
Statistics 860 Lecture 16 c©G. Wahba 2016

l1 penalties and basis pursuit.

The original “Basis Pursuit”/LASSO papers are Chen, Donoho and

Saunders (1998) and Tibshirani (1996). (see references at the end

of the lecture notes ). This lecture based on:

Shi, W., Wahba, G., Wright, S., Lee, K., Klein, R., and Klein, B.

“LASSO-Patternsearch Algorithm with Application to

Ophthalmalogy Data”. In Statistics and Its Interface(SII), 1(2008)

137-153. II-1-1-A12-Shi.pdf. Steve Wright’s LPS algorithm is at

http://pages.cs.wisc.edu/~swright/LPS/.

Shi, W., Lee, K., and Wahba, G. “Detecting Disease Causing Genes

by LASSO-Patternsearch Algorithm” BMC Proceedings 2007, 1

(Suppl1): S60 gaw15.pdf. See also pLPS.pdf.
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Cost Functions C(y, f)

(Univariate)

Regression:

Gaussian data (y − f)2

Bernoulli, f = log[p/(1− p)] −yf + log(1 + ef )

Other exponential families other log likelihoods

Data with outliers robust functionals

Quantile functionals ρq(y − f), ρq(τ) = τ(q − I(τ ≤ 0))

Classification: y ∈ {−1, 1}
Support vector machines (1− yf)+, (τ)+ = τ, τ ≥ 0, 0 otherwise

Other “large margin classifiers” e−yf and other functions of yf

Multivariate (vector-valued y) versions of the above.
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Penalty Functionals Jλ(y, f)

Quadratic (RKHS) Penalties:

x ∈ T , some domain, can be very general.

f ∈ HK , a Reproducing kernel Hilbert Space (RKHS)

of functions, characterized by some positive

definite function K(s, t), s, t ∈ T . λ‖f‖2HK , etc.

lp Penalties:

x ∈ T , some domain, can be very general.

f ∈ span {Br(x), r = 1, · · · , N},
a specified set of basis functions on T .
f(x) =

∑N
r=1 crBr(x) λ

∑N
r=1 |cr|p

λ→ (λ1, · · · , λq) Combinations of RKHS and lp penalties.
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We describe the LASSO-Patternsearch (LPS) algorithm, a two step

procedure whose core applies a LASSO (`1 penalized likelihood) to

Bernoulli ({0, 1}) response data y given a very large attribute

vector x from a sparse multivariate Bernoulli distribution. Sparsity

here means that the conditional distribution of y given x is assumed

to have very few terms, but some may be of higher order (patterns).

The BGACV for Bernoulli data is discussed to tune the LASSO

and a final parametric fit for variable selection, which is based on a

prior belief in sparsity. An algorithm which can handle a very large

number (2× 106) of candidate terms in a global optimization

scheme is given, and it is argued that global methods have a certain

advantage over greedy methods in the variable selection problem.

Applications to demographic and genetic data are described.
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Outline

1. The LASSO - `1 penalties.

2. The multivariate Bernoulli distribution: Bernoulli response

y ∈ {0, 1}), Bernoulli attributes x ∈ ({0, 1}, · · · , {0, 1}).

3. Tuning: GACV and BGACV for Bernoulli responses.

4. LASSO-Patternsearch (LPS) core algorithm for global variable

selection.

5. The post LASSO step.

6. Simulations: global vs greedy algorithms.

7. Examples: demographic study, genetic data.

8. Summary and conclusions.
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The LASSO

Given yi, x(i), where x(i) = (x1(i), · · · , xp(i), we find f = f(x) to

minimize

Iλ(y, f) = L(y, f) + λJ(f)

where L(y, f) is 1
n times the negative log likelihood of y given x (or

some other measure of the fit of y to f), J(f) is a penalty

functional on f and λ is a tuning parameter. If

f(x) = µ+
∑

c`B`(x),

for some specified basis functions, and the penalty functional is

J(f) =
∑
`

|c`|,

then the solution is called the LASSO (Tibshirani, 1996).(A similar

idea was proposed by Chen, Donoho and Saunders, 1998).
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Copious literature exists for the LASSO with Gaussian data

L(y, f) =
∑

(yi − f(x(i))2,

as well as for the support vector machine

L(y, f) =
∑

(1− yif(x(i))+.

However there are relatively few results for Bernoulli data,

yi ∈ {0, 1}, with the log likelihood

L(y, f) =
n∑
i=1

[−yif(x(i)) + log(1 + ef(x(i)))],

specifically with respect to choosing the tuning parameter λ.
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c1

c2

l1 l2

The `1 penalty
∑
` |c`| is known to give a sparse representation - as

λ increases, an increasing number of the c` become 0. This is in

contrast to the `2 penalty
∑
` c

2
` , in which, typically the c` tend to

all be non-zero. The choice of λ is an important issue in practice.
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The Multivariate Bernoulli Distribution

Let (x0, x1, · · · , xp) be a p+ 1 dimensional vector of possibly

correlated Bernoulli random variables. The most general form

p(x0, x1, · · · , xp) of the joint density is (Whittaker 1990)

p(0, 0, · · · , 0)[π
p
j=0(1−xj)]p(1, 0, · · · , 0)[x0π

p
j=1(1−xj)] · · · p(1, 1, · · · , 1)[π

p
j=0xj ].

