Statistics 860 Lecture 12. Smoothing Spline ANOVA:
Second Variational Problem.

refs: Wahba book Ch 10 must read , Gu book.
Will talk about the second variational problem.
Software for SSANOVA is in R, see gss, fields,
assist

Examples for today:
gu.wahba.tps.93.pdf - thin plate spline for lake latitude
and longitude, cubic spline for calcium content

fing.pdf - "fingerprint” method for detection of global
warming, a spline on the sphere for global latitude and
longitude, , 30-vector for time, 30 years. Splines on
the sphere are in sphspl.pdf

wahba.wang.gu.95.pdf progression of diabetic retinopa-
thy See also lin.wahba.zhang.gao.klein.klein.2000.pdf

(©G. Wahba 2016
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First Variational Problem:

HY = [1()] @ H(®)

d d
H=[] H*= ] [[1()] @ (]
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a<f
Two factor interaction model:
H=[110 L, HY & T,csH @ HE)

Let R(®) be the RK for H(®). Since all of these sub-
spaces are orthogonal, the RK for ‘H is:

R(Sat) — 1 _I_ Za R(a)(SC\HtOé) _I_
Za<ﬁ R(O‘)(sa,ta)R(ﬁ)(sﬁ,tﬁ)



Second ANOVA Variational Problem:

He = [1]@ & 1 & 1™

="parametric”’,s="Smooth”
( ) is spanned by {qb(o‘), ,cb(o‘) 1 } an orthogonal

basis in H( ).
{qb(o‘)} span the null space of the penalty functional
that we want to impose on f(o‘)—the main effects.



For f € ' H?,

P{1(a)}f = /T(O‘) f(za)dua(za) = [gaf]l(a)

Define the inner product in H( @)
as

(& (a)’ (a) /¢(a) (O‘)dua

choose the gb,(/a) to be orthonormal.

In dealing with a single variable, the norm in H( ) is
irrelevant, but it will affect the interaction term, as we
shall see.

Define the orthogonal projector from H () onto HS as

P(a)f — Z ¢(a)/¢(a)(za)f(za)dﬂa



H(Oé) — H(a) @ H(a)
7(T04) p— P,]ga) (H(a)>

149 | 24{*) with the norm defined by
17N = 1 PE £ e + 11T — PE) £ e

The RK for H{Y is

(1P (=P VRO (50, ta) = R (sa,ta)

7 (ta)

The RK for HS is M, ¢85 (50) 65 (ta)



ANOVA Decomposition For the Second Variational
Problem:

[0y 1O =TTy {1 & 18 @ H(™Y)

In d-dimensions there are a maximum of 3¢ subspaces,
d=2, 9 subspaces

{[1<1>] 2@ ¢ ) QM 1) @ n A
Wen® : HOan® . 2D gu®
KH(]-) 1(2) : (1) ® H(Q) : gl) ® HgQ))

“Parametric” part (finite dimensional) is the 11, 12, 21
and 22 elements of this array.
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where

W en®: fii,t), feH

E1(t)f(t1,82) =0
52(t2)f(t17t2) =0

p1) p(2) _
w(tl)Pw(t )f(tla t2) 0



H="Ho® Y H"

Ho: all the parametric subspaces.

1, {61}, (652}, {65V (23

are 14+ (M1 —-1)+(Mzx—1)+ (M —1)(Ma—1)
elements.

d=2,0=1,2,3,4,5

are 5 nonparametric subspaces

=)

> (yi — Lif)? -I-Zg:l Asll P fll° for d=2

to find f to minimize

if both M1 and M» are > 1.



The RK's for the 5 nonparametric subspaces will be
1 2 1 2
B (s1,t1), R (s2,t2), R (s1,t1)REP (s2,12),

Rgl)(81,t1)R7(r2)(82,t2) and Rgl)(SLtl)Rgz)(SQ,tQ)-

10



Lemma

Let Hy = S-F_, @HPY, where the HP are orthogonal
subspaces of Hq. If f € Hq, then

D
1£17, = X 1Psfl5,
p=1

and the RK for Hy is Yf3_ RB(s,t) where RP is the
RK for H”. Given 61, --- ,6, > 0, then we may define
another norm on Hq by

P

1 p
151y = D2 IPsflFe = 3 AsllPsfllzgs
p=1"0 f=1

and the RK for this norm is

p
N 05RP(s,t)
B=1
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Td+ 9
T ¢

i1l
)

SV0=011 4+ 65

all of the original formulas hold with > replaced by Y.

