
Statistics 860 Lecture 11

Smoothing Spline ANOVA - to handle many (heteroge-
nous) variables, different than rbf’s.

Must read: Spline Models, Chapter 10
wahba.wang.gu.95.pdf

chiang.wahba.tribbia.johnson.99.pdf

Yuedong Wang: Smoothing Splines: Methods and
Applications (Chapman & Hall/CRC Monographs on
Statistics & Applied Probability) 2011 Examples keyed
to the assist package in R.

Chong Gu, Smoothing Spline ANOVA Models
Springer, 2002. Examples are keyed to gss code in
R.

ANOVA = ANalysis of VAriance

c©G. Wahba 2016
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ANOVA

Elementary version is taught in engineering statistics.
Here it is generalized to RKHS and scattered, noisy
data.

t = (t1, · · · , td), tα ∈ T (α), α = 1,2, · · · , d.

Eα is an average operator on T (α), if for fα(tα) de-
fined on T (α),

Eαfα =
∫
T (α)

fα(tα)dµα

where dµα is some probability measure with support
on T (α),

So {Eα, T (α), dµα} define an averaging operator, which
is well defined for all functions on T (α) integratable
with respect to dµα.
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Let 1(α) be the function which is 1 on T (α), then

Eα1(α) =
∫
T (α)

1(α)dµα = 1(α)

Eα is IDEMPOTENT, that is

Eα(Eαfα) = Eαfα
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Examples

Ex1:
T (α) = [0,1], dµα = Lebesgue measure (i.e. the
uniform density.)

Eαfα =
∫ 1
0 fα(tα)dµα(tα) · 1(α) (a constant times

1(α))

Ex2:
T (α) = E2, the two dimensional plane.
Let sα(j) = (x1α(j), x2α(j)), j = 1,2, · · · , N be
N points in E2. Let dµα assign weights w1, · · · , wN
to these N points where wk > 0 and

∑N
k=1wk = 1.

This defines a probability distribution and hence an
averaging operator on T (α) by

Eαfα =
N∑
j=1

wjfα(sα(j)) · 1(α)
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This will be useful in combining thin plate spline penalty
functionals in one variable with other penalty function-
als on other variables. (Since it is not convenient (or
desireable) to average over all of E2.)

Note that this averaging operator is supported on a
finite subset of E2, but it will still be useful.
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Next, we extend the domain of Eα from T (α) to T (1)⊗
T (2) · · · ⊗ T (d), let t = (t1, · · · , td), tα ∈ T (α), α =

1, · · · , d.

Thus, t ∈ T (1) ⊗ · · · ⊗ T (d) ≡ T . For example,
T (1) = [0,1], T (2) = [0,2], then T = T (1)⊗T (2)

is the rectangle inE2 with corners at (0,0), (1,0), (0,2)

and (1,2). (”Cartesian Product” of [0,1] and [0,2]).

(0,0) (1,0)

(0,2) (1,2)
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Let f(t), t ∈ T = T (1) ⊗ · · · ⊗ T (d),
then Eαf =

∫
f(t1, · · · , tα−1, sα, tα+1, · · · , td)dµα(sα)

resulting in what looks like a a function which only
depends on tβ, β 6= α. We want to think of it as a
function defined on T ∈ H, which, however, does not
depend on the αth coordinate tα.
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(E1, · · · , Ed)f =
∫
T (1)
· · ·

∫
T (d)

f(s1, · · · , sd)dµ1 · · · dµd
·1(T )

Where 1(T ) is the function which is 1 on T .

Here is the ANOVA decomposition, for d = 2, a func-
tion of 2 variables: NOTE that each variable tα has
its own domain T (α) and we have not assumed ANY-
THING about this domain other than the existence of
some probability measure on it.

I = (E1 + (I − E1))(E2 + (I − E2))

where I is the identity operator If = f .

I = E1E2+E2(I−E1)+E1(I−E2)+(I−E1)(I−E2)

Note that AVERAGING OPERTORS as defined com-
mute: E1E2 = E2E1.
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Thus

f ≡ E1E2f+E2(I−E1)f+E1(I−E2)f+(I−E1)(I−E2)f

f(t) ≡ µ+ f1(t1) + f2(t2) + f12(t1, t2) (∗)

where
µ = E1E2f
f1 = E2(I − E1)f
f2 = E1(I − E2)f
f12 = (I − E1)(I − E2)f

Note that E1f1 = E2f2 = E1f12 = E2f12 = 0 (∗∗)
since E1(E2(I − E1)) = E1E2 − E1E2E1 = 0 etc.

So for any f on T = T (1) ⊗ T (2) such that the av-
eraging operators are well defined, f has a unique
decomposition (*) satisfying the side condition (**).
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The general d-dimensional ANOVA decomposition:

I =
∏d
α=1 (Eα + (I − Eα))

=
∏d
α=1 Eα +

∑d
α=1 (I − Eα)

∏
β 6=α Eβ

+
∑
α<β (I − Eα)(I − Eβ)

∏
γ 6=αβ Eγ

+ · · ·

+
∏d
α=1 (I − Eα)

f(t1, · · · , td) = µ+
∑
α fα(tα)+

+
∑
α<β fαβ(tα, tβ)

+ · · ·

+f12···d(t1, · · · , td)
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To deal with higher dimensions and avoid the “curse
of dimensionality”: truncate the decomposition some-
where.

