
Statistics 860. Lecture 14, part 2 Tuning the SVM:

Recall that the penalized log likelihood estimate was
tuned by a criteria which chose λ to minimize a proxy
for

R(λ) = E
1

n

n
∑

i=1

−ynew·ifλ(xi) + log(1 + ef(xi)).

R(λ) is the expected ‘distance’ or negative log likeli-
hood for a new observation with the same xi. For the
SVM classifier it is possible to follow an alagous route
if we have a criteria which chooses λ to minimize a
proxy for

R(λ) = E
1

n

n
∑

i=1

(1 − ynew·ifλ(xi))+.

That is, it is choosing λ (and possibly other parame-
ters in K) to minimize a proxy for an upper bound on
the misclassification rate- although the real goal is to
minimize the misclassification rate.
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There is a GACV version for the SVM which tunes to
optimize R(λ). Details can be found in tr1016.pdf,
tr1022.pdf, svm.pdf. Thus, it will be targeted at
an upper bound for the misclassification rate.
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Yi Lin’s Lemma:

The minimizer of E(1 − ynewf(x))+ is sign f(x)

= sign (p(x) − 1
2)

where f(x) = log p(x)/(1 − p(x)).

AS A CONSEQUENCE: Find fλ = d + h which mini-
mizes

1

n

n
∑

i=1

(1 − yif(xi))+ + λ‖h‖2HK

where λ is chosen to minimize (a proxy for) R(λ),

is estimating sign f(x) – EXACTLY WHAT YOU NEED

to minimize the misclassification rate!
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Tuning experiments to follow are courtesy Yi Lin, reprinted
from [tr1014.pdf].
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From Yi Lin. The underlying conditional probability
function p(x) = Prob{y = 1|x} in our simulation.
The function sign [p(x) − 1/2] is 1, for 0.25 < x <

0.75;−1 otherwise.
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From Yi Lin. SVM estimates, Sobolev Hilbert space
kernel (spline kernel), for samples of size 33, 65, 129,
257. The training set is generated using p from the
preceeding slide and the xi equally spaced on [0,1].
The tuning parameter λ is chosen to minimize the
GCKL in each case. Note that as the sample size
becomes larger, the curve becomes more like the step
function sign (p(x) − 1/2).
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From Yi Lin. For the same n = 257 sample as in the
preceeding figure- the solutions to the SVM regular-
ization nλ = 2−1,2−2, . . . ,2−25, left to right start-
ing with the top row. . We see that solution is close
to sign[p(x) − 1/2] when nλ is in the neighborhood
of 2−18. 2−18 was the minimizer of the GCKL, sug-
gesting that it is necessary to tune the SVM to esti-
mate sign (p − 1/2) well.
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It has been recognized by other authors that when
the data is coded as ±1, that the likelihood function
as well as quadratic loss (ridge regression) are large
margin classifiers, and have given them new names -
e. g. xxx-vector machines. Other large margin clas-
sifiers have appeared under various names. In some
sense, the hinge function associated with the SVM is
the nearest convex upper bound to the misclassifica-
tion counter.

Next slide is from Yi Lin, A note on margin-based clas-
sifiers, tr1044r.
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Examples of margin-based loss functions.
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SVM’s are very desirable and popular in higher dimen-
sions, and when the classes are (nearly) separable.

The SVM’s tend to be sparse, as many coefficients
corresponding to correctly classified data points away
from the boundary will be 0.

Penalized likelihood estimates are more appropriate
when there is large overlap between the classes and/or
you want a probability.
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Thorsten Joachim’s ξ −α method for tuning the SVM:
Roughly speaking, it replaces R(λ) (the hinge func-
tion) from p 18 with the misclassification counter. The
term which corresponds to the degrees of freedom for
signal (traceA(λ) in penalized least squares is simi-
lar in GACV and the ξ − α method.
See svmlight.joachims.org. The ξ − α method
is built into the svmlight code for computing support
vector machines, and is very popular. GACV behaves
similarly to the ξ − α method, see tr1039.pdf

When large data sets are available 10-fold cross vali-
dation is a popular approach.
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♣♣ The Nonstandard Situation

πA = prob. an observation in the
population is an A

πB = 1−πA = prob. an observation in the
population is a B (as before)

πs
A = fraction of training set that are A’s

πs
B = 1−πs

A = fraction of training set that are B’s
Let

ps(x) =
πs
AhA(x)

πs
AhA(x) + πs

BhB(x)

= Prob.{ys = A|x}

ys=element of training set

29



♣♣ The Nonstandard Situation (continued)

Since ps is more directly accessible we re-express
the Bayes classification rule to minimize the expected
cost for a random sample from the population: to get

φOPT(x) =

{

A if ps(x)
1−ps(x)

> cA
cB

πs
A

πs
B

πB
πA

B otherwise

}

Letting
L(B) = cAπs

AπB
L(A) = cBπs

BπA
gives
φOPT(x) = A if ps(x) −

L(−1)
L(−1)+L(1)

> 0

= B if ps(x) −
L(−1)

L(−1)+L(1)
< 0
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♣♣ The Nonstandard Situation (continued).

Find f(x) = d + h(x) with h ∈ HK to min

1

n

n
∑

i=1

L(yi)(1 − yif(xi))+ + λ‖h‖2K

(only the ratio L(A)/L(B) counts if a constant is ab-
sorbed in λ).

Lemma [tr1045.pdf]

The minimizer of

E L(ys
new)(1 − ys

newf(x))+ is

sign

(

ps(x) −
L(−1)

L(−1) + L(1)

)

“s” – training
set

ր
replaces 1

2
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