Statistics 860 Lecture 11

Smoothing Spline ANOVA - to handle many (heteroge-
nous) variables, different than rbf’s.

Must read: Spline Models, Chapter 10
wahba.wang.gu.95.pdf
chiang.wahba.tribbia. johnson.99.pdf

Yuedong Wang: Smoothing Splines: Methods and
Applications (Chapman & Hall/CRC Monographs on
Statistics & Applied Probability) 2011 Examples keyed
to the assist package in R.

Chong Gu, Smoothing Spline ANOVA Models
Springer, 2002. Examples are keyed to gss code in
R.

ANOVA = ANalysis of VAriance
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ANOVA

Elementary version is taught in engineering statistics.
Here it is generalized to RKHS and scattered, noisy
data.

t = (t]_, 7td),ta€T(a)7a: 1,2,... ’d_

Eq IS an average operator on 7(2) if for fa(ta) de-
fined on 7(®),

fafa= [ ., falta)dpa

where du, iIs some probability measure with support
on T(a),

So {&q, 7 (), due } define an averaging operator, which
is well defined for all functions on 7(®) integratable
with respect to dp.



Let 1(@) pbe the function which is 1 on 7(®)_ then

£,1(0) = /T<a) 1 gy = 1(@)

Ea 1S IDEMPOTENT, that is

5a(gafa) — gozfoz



Examples

Ex1:
7(®) = [0,1], dua = Lebesgue measure (i.e. the
uniform density.)

Eafa = f(} fol(ta)dua(ta) - 1(9) (a constant times
1(a))

Ex2:
7(2) = E2 the two dimensional plane.
Let sa(7) = (z14(J),220(4)),J = 1,2,---, N be
N points in E2. Let du assign weights wq, - -, wy
to these N points where w;, > 0 and Y1, wy, = 1.
This defines a probability distribution and hence an
averaging operator on 7 () py

N

Eafa =Y wjfalsa(f)) - 1(¥

=1



This will be useful in combining thin plate spline penalty
functionals in one variable with other penalty function-
als on other variables. (Since it is not convenient (or
desireable) to average over all of E2.)

Note that this averaging operator is supported on a
finite subset of E2, but it will still be useful.



Next, we extend the domain of &, from 7(2) to T(L
7‘(2) T ®T(d), lett = (t17 T 7td)s la € 7'(04)7 o —
1,---,d.

Thus, t € T @ ... 7D = T. For example,
7 =10,1],7® =[0,2],then T = TV g 7(2)
is the rectangle in E2 with corners at (0, 0), (1, 0), (0, 2)
and (1,2). ("Cartesian Product” of [0, 1] and [0, 2]).

(0,2) (1,2)

(0,0) (1,0)



Let f (1), t e T=TW g...0 7D,

then&af = [ f(t1, s ta—1,8atat1, " > td)dpa(sa)
resulting in what looks like a a function which only
depends on tg, 8 # «. We want to think of it as a
function defined on 7 € H, which, however, does not
depend on the ath coordinate .



(517"' 7gd)f — /7_(1) /T(d) f(sla"' ,Sd)d,u& “‘d,qu
-1(T)

Where 1(7) is the function which is 1 on 7.

Here is the ANOVA decomposition, for d = 2, a func-
tion of 2 variables: NOTE that each variable t, has
its own domain 7(¢) and we have not assumed ANY-
THING about this domain other than the existence of
some probability measure on it.

I=E+UT-8)(E+ U -E))
where I is the identity operator I f = f.

I =&1E+E(I-E1)+E1(T-E)+(T—-E1)(T—E2)

Note that AVERAGING OPERTORS as defined com-
mute: £1&E> = £7&7.



Thus
f=&&Ef+EU-E)fFE1(T-E)f+(T-E1)T-E)f

fQ) =p—+ f1(t1) + fo(t2) + fio(t1,t2) ()

where

pooo= &1&af
fi = &EU-&)f
fo = &EU-&E)f

fio = (U-&)UT -&E)f

Notethat £1 f1 = Exfo = E1f12 = Exf12 =0 (%x)
since E1(EX(I — E1)) = E1E> — E1E2E1 = 0 etc.

So forany fon7T = 7(1) & 7(2) such that the av-
eraging operators are well defined, f has a unique
decomposition (*) satisfying the side condition (**).



