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This course is about statistical model building and supervised

machine learning, based primarily on the regularization class of

statistical models. We mainly consider reproducing kernel Hilbert

space methods (a.k.a. “kernel methods”), but also look at the

LASSO (l1) class of methods. We will be concerned with model

tuning, primarily based on crossvalidation based methods; variable

selection methods, and methods for combining various kinds of

information.
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Regularization Class of Statistical Models

• y ∈ Y: The observations, y1, · · · , yn.

• x ∈ X : The attribute vectors, x(1), · · · , x(n). (sometimes

t ∈ T .

• f ∈ H: The model, relates x ∈ X to y ∈ Y. H is the class of

functions in which f is to be found.

• C(y, f): The cost-measures goodness of fit of f

• Jλ(f): Penalty functional on f , constrains complexity/degrees

of freedom of the model.

The model f is found as the solution to: min f ∈ H:

n∑
i=1

C(yi, f(x(i)) + Jλ(f).

λ controls the tradeoff between fit and complexity.
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One simple example leads to the cubic smoothing spline.

• y a real number.

• x ∈ [0, 1].

• f ∈W 2
2 (Sobolev space of functions with square integrable

second derivative).

• C(y, f) = (y − f(x))2.

• Jλ(f) =
∫ 1

0
(f ′′(x))2dx.
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Find f ∈Wm
2 [0, 1] to minimize

1

n

∑(
yi − f(t(i))

)2
+ λ

∫ 1

0

(f (m)(t))2dt.

λ is known as the smoothing parameter or, alternately in more

complex models as a tuning parameter.
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Figure 1: Cubic smoothing spline (m = 2) with three different

choices of smoothing parameter. λ too small, λ too large, λ just

right (chosen by GCV)

.
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The domain X may be almost anything. When we mean a general

domain, we may switch from x ∈ X to t ∈ T .

f(t), t ∈ T T = (1, 2, . . . , N)

T = (. . . ,−1, 0, 1, . . .)

T = [0, 1]

T = Ed (Euclidean d-space)

T = S (the unit sphere)

T = S ⊗ [0, 1] (the atmosphere)

T = S ⊗ [0, 1],S ⊗ [0, 1], · · · ,S ⊗ [0, 1]

T = vector of SNPs

...
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Cost Functions C(y, f)

(Univariate)

Regression:

Gaussian data (y − f)2

Bernoulli, f = log[p/(1− p)] −yf + log(1 + ef )

Other exponential families other log likelihoods

Data with outliers robust functionals

Quantile functionals ρq(y − f)

Classification: y ∈ {−1, 1}
Support vector machines (1− yf)+, (τ)+ = τ , τ ≥ 0, 0 otherwise

Other ”large margin classifiers” e−yf and other functions of yf

Multivariate (vector-valued y) versions of the above.
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Penalty Functionals Jλ(y, f)

Quadratic (RKHS) Penalties:

x ∈ T , some domain, can be very general.

f ∈ HK , a Reproducing kernel Hilbert Space

(RKHS) of functions, characterized by some

positive definite function K(s, t), s, t ∈ T . λ‖f‖2HK
, etc.

lp Penalties:

x ∈ T , some domain, can be very general.

f ∈ span {Br(x), r = 1, · · · , N},
a specified set of basis functions on T .
f(x) =

∑N
r=1 crBr(x) λ

∑N
r=1 |cr|p

λ→ (λ1, · · · , λq), Combinations of RKHS and lp penalties.
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Types of information:

1. Noisy values of point functionals

yi = f(ti) + εi, i = 1, · · · , n, εi ∼ N (0, σ2)

2. Values of derivatives, integrals, and other bounded linear

functionals

yi = f (j)(ti) + εi

yi =
∫
K(ti, f(s)ds) + εi

yi = Lif + εi

3. Penalized GLIM

yi ∼ Ff(ti),∼ FLif

Ex: Ff(ti) Poisson with mean Λi = f(ti)

Ex: Ff(ti) Bernoulli B(1, pi),

with f(ti) = log[pi/(1− pi)] = log odds ratio a.k.a logit
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Bernoulli data: The goal is to estimate f(t), and then recover

p(t) = probability of outcome 1, given t.

4. Categorical information

{yi, ti}, yi = 1, 2, ..., k classes.

The goal is to build a classification model.

5. Noisy dissimilarity information

dij = dissim(Object i, Object j)

From this information, embed the (training) objects in a

Euclidean space, then build models using the Euclidean

coordinates as attributes. Classification of protein sequences,

incorporation of pedigree information in models.
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6. Examining independence of xA ∈ XA = Ep and xB ∈ XB = Eq

nonparametrically using only pairwise distances (Distance

Correlation)

Distance Correlation is based only on |xA(i)− xA(j)| and

|xB(i)− |xB(j)|, i, j = 1 · · ·n allowing independence tests

between variables for which only pairwise distances are known.

11



The course has five themes

1. Unified approach to the estimation of functions and the

building of statistical/learning models, given various kinds of

observations, via regularization methods. Tuning and variable

selection included.

2. Theoretical properties.

3. Numerical methods for implementation.

4. Use of software (a) to study properties of the method by Monte

Carlo methods and (b) to analyze data.

5. Applications in risk factor estimation, machine learning and

classification, ill posed inverse problems, protein sequence

analysis, extremely large SNP sequence analysis, meteorological

data analysis, others.. .
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Examples:

T = E2 t = (x1, x2)

yi = f(x1(i), x2(i)) + εi

Find f ∈ X to minimize

1

n

n∑
i=1

(
f(x1(i), x2(i))− yi

)2
+

λ

∫∫ ∞
−∞

f2x1x1
+ 2f2x1x2

+ f2x2x2
dx1dx2

Leads to thin plate splines of dimension 2 and order 2.
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Figure 2a: Thin plate spline demo. Top: True surface.
Bottom: The observations.

