [19] and Wang [92]. Fitting with all representers usually
requires O(n3) operations. Kim and Gu [37] showed that a random subset of n representers
of size q = o(n) can achieve the same convergence rate. The resulting algorithms require
O(qn2) operations. Fitting spline models with massive data requires more research. See
Helwig and Ma [28].

Several R packages have been developed for fitting various spline models. The ASSIST
package (Wang [92]) fits (i) general spline models for independent and correlated Gaussian
data, and for independent binomial, Poisson and Gamma data; (ii) nonparametric nonlin-
ear regression models; (iii) semiparametric linear and nonlinear regression models; and (iv)
semiparametric linear and nonlinear mixed effects models. Some well known models that
may be fitted by functions in the ASSIST package are polynomial splines, periodic splines,
spherical splines, thin-plate splines, l-splines, generalized additive models, SS ANOVA mod-
els, SS ANOVA mixed effects models, projection pursuit models, multiple index models,
varying coefficient models, functional linear models, and self-modeling nonlinear regression
models. The gss package (Gu [19]) fits density and conditional density functions, hazard
rate regression and accelerated failure time models, in addition to smoothing spline and SS
ANOVA regression models. The fields package (Furrer, Nychka and Sain [18]) fits cubic
spline, thin-plate spline and other spatial models. The mgcv package (Wood, [99]) may also
be used to fit many spline models.

21 Related Articles

See also Curve Fitting; Free-Knot Splines; Graduation, Whittaker-Henderson;
Interpolation; Maximum Penalized Likelihood Estimation; Moving Averages;
Nonparametric Regression; Osculatory Interpolation; Regression; Regulariza-

tion Methods; Scatterplot Smoothers; Semiparametric Regression; Smoothing;
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Smoothing in Environmental Epidemiology; Smoothness Priors; Splines in Non-

parametric Regression; Spline Smoothing.
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