Regarding Item 2. in hw1:

2. by lecture 5 Riesz and Sz.Nagy (RN), pgs 242-246, statement of the Mercer-Hilbert-Schmidt Theorem, in .../pf2/riesz.nagy.pdf.

The Mercer-Hilbert-Schmidt Theorem is on pg 243 of the file in pdf2/riesz.nagy

Recall that the eigenvalue eigenvector decomposition of a positive definite NXN matrix looks like

$$\Sigma = \Gamma D \Gamma^T \tag{1}$$

where Γ is an orthogonal matrix of eigenvectors and D is a diagonal matrix of eigenvalues. Convince yourself that if instead of an $N \times N$ matrix, we had a kernel $K(s,t), s, t \in T$, where K satisfies the hypotheses of the Mercer-Hilbert-Schmidt Theorem, then the Mercer-Hilbert-Schmidt Theorem is a generalization

of the eigenvalue-eigenvector decomposition, generalizing from $1, 2, \dots N$ to \mathcal{T} .

Hint: The elements $\sigma_{i,j}$ of Σ can be rewritten as

$$\sigma_{i,j} = \sum_{\nu=1}^{N} \lambda_{\nu} \gamma_{\nu}(i), \gamma_{\nu}(j)$$
 (2)

where the λ_{ν} and the γ_{ν} are the eigenvalues and eigenvectors of Σ . Note: RN use "characteristic values" for "eigenvalues"