Statistics 860. Lecture 14
OUTLINE

1. Review of Optimal Classification.

2. Comparison of penalized likelihood and SVM clas-
sifiers.

3. The standard case SVM — equal cost of misclassi-
fication and representative training set. GACV and £«
tuning for the standard case.

4. Yi Lin’s theorem: The (tuned) SVM is estimating
the sign of the log-odds ratio and minimizing the ex-
pected misclassification rate.

5. Extension to the non-standard case:
Non-representative training set, unequal costs.
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google - 600,000 hits in 2011, 14,000,000 in 2016.

Y. Lin, Y. Lee, and G. Wahba, Support vector ma-
chines for classification in nonstandard situations, Tech-
nical Report 1016, tr1016.pdf Has appeared, Ma-
chine Learning, 46, 191-202, 2002.

Y. Lin, G. Wahba, H. Zhang, and Y. Lee. Statistical
properties and adaptive tuning of support vector ma-
chines, Technical Report 1022 tr1022.pdf Has ap-
peared Machine Learning, 48, 115-136,2002.

G. Wahba, Y. Lin, and H. Zhang. Generalized approx-
imate cross validation for support vector machines. In
A. Smola, P. Bartlett, B. Scholkopf, and D. Schuur-
mans, editors, Advances in Large Margin Classifiers,
pages 297-311. MIT Press, 2000. (svm.pdf )

Y. Lin. A note on margin based classifiers. tr1044r.pdf,
2002. Has appeared in Statistics and Probability Let-
ters.



Short selection of books on Support Vector Machines.
See also kernel-machines.org, amazon.com

e . Cristianini and J. Shawe-Taylor. An Introduction
to Support Vector Machines. Cambridge Univer-
sity Press, 2000.

e B. Scholkopf and A. Smola. Learning with Ker-
nels Support Vector Machines, Regularization, Op-
timization and Beyond. MIT Press, 2002.

e B. Scholkopf, C. Burges, and A. Smola. Advances
In Kernel Methods-Support Vector Learning. MIT
Press, 1999.

e B. Scholkopf, K. Tsuda, and J-P.Vert. Kernel Meth-
ods in Computational Biology. MIT Press, 2004.
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e Statistica Sinica. Challenges in statistical machine
learning. v. 16, 2006. Special Issue.

e A. Smola, P. Bartlett, B. Scholkopf, and D. Schu-
urmans. Advances in Large Marin Classifiers. MIT
Press, 2000.



The Multicategory SVM-next lecture:

In 860/pdf1:

lee.lee.pdf

lee.lin.wahba.04.pdf
lee.wahba.ackerman.04.pdf
lee.wahba.ackerman.corr.04.pdf
lee.kim.lee.koo.2006.pdf



Where to go for software

e SVM-Light, Thorsten Joachims
sv mlight.joachims.org
In C.

e MSVM-Multicategory SVM, Yoonkyung Lee
www.stat.osu.edu/"yklee/software.html
Addon to R.



&& Optimal Classification and the
Neyman-Pearson Lemma:

hp

h 4(+), hg(-) densities of =

for class A and class B.
NOTATION:
7w 4 = prob. next observation (Y) is an .A

mg = 1 — w4 = prob. next observation is a B

p(z) = prob{Y = Alz}
T ph A(2)
T ah 4(x) + mghp(z)




Let ¢ 4 = cost to falsely calla B an A
cp = cost to falsely callan A a B

Bayes classification rule: Let

s(z): = — {5}

Expected cost:

E{call —p(z)] I(¢(x) = A)}
getaBandcallitan A

+E{cplp(z)] 1(¢(z) = B)}
getan A and call it B

Optimum (Bayes) classifier:

e p(x) CA
A T156@ > &
B otherwise.

dopT(x) = {



To estimate p(x), alternatively let f(x) = logp(x)/(1—
p(x)), the log odds ratio a.k.a. the logit. “Standard”
case: Training set

{yi, v} :
7 x; € T, some index set

Relative frequency of A’s in the training set is about
the same as in the general population.