27

Figure 2a: Thin plate spline demo. Top: True surface.
Bottom: The observations.

27

Figure 2b. Top: fλ with λ too large. Bottom: fλ with λ

too small.
28

Figure 2b. Top: fλ with λ too large. Bottom: fλ with λ

too small.
28

Left to right and top to bottom: The actual surface,
the data, λ too big, λ to small.
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Figure 2a: Thin plate spline demo. Top: True surface.
Bottom: The observations.

27

Figure 2c. fλ̂ with λ estimated by GCV.

29

Left to right: The actual surface (again), the esti-
mate with λ chosen by GCV.
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T = S sphere (500 mb height, head)

t = (λ, φ) lat. long.

1

n

n∑
i=1

(
f(λ(i), φ(i))− yi

)2
+ λ

∫
S

(∆mf)2dP

∆f =
1

sin2 λ
fφφ +

1

sinλ
(sinλ fλ)λ

when T = E2, ∆f = fx1x1
+ fx2x2

Integral Equations

yi =

∫
K(t(i), s, f(s))ds+ εi

(possibly nonlinear)

Satellite Tomography; K involves the radiative transfer equation

and the ith filter bandpass
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Partial Spline Models (a.k.a Mixed Effect Models)

yi =
∑

θjφj(t(i), zi)︸ ︷︷ ︸
parametric

+ f(t(i))︸ ︷︷ ︸
smooth

+εi

semi-parametric

(i) Example: Electricity demand—smooth in temperature, linear

in price, income, etc

(ii) To model jumps and breaks in images (intervention splines)
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ANOVA In Function Spaces

model response as a function of several variables:

yi︸︷︷︸
degree of

retinopathy

= f(x1(i)︸ ︷︷ ︸
dur

, x2(i)︸ ︷︷ ︸
gly

, x3(i)︸ ︷︷ ︸
bmi

) + εi

ANOVA functional decomposition

f(t) = µ+
∑
α

fα(xα) +
∑
α<β

fαβ(xα, xβ) + . . .

yi︸︷︷︸
lake

acidity

= f( x1(i)︸ ︷︷ ︸
calcium
content

, x2(i)︸ ︷︷ ︸
lat.
long.

)

f(calcium, lat.− long.) = f1(calcium) + f2(lat.− long.)
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Global Historical Climate data

Monthly mean temperatures from ∼ 1700 stations

winter–Dec Jan Feb 1961–1990

x = year, P = lat.-long.

f(x, P ) = µ + dφ(x) + g1(x)

+ g2(P ) + gφ,2(P )φ(x) + g12(x, P )

yi = f(xi, P (i)) + εi

φ(x) = x− 1

2
time trend scaled to [0, 1]∫

φ(x) =

∫
g1(x)dx =

∫
g2(P )dP = 0∫

gφ,2(P )dP = 0∫
g12(x, P )dx = 0
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Yearly average winter temperatures (oC): (a) Historical
From Chiang, Wahba, Tribbia and Johnson TR 1010,
(1999)

23

Yearly average winter

temperature (degrees Centigrade). From Chiang, Wahba, Tribbia

and Johnson TR1010. (1999)
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Non-Gaussian Data

yi ∼ Binomial(1, p(t(i))

f = log
p

1− p
Risk of progression of diabetic retinopathy:

f(dur, gly,bmi) =

µ+ f1(dur) + a2gly + f3(bmi) + f13(dur,bmi)
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median. From Wahba, Wang, Gu, Klein and Klein
Ann. Statist(1995)
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Classification: Find f ∈ X to minimize

1

n

∑
i

(1− yif(t(i))+ + λJ(f) (1)

where (τ)+ = τ, τ > 0,= 0 otherwise. J(f) a penalty functional,

possibly one of the preceeding. The classification algorithm for an

item with attribute t is given by the sign of f(t).

Support Vector Machine(SVM) - Classification tool: yi = ±1

according to the + or − class. Figure to come is the Multicategory

Support Vector Machine: For k classes, the algorithm returns

f1(t), · · · , fk(t) satisfying
∑
l fl(t) ≡ 0. The largest component

determines the classification.
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Cloud classification of satellite radiance data determined by the

MSVM on 374 test samples, built on 370 labeled training samples.

Clear, ice cloud, water cloud. From Lee, Wahba Ackerman, J.

TECH (2004).
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Distance Correlation Between Lifestyle Factors, Pedigrees, Diseases

and Mortality. From Kong, Klein, Klein, Lee, Wahba PNAS (2012)
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A Duality properties between optimization problems and Bayes

estimates

B Convergence properties

C “Bayesian” confidence intervals

D Use of side info

positivity

monotonicity

Bayesian info e.g. as in atmosphere

Non-parametric but not context-free
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Five Themes (again)

1. Unified approach to estimation of functions and the building of

statistical/learning models, given various kinds of observations,

via regularization methods. Tuning and variable selection

included. are an important special case.

2. Theoretical properties

3. Numerical methods for implementation

4. Use of software (a) to study properties of the methods by

Monte Carlo methds and (b) to analyze data.

5. Applications in risk factor estimation, machine learning and

classification, illposed inverse problems, protein sequence

analysis, extremely large SNP sequence analysis, meteorological

data analysis, others..
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