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Multicategory Support Vector Machines
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♣♣ Multichotomous penalized
likelihood[xiwuth.pdf].

k + 1 categories, k > 1. Let pj(t) be the probability
that a subject with attribute vector t is in category j,
∑k

j=0 pj(t) = 1. From [xiwuth.pdf]: Let

f j(t) = log pj(t)/p0(t), j = 1, · · · , k.

Then:

pj(t) = efj(t)

1+
∑k

j=1 efj(t)
, j = 1, · · · , k

p0(t) = 1

1+
∑k

j=1 efj(t)

Coding:

yi = (yi1, · · · , yik),

yij = 1 if the ith subject is in category j and 0 other-
wise.

(Also J. Zhu and T. Hastie, Biostatistics 5:427-443,
2003- fj(t) = (bj, x) with

∑K
j=1 fj(t) = 0 con-

straint)
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♣♣ Multichotomous penalized likelihood (cont.).

Letting f = (f1, · · · , fk) the negative log likelihood
can be written as −logL(y, f)

=
n

∑

i=1

{−
k

∑

j=1

yijf
j(ti) + log(

k
∑

j=1

1 + ef j(ti))}.

where

f j =
M
∑

νj=1

dνjφν + hj.

λ‖h‖2HK
becomes

k
∑

j=1

λj‖h
j‖2HK

,

and the optimization problem becomes: Minimize

Iλ(y, f) = −logL(y, f) +
k

∑

j=1

λj‖h
j‖2HK

.
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♣♣ Multichotomous penalized likelihood (cont.).

10 year risk of mortality as a function of t = (x1, x2, x3) =
age, glycosylated hemoglobin, and systolic blood pres-
sure[xiwuth.pdf].
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Figure 34: Cross-section plot of probability surfaces. In each plot, the di�erences betw eenadja-

cen tcurves (from bottom to top) are probabilities for : alive, diabetes, heart attack, other cause

respectively . The points imposed are in the same order. Older onset without taking insulin, those

who died after 10yrs from baseline are considered to be alive. n = 646.

x2 and x3 set at their medians. The differences be-
tween adjacent curves (from bottom to top) are prob-
abilities pj(t) for : 0:alive, 1: diabetes, 2: heart attack,
3: other causes. f j(x1, x2, x3) =

µj + f
j
1(x1) + f

j
2(x2) + f

j
3(x3) + f

j
23(x2, x3)

(Smoothing Spline ANOVA model.)
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♣♣ Multicategory support vector machines
(MSVMs).

From [lee.lin.wahba.04.pdf], [lee.wahba.ackerman.04.pdf,
...corr.04.pdf], earlier reports.
k > 2 categories. Coding:

yi = (yi1, · · · , yik),
k

∑

j=1

yij = 0,

in particular yij = 1 if the ith subject is in category j

and yij = − 1
k−1 otherwise. yi = (1,− 1

k−1, · · · ,− 1
k−1)

indicates yi is from category 1. The MSVM produces
f(t) = (f1(t), · · · fk(t)), with each f j = dj + hj

with hj ∈ HK , required to satisfy a sum-to-zero con-
straint

k
∑

j=1

f j(t) = 0,

for all t in T . The largest component of f indicates
the classification.
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♣♣ Multicategory support vector machines
(MSVMs)(cont.).

Let Ljr = 1 for j 6= r and 0 otherwise. The MSVM is
defined as the vector of functions fλ = (f1

λ , · · · , fk
λ),

with each hk in HK satisfying the sum-to-zero con-
straint, which minimizes

1

n

n
∑

i=1

k
∑

r=1

Lcat(i)r(f
r(ti) − yir)+ + λ

k
∑

j=1

‖hj‖2HK

equivalently

1

n

n
∑

i=1

∑

r 6=cat(i)

(fr(ti) +
1

k − 1
)+ + λ

k
∑

j=1

‖hj‖2HK

where cat(i) is the category of yi.

The k = 2 case reduces to the usual 2-category
SVM.

The target for the MSVM is f(t) = (f1(t), · · · , fk(t))

with f j(t) = 1 if pj(t) is bigger than the other pl(t)

and f j(t) = − 1
k−1 otherwise.
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♣♣ Multicategory support vector machines
(MSVMs)(cont.).
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Above: Probabilities and target f j ’s for three category
SVM demonstration.(Gaussian Kernel)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

x
0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

x
0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

x
0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

x

The left panel above gives the estimated f1, f2 and
f3. λ and σ were optimally tuned. (i. e. with the
knowledge of the ‘right’ answer). In the second from
left panel both λ and σ were chosen by 5-fold cross
validation in the MSVM and in the third panel they
were chosen by GACV. In the rightmost panel the clas-
sification is carried out by a one-vs-rest method.
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♣♣ Multicategory support vector
machines(MSVMs)(cont.).

