
Statistics 860. Lecture 14
OUTLINE

1. Review of Optimal Classification.

2. Comparison of penalized likelihood and SVM clas-
sifiers.

3. The standard case SVM – equal cost of misclassi-
fication and representative training set. GACV and ξα

tuning for the standard case.

4. Yi Lin’s theorem: The (tuned) SVM is estimating
the sign of the log-odds ratio and minimizing the ex-
pected misclassification rate.

5. Extension to the non-standard case:
Non-representative training set, unequal costs.

c©G. Wahba 2016
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google - 600,000 hits in 2011, 14,000,000 in 2016.

Y. Lin, Y. Lee, and G. Wahba, Support vector ma-
chines for classification in nonstandard situations, Tech-
nical Report 1016, tr1016.pdf Has appeared, Ma-
chine Learning, 46, 191-202, 2002.

Y. Lin, G. Wahba, H. Zhang, and Y. Lee. Statistical
properties and adaptive tuning of support vector ma-
chines, Technical Report 1022 tr1022.pdf Has ap-
peared Machine Learning, 48, 115-136,2002.

G. Wahba, Y. Lin, and H. Zhang. Generalized approx-
imate cross validation for support vector machines. In
A. Smola, P. Bartlett, B. Scholkopf, and D. Schuur-
mans, editors, Advances in Large Margin Classifiers,
pages 297–311. MIT Press, 2000. (svm.pdf )

Y. Lin. A note on margin based classifiers. tr1044r.pdf,
2002. Has appeared in Statistics and Probability Let-
ters.
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Short selection of books on Support Vector Machines.
See also kernel-machines.org, amazon.com

• . Cristianini and J. Shawe-Taylor. An Introduction
to Support Vector Machines. Cambridge Univer-
sity Press, 2000.

• B. Scholkopf and A. Smola. Learning with Ker-
nels Support Vector Machines, Regularization, Op-
timization and Beyond. MIT Press, 2002.

• B. Scholkopf, C. Burges, and A. Smola. Advances
in Kernel Methods-Support Vector Learning. MIT
Press, 1999.

• B. Scholkopf, K. Tsuda, and J-P.Vert. Kernel Meth-
ods in Computational Biology. MIT Press, 2004.
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• Statistica Sinica. Challenges in statistical machine
learning. v. 16, 2006. Special Issue.

• A. Smola, P. Bartlett, B. Scholkopf, and D. Schu-
urmans. Advances in Large Marin Classifiers. MIT
Press, 2000.



The Multicategory SVM-next lecture:

In 860/pdf1:
lee.lee.pdf
lee.lin.wahba.04.pdf
lee.wahba.ackerman.04.pdf
lee.wahba.ackerman.corr.04.pdf
lee.kim.lee.koo.2006.pdf
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Where to go for software

• SVM-Light, Thorsten Joachims
sv mlight.joachims.org

In C.

• MSVM-Multicategory SVM, Yoonkyung Lee
www.stat.osu.edu/˜yklee/software.html

Addon to R.
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Optimal Classification and the
Neyman-Pearson Lemma:

densities of

for class and class .

NOTATION:

prob. next observation is an

prob. next observation is a
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Let cA = cost to falsely call a B an A

cB = cost to falsely call an A a B

Bayes classification rule: Let

φ(x) : x → {AB}

Expected cost:
E {cA[1− p(x)] I(φ(x) = A)}

get a B and call it an A

+E {cB[p(x)] I(φ(x) = B)}

get an A and call it B

Optimum (Bayes) classifier:

φOPT(x) =







A if p(x)
1−p(x)

> cA
cB

,

B otherwise.
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To estimate p(x), alternatively let f(x) = log p(x)/(1−

p(x)), the log odds ratio a.k.a. the logit. “Standard”
case: Training set

{yi, xi}
yi ∈ {A,B}

xi ∈ T , some index set
.

Relative frequency of A’s in the training set is about
the same as in the general population.