Penalized log likelihood estimation:

Estimate f by penalized likelihood. If c4/cp = 1,
then the optimal classifier is

f(x) > 0 (equivalently, p(x) — % >0)— A
f(x) < 0 (equivalently, p(z) — 5 <0) — B



& & Penalized log likelihood estimation of the logit f =
log[p/(1 —p)].

—
|

A
= important
V=4 5 (imp )

The probability distribution function (likelihood) for y | p

iS:L:py(l—p)l_y: p Ify: 1

(1-p) ify=0
and the negative log likelihood is

—log £ = —log[p¥(1 — p)' Y]

= —ylogp — (1 —y)log(1l — p).

Using p = e/ /(1 + &) gives
—log £ = —yf + log(1l+e/)



& Penalized log likelihood estimation of f (contin-
ued) (special case).

1

{vi, z;}, v = 0 ,x; €T

Find f(z) = d + h(z) with h € Hz to min

1 2 ;
- Z [—yz'f(ivi) + log(1 + ef(xz))} + >\||h||72{K
i=1

where H - is the reproducing kernel Hilbert space
(RKHS) with reproducing kernel

K(Sat)a s, 1, € T.

Theorem: (Special case of second variational prob-
lem)

(z) =d+ Z ;K (x,x;).

=1
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& Penalized log likelihood estimation of f (contin-
ued)

Nlx) =d+ ) ¢K(z,z;)
i=1

Find d,c = (c1,...,cn) = c) to minimize
Ly [—yif(e) +l0g(L + e/ @)] + A[lh|3, .

Here
5 n
Ikl = > cicj K(zi, ;).
t,7=1
Given ), this is a nice strictly convex optimization prob-
lem. Choose A by GACV. Target for GACV is to mini-

mize the Comparative Kullback-Liebler (CKL) distance
of the estimate from the true distribution:

RO = Ef, S —ynewifa(zi)+log(1+eA @),
1=1
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& Support Vector Machines

1=
Yy = + “2 (note different coding)

Find f(z) = d + h(z) with h € H x to min

(1 —yif @4 + ARIZ, %)

1
ni=1

where (1) = 7,7 > 0, = 0 otherwise.

Then

() =d+ Z c;K(z,x;). (*)

1=1
Substitute (*) into (**), choose A, given ), find ¢ and d.
The classifier is

f)\(x) >0— A

f>\(az) <0— B
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& Comparison of the penalized log likelihood esti-
mate f) of the log odds ratio logp/(1 — p) and f),
the SVM classifier:

Suspicion: They are related...

Let us relabel y in the likelihood —

41 i A
YTY1 ¥ B

Then

—yf +1og(1 +el) = log(1 4+ e~ /)

Figure 1 compares

log(1+e ), (1—yf)y and (—yf)«

where

O otherwise.

(7)) = {1 if > 0,

((—yf)« is the misclassification counter).
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[Let 7 = yf]. Comparison of (—7)x,

(1 —7)4 and loge(1 + e 7). Bin Yu observed at the
talk that log>(1 + e~ ") goes through 1 at - = 0. Any
strictly convex function that goes through 1 at = = 0
will be an upper bound on the missclassification func-
tion and will be a looser bound than some SVM func-
tion.
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The SVM is estimating the sign of the log odds ratio,
just what you need for classification
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SVM and Penalized Likelihood Estimates Compared:
true: p(x) = .4(sin0.4wx) + .5 on [-2,2]

The plots are: 2p — 1 for ’true’ and 2p5 — 1 for the
penalized likelihood estimate, for comparison to the
SVM estimate.

1.5

11— =-- <7 | — truth
-+ logistic regression
— - SVM

-2 -1 0 1 2
X

n = 300, x; equally spaced on [0, 1], y; simulated
according to p(x), coded to 1 for the SVM. They
give nearly identical classification rules, as determined
by the sign of the estimate.
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