The nonstandard MSVM:

More generally, suppose the sample is not represen-
tative, and misclassification costs are not equal. Let

Ljr = (πj/πs
j)Cjr, j 6= r

Cjr is the cost of misclassifying a j as an r, Crr =

0, πj is the prior probability of category j, and πs
j is

the fraction of samples from category j in the training
set. Then the nonstandard MSVM has as its target the
Bayes rule, which is to choose the j which minimizes

k
∑

ℓ=1

Cℓjpℓ(x)
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♣♣ Tuning the estimates.

GACV (generalized approximate cross validation).
Penalized likelihood:
[xiang.wahba.sinica.pdf] [lin.xiwuth.ps];
SVM[nips97rr.ps, nips97rr.typos.ps],
MSVM[lee.lee.pdf][lee.lin.wahba.04.pdf ].

Leaving out one:

VO(λ) =
1

n

n
∑

i=1

C(yi, f
[i]
λ (ti))

where f
[i]
λ is the estimate without the ith data point.

GACV (λ) =
1

n

n
∑

i=1

C(yi, f(ti)) + D(y, fλ)

where

D(y, fλ) ≈
1

n

n
∑

i=1

{

C(yi, f
[i]
λ (ti)) − C(yi, fλ(ti))

}

is obtained by a tailored perturbation argument. Easy
to compute for the SVM, use randomized trace tech-
niques to estimate the perturbation in the likelihood
case.
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♣♣ 8. The classification of upwelling MODIS
radiance data to clear sky, water clouds or ice clouds.

From [lee.wahba.ackerman.04.pdf].Classification
of 12 channels of upwelling radiance data from the
satellite- borne MODIS instrument. MODIS is a key
part of the Earth Observing System (EOS).

Classify each vertical profile as coming from clear sky,
water clouds, or ice clouds.

Next page: 744 simulated radiance profiles (81 clear-
blue, 202 water clouds-green, 461 ice clouds-purple).
10 samples from clear, from water and from ice:
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Pairwise plots of three different variables (including
composite variables.(purple = ice clouds, green = wa-
ter clouds, blue = clear)
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Classification boundaries on the 374 test set deter-
mined by the MSVM using 370 training examples, two
variables, one is composite. Y. K. Lee Student poster prize AMet-

Soc Satellite Meteorology and Oceanography session.

13



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rchannel 2

lo
g 10

(R
ch

an
ne

l 5
/R

ch
an

ne
l 6

)

Classification boundaries determined by the nonstan-
dard MSVM when the cost of misclassifying clear clouds
is 4 times higher than other types of misclassifica-
tions.
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Real Data: Pairwise plots of three different variables
(including composite variables). (purple = ice clouds,
green = water clouds, blue = clear) 1536 profiles ”La-
beled by an expert.” Note remarkable similarity to sim-
ulated data!
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Real Data: Classification boundaries on the test set
determined by the MSVM using training examples, two
variables, one is composite.
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The first four panels show the predicted decision vec-
tors (f1, f2, f3, f4) at the test samples. The four class
labels are coded according as EWS in blue:
(1,−1/3,−1/3,−1/3),
BL in purple: (−1/3,1,−1/3,−1/3),
NB in red: (−1/3,−1/3,1,−1/3),
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and RMS in green: (−1/3,−1/3,−1/3,1). The col-
ors indicate the true class identities of the test sam-
ples. We can see from the plot that all the 20 test
examples from 4 classes are classified correctly and
the estimated decision vectors are pretty close to their
ideal class representation. The fitted MSVM decision
vectors for the 5 non SRBCT samples are plotted in
cyan. The last panel depicts the loss for the predicted
decision vector at each test sample. The last 5 losses
corresponding to the predictions of non SRBCTs all
exceed the threshold (the dotted line) below which
means a strong prediction. Three test samples falling
into the known four classes can not be classified con-
fidently by the same threshold.



How strong is the classification?

A decision vector close to a class code in the multi-
class case may mean a strong prediction. Recall the
multiclass hinge loss for an observation yi at xi:

C(yi, f(xi)) =
k

∑

r=1

Lcat(yi)r
(fr(xi) − yir)+

measures the proximity between an MSVM decision
vector and a coded class.

Cross validation heuristics will be used to estimate
strength of a prediction, (standard case). For each
i, leaving out the ith example, collect

C(ŷi, f
[−i](xi)) ≡ C[−i]

where ŷi is the coded version of the identification made
by f [−i], along with an indicator as to whether ŷi =

yi, i. e. whether the correct identification was made
by f [−i].

18



Heuristically, with some symmetry assumptions, all of
the C[−i] associated with a correct classification are
then pooled, and all of the C[−i] associated with an
incorrect classification are pooled and can be used to
form an estimate of the probability of correct classi-
fication, as a function of C(y, f(x)) for future obser-
vations. When the training set is completely correctly
classified, then the 95% of the C[−i] distribution could
be used.
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