The general d-dimensional ANOVA decomposition:

I = TI8_{ (Ea+ (I - E))

g &+ (- E)s2a s
+Xa<g U — &) — Eg) Iy£a8Er

+11¢—; (I — &a)

f1,tg) = p+Xafalta)+
+ > a<p fap(ta;ts)
4.
+f12..q(t1, - tq)
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To deal with higher dimensions and avoid the “curse
of dimensionality”: truncate the decomposition some-
where.

Additive models (MAIN EFFECTS MODELS)
flty, ..., ta) @ p+ Zgzlfoz(toz)

Hastie and Tibshirani:

d
f(tla cee 7td) = pu+ Z foz(woz) + fa1a2(t0417ta2)

a=1

Main effects model plus a single 2-factor interaction

The model selection problem starts with deciding which
terms to drop.

11



ANOVA-DECOMPOSITION of RKHS

H< : RKHS of functions on 7(® with 1(= 1(®)) ¢
HO&

1(@) is the function on 7(®) which is 1 on 7().

HE — []_(a)] @H(a)
N —~

a 1-dimensional subspace

JlS H() = fT(a) fa(sa)dpa(sa) =0
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Let Py, ()y, be the projection operator in £ onto 1(e)
defined by

P{l(a)}f = /T(a) fa(sa)dpa(sa) - 1() c H”

(maps f € H® onto its “mean” times the constant
function)

LEMMA (Prove for yourself)

If RY(sa, ta) is the RK for H, then R(Y) (sq, ta) =

(7= Py (1= Py ) B (o te)

is the RK for #(®). Here P, (), (,.) means that Py (o),
is applied to what follows as a function of s.
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R (sq,t0) =

(I B P{l(a)}(sa)> (I — P{l(a)}(ta>) R%*(sa,ta)

= (I — ga(sa)) (I — ga(ta)) R%(sa, ta)
Note that
ga(sa)R(a)(Sa,toz> =0 ga(ta)R(a)(Soz,toz> =0

He = [1(] @ H(D and 1(9) will be L to #(®) with
the square norm

| 7w = 1Py an f17 + 1T = Py fliZe

(This is not necessarily the norm you started with.)

14



EXAMPLE:
1
(a): 1 o] = ad Q
T [0,1]  &af /Of(:v )dx

HY = Wi (per) periodic functions on [0, 1] with (™) ¢
Lo

2
If]1% = [ /Olf(a:>dx] + /O L () 2da

HY = 10 g 1) =35 H;q
H = {f: f D@ - Y0 =0,

v=12,...,m, andf(m) € Lo}

N G O L my — /
R(z,a) = 14+ o5 Ba(fr—']) = 1+ Ry (x, 2)
(p. 22 of book)

m— — 1
Bop(z) = (—1) 12-(2m)! ,,2231 (2m0)2m COS 27
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Easy case since (£.f)1(%) is the projection of f onto
Ho

goz(:v)Rl (CE, x’) — 5a(33/)R1 (CU, 33/) =0
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Decomposition of

H o= [loH* = a1 #)

[1] + ZoH(@) + za<57.[(a) @ HPB) 4
o+ TTL, @H ()

with some abuse of notation—strictly speaking, should
use

I1 [1(5)] R H ()
pFa

which is a subspace of H: f(t1,...,tg) € #(2) means
that it only depends on t,
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FIRST ANOVA VARIATIONAL PROBLEM IN H:
Letd =2, t= (t1,t)

H — [l] D ’H(l) D H(Q) D (7_[(1) X 7_[(2))
Given the RK’s for (1) and #(2)

R (s1,t1) = the RK for #(1)

R(2)(s5,t5) = the RK for #(2)

R(1) @ R(2) = the RK for #(1) @ #(2)

(R @ R())(s,t) = R (s1,t1)R(P) (52, 12)

GOAL to find

f=p+ f1+ fo+ fio

with fo € H(®, o =1,2and f1, € HD @ 12
to minimize

>(y; — Lif)* + >\1||f1||§{(1) + >\2||f2||3{(2)+
>
Ar2llf12ll3, ) g
A1 = 0o —sMAIN EFFECTS MODEL
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To come: Spline ANOVA and the second variational
problem: Allows a bigger null space than just the con-
stant function, so multivariate parametric models will
be a special case, as smoothing parameters get large.
See Lin, Wahba, Zhang, Gao, Klein and Klein (2000),
lin:wahba:zhang:gao:klein:klein2000.pdf.
Note that there are yes/no variables there. In that
case 7 for one of those variables consists of two
points, +1.
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