Additive models (MAIN EFFECTS MODELS)

f(t1, . . . , tα) ' µ+ Σd
α=1fα(tα)

Hastie and Tibshirani:

f(t1, . . . , td) = µ+
d∑

α=1

fα(xα) + fα1α2(tα1, tα2)

Main effects model plus a single 2-factor interaction

The model selection problem starts with deciding which
terms to drop.
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ANOVA-DECOMPOSITION of RKHS

Hα : RKHS of functions on T (α) with 1(= 1(α)) ∈
Hα

1(α) is the function on T (α) which is 1 on T (α).

Hα = [1(α)]︸ ︷︷ ︸
a 1-dimensional subspace

⊕H(α)

f ∈ H(α) ⇒
∫
T (α) fα(sα)dµα(sα) = 0
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Let P{1(α)} be the projection operator inHα onto 1(α)

defined by

P{1(α)}f =
∫
T (α)

fα(sα)dµα(sα) · 1(α) ∈ Hα

(maps f ∈ Hα onto its “mean” times the constant
function)

LEMMA (Prove for yourself)

If Rα(sα, tα) is the RK for Hα, then R(α)(sα, tα) =(
I − P{1(α)}(sα)

)(
I − P{1(α)}(tα)

)
Rα(sα, tα)

is the RK forH(α). Here P{1(α)}(sα) means that P{1(α)}
is applied to what follows as a function of sα.
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R(α)(sα, tα) =(
I − P{1(α)}(sα)

)(
I − P{1(α)}(tα)

)
Rα(sα, tα)

≡
(
I − Eα(sα)

) (
I − Eα(tα)

)
Rα(sα, tα)

Note that

Eα(sα)R
(α)(sα, tα) = 0 Eα(tα)R

(α)(sα, tα) = 0

Hα = [1(α)]⊕H(α) and 1(α) will be ⊥ to H(α) with
the square norm

‖f‖2new = |P{1(α)}f |
2 + ‖(I − P{1(α)})f‖

2
Hα

(This is not necessarily the norm you started with.)
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EXAMPLE:

T (α) = [0,1] Eαf =
∫ 1

0
f(. . . xα . . .)dxα

Hα = Wm(per) periodic functions on [0,1] with f(m) ∈
L2

‖f‖2 =

[∫ 1

0
f(x)dx

]2

+
∫ 1

0
(f(m)(x))2dx

Hα = 1(α) ⊕H(α) = H0 ⊕H1

H(α) = {f : f(ν−1)(1)− f(ν−1)(0) = 0,

ν = 1,2, . . . ,m, and f(m) ∈ L2}

R(x, x′) = 1+
(−1)m−1

(2m)!
B2m([x−x′]) = 1+R1(x, x′)

(p. 22 of book)

B2m(x) = (−1)m−12·(2m)!
∞∑
ν=1

1

(2πν)2m
cos 2πνx
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Easy case since (Eαf)1(α) is the projection of f onto
H0

Eα(x)R1(x, x′) = Eα(x′)R1(x, x′) = 0
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Decomposition of

H =
∏
αHα =

∏
α([1(α)]⊕H(α))

= [1] + ΣαH(α) + Σα<βH(α) ⊗H(β)+

. . .+
∏
α⊗H(α)

with some abuse of notation—strictly speaking, should
use ∏

β 6=α

[1(β)]⊗H(α)

which is a subspace ofH: f(t1, . . . , td) ∈ H(α) means
that it only depends on tα
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FIRST ANOVA VARIATIONAL PROBLEM IN H:
Let d = 2, t = (t1, t2)

H = [1]⊕H(1) ⊕H(2) ⊕ (H(1) ⊗H(2))

Given the RK’s for H(1) and H(2)

R(1)(s1, t1) = the RK for H(1)

R(2)(s2, t2) = the RK for H(2)

R(1) ⊗R(2) = the RK for H(1) ⊗H(2)

(R(1) ⊗R(2))(s, t) = R(1)(s1, t1)R(2)(s2, t2)

GOAL to find

f = µ+ f1 + f2 + f12

with fα ∈ H(α), α = 1,2 and f12 ∈ H(1) ⊗H(2)

to minimize

Σ(yi − Lif)2 + λ1‖f1‖2H(1) + λ2‖f2‖2H(2)+

λ12‖f12‖2H(1)⊗H(2)

λ12 =∞ −→MAIN EFFECTS MODEL
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To come: Spline ANOVA and the second variational
problem: Allows a bigger null space than just the con-
stant function, so multivariate parametric models will
be a special case, as smoothing parameters get large.
See Lin, Wahba, Zhang, Gao, Klein and Klein (2000),
lin:wahba:zhang:gao:klein:klein2000.pdf.
Note that there are yes/no variables there. In that
case T (α) for one of those variables consists of two
points, ±1.
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