Penalized log likelihood estimation:

Estimate f by penalized likelihood. If cA/cB = 1,
then the optimal classifier is

f(x) > 0 (equivalently, p(x)− 1
2 > 0) → A

f(x) < 0 (equivalently, p(x)− 1
2 < 0) → B
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♣♣ Penalized log likelihood estimation of the logit f =

log[p/(1− p)].

y =
1

0

= A

= B
(important)

The probability distribution function (likelihood) for y | p

is: L = py(1− p)1−y =







p if y = 1

(1− p) if y = 0

and the negative log likelihood is

− logL = − log[py(1− p)1−y]

= −y log p− (1− y) log(1− p).

Using p = ef/(1 + ef) gives
− logL = −yf + log(1+ ef)
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♣♣ Penalized log likelihood estimation of f (contin-
ued) (special case).

{yi, xi}, yi =
1

0
, xi ∈ T

Find f(x) = d+ h(x) with h ∈ HK to min

1

n

n
∑

i=1

[

−yif(xi) + log(1 + ef(xi))
]

+ λ‖h‖2HK

where HK is the reproducing kernel Hilbert space
(RKHS) with reproducing kernel

K(s, t), s, t,∈ T .

Theorem: (Special case of second variational prob-
lem)

fλ(x) = d+
n
∑

i=1

ciK(x, xi).
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♣♣ Penalized log likelihood estimation of f (contin-
ued)

fλ(x) = d+
n
∑

i=1

ciK(x, xi)

Find d, c = (c1, . . . , cn) = cλ to minimize

1
n

∑n
i=1

[

−yif(xi) + log(1 + ef(xi))
]

+ λ‖h‖2HK
.

Here

‖h‖2HK
≡

n
∑

i,j=1

cicj K(xi, xj).

Given λ, this is a nice strictly convex optimization prob-
lem. Choose λ by GACV. Target for GACV is to mini-
mize the Comparative Kullback-Liebler (CKL) distance
of the estimate from the true distribution:

R(λ) = Eftrue

n
∑

i=1

−ynew.ifλ(xi)+log(1+efλ(xi)).
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♣♣ Support Vector Machines

y =
+1 =

−1 =

A

B
(note different coding)

Find f(x) = d+ h(x) with h ∈ HK to min

1

n

n
∑

i=1

(1− yif(xi))+ + λ‖h‖2HK
(∗∗)

where (τ)+ = τ, τ > 0,= 0 otherwise.

Then

fλ(x) = d+
n
∑

i=1

ciK(x, xi). (∗)

Substitute (*) into (**), choose λ, given λ, find c and d.
The classifier is

fλ(x) > 0 → A

fλ(x) < 0 → B
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♣♣ Comparison of the penalized log likelihood esti-
mate fλ of the log odds ratio log p/(1 − p) and fλ,
the SVM classifier:

Suspicion: They are related...

Let us relabel y in the likelihood –

ỹ =







+1 if A,

−1 if B.

Then

−yf + log(1+ ef) → log(1 + e−ỹf)

Figure 1 compares

log(1 + e−yf), (1− yf)+ and (−yf)∗

where

(τ)∗ =







1 if τ > 0,

0 otherwise.

( (−yf)∗ is the misclassification counter).
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[Let τ = yf ]. Comparison of (−τ)∗,

(1− τ)+ and loge(1+ e−τ). Bin Yu observed at the
talk that log2(1+e−τ) goes through 1 at τ = 0. Any
strictly convex function that goes through 1 at τ = 0

will be an upper bound on the missclassification func-
tion and will be a looser bound than some SVM func-
tion.
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The SVM is estimating the sign of the log odds ratio,
just what you need for classification
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SVM and Penalized Likelihood Estimates Compared:
true: p(x) = .4(sin0.4πx) + .5 on [-2,2]
The plots are: 2p − 1 for ’true’ and 2pλ̂ − 1 for the
penalized likelihood estimate, for comparison to the
SVM estimate.

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

truth
logistic regression
SVM

n = 300, xi equally spaced on [0,1], yi simulated
according to p(x), coded to ±1 for the SVM. They
give nearly identical classification rules, as determined
by the sign of the estimate.
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