Statistics 860 Lecture 13
BAYESIAN CONFIDENCE INTERVALS
First : Usual(Parametric) Confidence Intervals

y=XB+¢ GNN(O,O'QI)

B=(X'X)"1X'y = (X'X)"1X'(XB+¢)
=B+ (X'X)"1X'e

B~N(@B,o2(X'X)™1)

§=XB=X(X'X)"1X'y = Ay, say.

§ = (XX'X)IX(XB+e))
= (XB) + Ae
§ ~N(XB,0%4%)
Cov (Ae) = 0242 = o2A, since A is idempotent in
this case. Thus, a confidence interval for (X 3);, the
1th component of X 3, would be

Y; T 2.02504/Qj;.

Can use 52 = RSS/(n — p) = RSS/trace(I — A),

RSS= residual sum of squares.
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Bayesian Confidence Intervals

yi=ft)+e  e~N(0,0°)
f)—) = () — EfiG)) — (W) — Efi(G))

bi(t;iras) 5i(varivance)

( fA(_tl)

= ) = ANy = AN f + A(N)e
fA(tn)

bias= (I — A(N))f {bin}
variance= A(N)e  {5;)}
Smoothing spline estimates are biased.



Mean square error
1 n
= 3" (biy — 6in)°
=1

Important remark : >~ b,, = 0if 1 € H and the null
space of the penalty functional since

n 1
> bia=f'I—=AMN))
i=1 1
1 0
and (I —A\) | : | =] :
1 0

Pick arandom element b (equally likely) from the pop-
ulation {b;,} and a random element § from the popu-
lation {4;,} and observe Eb = 0, E = O.

o2

n
Eb? = = N b2, B2 = —trA%(\)
1=1

n

and b+ 6 ~ N (0, %ER()\)) since

BpiekRO) = B 3 (S~ () = = (R +63).
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The Bayesian confidence interval is

Ia(ti) £ 24261/ aii(X) ().

This confidence interval came from looking at the Bayesian
model behind the smoothing spline and observing that

the posterior covariance of f) is a2 A()\), when the
prioron f is b~ and A\ = ¢2/nb. (Wahba. ci . 83. pdf ).
We take

52 = RSS(X) /trace(I — A(N)).

For this Bayesian confidence interval to work in a fre-
quentist setting, we need ) is close to \*, the mini-
mizer of R(\): IMPORTANT. The argument

(see wahba. ci . 83. pdf, nychka. ci. 88. pdf) is

that

O'Qn

R()\* ~ — Z aii()\*)
=1
where « is near 1. This argument needs R()\) close
to R(\*) to work in practice, in that case the mean
square bias plus variance is near o2 times the aver-

age a;; ().



For the smoothing spline

1 1
ae (14, -)(1-5-)1]
Form =2, a € [%—;, }
The bottom line: Under the pick distribution

by + 05 ~ N (0, %ER(X))
~ N (0 o f: aii(V))
I n = (A

when A = \*. The Bayesian confidence intervals
work “on the average”, NOT pointwise. This means,
for example: Suppose n = 100. Suppose you pick
a number ¢* equally likely from {1,2,--- ;100}. Then
the probability that f)\(ti*)iza/zc%/aii@) covers f(t;)
is about 95%. (are using Z rather than ¢ because
n >> 30).



To compare the parametric case with the nonparamet-
ric case: in the pick context, in the parametric case,
since

b=0,0 = Ae

1 2 2
E—E:(bi2 - 53) =7 a2=%"4rA
n n n

while in the nonparametric case

1 2 2 0'2 ~



From R/conf.int

nl a

. 44771968981658
. 20414150430556
. 09530446540393
. 92345597672399
. 0786833109878

Si gr at
0. 92654288801936
0. 91939533790345
0. 86847699330725
1.02740449188683
1.02004228771482

count
91
87
91
100
100
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G. Wahba. Bayesian “confidence intervals” for the
cross-validated smoothing spline. J. Roy. Stat. Soc.
Ser. B, 45:133-150, 1983.