A()\> — A()‘a 9) — A(Ala e 7>‘p)
where Az = A",

To make this unique, must put a constrainton 64, - - - , 0.
For example, >-%_; logf = 0.

RKPACK, gss in R. gcv.gml.pdf.
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From gu:wahba:tps.93.pdf
Lake acidity in the Blue Ridge Mountains

y; = p+ f1(t1) + fo(to) + f12(t1,t2)

y; is lake acidity (pH) in lake

t1(¢) is calcium content of lake i(log1omg/L)

t~>(%) is (centered latitude, longitude) (x1(7), z>(3))
of lake 2

f(t1) is a cubic spline

f(t>) is a thin plate spline

Averaging operators for both calcium content and lake
acidity are the marginal design measures:

Ealf) = > flta(d),a=1,2
=1

Unpenalized terms other than the constant function
on the plot region are a linear function in calcium con-
tent and two linear functions in (latitude,longitude),
N ( 1)a¢1 (t2) an O (t2).
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For the cubic spline term
1 :

$i7(t) =1 — L5, 11 ().

For the thin plate spline with m = 2,d = 2, let
2 :

Wi =1 - 150 @1 (2)
(2) _ 1 <n -

lbg — T2 — 4 Zi:l 2 (%)

and obtain an orthogonal pair
657, 932

(satisfies L Y11 6{2 (12())652 (t2(1)) = 0).
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Fig. 2. Calcium main effect for the Blue Ridge model
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Fig. 3. Geography main effect for the Blue Ridge model



From wahba:wang:gu:95.pdf

Wisconsin Epidemiological Study of Diabetic Retinopa-
thy

n = 891. Younger onset diabetics.

y = four year progression of diabetic retinopathy, 1 =
yes, 0 = no. Model variables:

1. dur: duration of diabeties at baseline

2. gly: glycosylated hemoglobin, a measure of hy-
perglycemia, %

3. bmi: body mass index-weight in kg /(height in
m)2
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The model
f(dur, gly,bmi) = p + f1(dur) + ap - gly

+ f3(bmi) + f13(dur, bmi)
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Left: data and contours of constant posterior standard
deviation. Right: estimated probability of progression
as a function of duration and body mass index for gly-
cosylated hemoglobin fixed at its median.
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Time and Space Models on the Globe

Here t = (t1,t») = (x, P) where z is year, and P
is (latitude, longitude). The RKHS of historical global
temperature functions that was used in Chiang, Wahba,
Johnson and Tribbia (1999) is

H=[1De ¢ eH P 1@ e ),

a collection of functions f(z, P),onT = T(1) g7(2)
={1,2,...,30} ® S, where S is the sphere, and ¢
is a function which averages to 0 on 71 H and
f have the corresponding (six term) decompositions
given next:



H= M1 & [¢ o M & H?)
f(z,P) = C + do(x) + fi1(z) + f2P)
= mean -+ global + time 4 space
time main main
trend effect effect
o [lonP] & MY oH?P)
+ o(x) fpo(P) + f12(z, P)
-+ trend —+ space—
by space time
effect interaction

A sum of squares of second differences was applied
to the time variable, and a spline on the sphere penalty
(Wahba:1981,1982)) was applied to the space vari-
able. For a cross country skier in the Midwest, as this
author is, the results were very disappointing, in that
they clearly showed a warming trend stretching from
the Midwest towards Alaska (trend by space term)
which was stronger than the global mean trend.



Chiang, Wahba, Tribbia and Johnson July 13, 1999

Latitude

Figure 7: Mean of the historical average winter temperature (°C), 1961-1990.
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Figure 8: Yearly average winter temperatures (°C): (a) Historical (b) GFDL forced (c)
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Figure 9: Linear trend of the historical average winter temperature (°C/yr), 1961-1990.