wahba. ci . 83. pdf

X. Lin, G. Wahba, D. Xiang, F. Gao, R. Klein, and
B. Klein. Smoothing spline ANOVA models for large
data sets with Bernoulli observations and the random-
ized GACV. Ann. Statist., 28:1570-1600, 2000

| i n. wahba. xi ang. gao. kl ei n. kl ei n. 2000. pdf

illustrate the ‘across the function’ property of property
of the Bayesian confidence intervals in a simulation
study and also illustrate how they work on a real data
set.
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Firm(er) theoretical foundation:

D. Nychka, Bayesian Confidence Intervals for Smooth-
ing Splines, J. Amer. Statist. Assoc, 83, 1988, pp
1134-1143. nychka. ci . 88. pdf
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Calculation Tricks

1. Select a subset of the basis functions(representers).
| i n. wahba. xi ang. gao. kl ei n. kl ei n. 2000. pdf
Sect 5.1.

2. Randomized trace method for GCV(Girard, Ann.
Statist. 1991, Hutchinson, Commun. Statist.) and
GACV(X. Lin, Xiang, theses),
| i n. wahba. xi ang. gao. kl ei n. kl ei n. 2000. pdf .

Let (e1,--- ,en) ~ N(0,02I). Let A = A()\) be a
smoother matrix. Then

n
EG/AG = F Z eiejaz-j
Lj=1

n
=02 Y a;; = oltraceA(\)
i=1
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Lett = %G/Ae and e ~ N(0,021). Then the standard
1 1/2 <1 }1/2_

deviation of ¢ is m[ntraceA} m[ntraceA

Suppose ¢; = +60, what is the variance?



f(t1)
i = ANy
£3 (tn)

y+€(t )
= AN (y + )

y+€<tn>

BT ( £1(t1) )
¢ - : = A(N\)e.
_ f}\/+€(tn) () )
Keep the same ¢ as )\ varies.
RSS()\)

(1 — LTrace A(N))2
UBR()\) = RSS()\) 4 202TraceA()\)

GCV()\) =
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See plots from

G. Wahba, D. Johnson, F. Gao, and J. Gong. Adaptive
tuning of numerical weather prediction models: ran-
domized GCV in three and four dimensional data as-
similation. Mon. Wea. Rev., 123:3358-3369, 1995.
wahba. j ohnson. gao. gong. mw 1995. pdf

which illustrates what 10 ranGCV () curves look like,
compared to GCV (M) and R()\)
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Dashed lines ranGCV, upper solid line exact GCV, bot-
tom solid line mean square error as a function of log A
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Also plots from

X. Lin, G. Wahba, D. Xiang, F. Gao, R. Klein, and
B. Klein. Smoothing spline ANOVA models for large
data sets with Bernoulli observations and the random-
ized GACV. Ann. Statist., 28:1570-1600, 2000

| 1 n. wahba. xi ang. gao. 2000 illustrate what the
ranGAC'V curves look like.
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Imputation from nearly regular data sets to regular
data sets in the global warming dataset allows the
trick of describing the design as a tensor(cartesian!)
of two univariate designs, space and time. Then back-
fitting is used to solve the ensuing simpler equations.
See

Wahba, G. and Luo, Z. ” Smoothing Spline ANOVA
Fits for Very Large, Nearly Regular Data Sets, with
Application to Historical Global Climate Data” TR 952,
October 1995. Slightly revised version in Annals of
Numerical Mathematics 4 (1997) 579-598, Festschrift
in Honor of Ted Rivlin, C.Micchelli, Ed. | r eg. rev. pdf .
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Early stopping of interative methods for solving large
linear systems has a regularization effect. See

wahba. ] ohnson. gao. gong. mw 1995, pdf.

and Wahba, G.” Three topics in lll-posed Inverse Prob-
lems. " In "Inverse and lll-Posed Problems, M. Engl|
and G. Groetsch, Eds., Academic Press 1987, pp 37-
50. Among other things provides a discussion of how
early stopping of iterative methods for solving large
linear systems is a form of regularization. i | | pose. pdf .
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PMSE as a function of log A and number of iterations.

PMSE
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GCV as a function of log A and number of iterations.
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