We can extract from this the conditional logit f , which appears in

the likelihood

f(x) = log

(
prob(y = 1|x)

(1− prob(y = 1|x)

)
as

f(x1, · · ·xp) = log p(1, x1, · · · , xp)− log p(0, , x1, · · · , xp).
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After some reorganization the logit has the representation

f(x1, · · · , xp) = µ+

p∑
j=1

cjBj(x)+
∑

1<j<p

cjkBjk(x)+· · ·+c12...pB12...p(x)

where Bj(x) = xj , Bjk = xjxk, and so forth, and the c’s are

parameters to be estimated. Note that Bj1j2···jr is 1 if

xj1 , xj2 , · · · , xjr are all 1 and 0 otherwise.
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Patterns

We will call Bj1j2..jr (x) an rth order pattern. Let q be the highest

order considered. Then there will be NB =
∑q
ν=0

(
p
ν

)
patterns. If

q = p, there is a complete set of NB = 2p patterns (including the

constant function µ), spanning all possible patterns. If p = 7, say

then there will be 27 = 128 patterns and standard software can be

used to solve the Bernoulli LASSO problem. If p = 1, 000 there are

over half a million unknown coefficients just considering “main

effects” and order 2 patterns, so special purpose software is

required. To consider all possible patterns of order three requires

preprocessing to reduce the number of candidates. In any case,

however, the `1 penalty, with λ chosen with variable selection in

mind, is ideally suited to find those (assumed) small number of

patterns which influence y.
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Tuning

The Comparative Kullback-Liebler (CKL) distance: Letting f and

fλ be the true and estimated parameters of the distribution, then

the KL distance, defined as

KL(f, fλ) = Ef log

(
G(y, f)

G(y, fλ)

)
is a measure of how close the fitted distribution G(y, fλ) is to the

true, but unknown distribution G(y, f). CKL(λ) is KL(λ) minus

any terms not dependent on λ. In the Gaussian case with known

σ2 CKL(λ) =
∑

1
2σ2 (f(x(i)− fλ(x(i))2, a. k. a. PMSE. In the

Bernoulli case

CKL(λ) =
∑
−p(x(i))fλ(x(i)) + log(1 + efλ(x(i))).

where p = ef/(1 + ef ).
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In the Gaussian case, when y = f(x) + ε with ε ∼ N (0, σ2I) with

σ2 known, there is the well known unbiassed risk estimate for

PMSE(λ) (Mallows(1973), Hudson(1978)). In Poisson, Gamma,

Binomial with m > 2 and other distributions, unbiassed estimates

of CKL(λ) are well known, (Hudson(1978),Wong(2006)). In the

Gaussian case with σ2 unknown, an exact unbiassed estimate for

PMSE(λ) is not available but a good approximation to the

minimizer is available (GCV , for example). Similarly, in the

Bernoulli case Wong shows that there is no unbiassed estimator for

CKL(λ) but a good approximation for finding the minimum

(GACV) has been given in Xiang and Wahba(1996) based on a

leaving-out-one argument.
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The GACV was derived from a leaving-out-one argument on the

CKL. In the LASSO-Patternsearch case it has a simple form:

GACV (λ) =
∑
i

−yifλ(x(i))+log(1+efλ(x(i)))+trH

∑
i yi(yi − pλ(x(i)))

(n−NB∗)

where H = B ∗ (B ∗′WB∗)−1B∗′ with B∗ is the design matrix for

the basis functions in the fitted model and W is the n× n diagonal

matrix with ii th element the estimated variance σλ(i). NB∗ is the

number of non-zero coefficients in the fitted model.
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BGACV

It has long been understood in the Gaussian data-quadratic

penalty case that tuning for PMSE is not the same as tuning for

variable selection, indeed, this is the difference between the well

known AIC (prediction) and BIC (variable selection with prior

belief in sparsity). (George(2000), Leng, Lin and Wahba(2006)).

Where the AIC has a 2 in front of the degrees of freedom, the BIC

has a log n. For log n > 2, BIC gives a bigger λ. For the present

work being specifically targeted to obtain sparse models, will will

do the same thing, giving

BGACV (λ) =
∑
i

−yifλ(x(i))+log(1+efλ(x(i)))+
log n

2
trH

∑
i yi(yi − pλ(x(i)))

(n−NB∗)

(Theorem?).
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Global LASSO Algorithm (thanks Steve Wright)

(2× 106 unknowns.) The minimization problem has the form

min
c
Iλ(y, f) ≡ min Iλ(c) := F (c) + λ‖c‖1.

We describe a separable approximation algorithm with projected

Newton acceleration. Generates a sequence of iterates ck,

k = 1, 2, . . . .

At iteration k, form a linear model with damping, to solve for

candidate step d:

min
d

F (ck) +∇F (ck)T d+
1

2
αkd

T d+ λ‖ck + d‖1.

Larger αk ⇒ shorter step.

Can be solved trivially as it is separable in the components of d:

O(n) operations.

Get an estimate of the zero set Ck := {i | cki + di = 0}.
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First-order step: keep doubling αk until the step gives a decrease in

Iλ, that is, Iλ(ck + d) < Iλ(ck). Take this kind of step if Ck is large

(more than 1000 elements, say).

Otherwise try to accelerate by taking a Newton step in the

components that are not in Ck — the ones that are apparently

nonzero at the solution.

Define the non-zero set Sk := {1, 2, . . . , n} \ Ck and define the

projected Hessian

Hk :=

[
∂2F (ck)

∂ci∂cj

]
i∈Sk,j∈Sk

.

Compute projected Newton step

dSk = −H−1k [∇F (ck)]Sk .

Do a line search in this direction (but curtail it if any of the

components in Sk change sign, that is, cross zero).
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Get further savings by not evaluating the whole vector ∇F (ck).

At iteration k, define working set Wk to contain

• components i with cki 6= 0; and

• some random fraction of the other components (say, 1% or 5%).

Evaluate only the Wk components of ∇F (ck); set the other

components of the step to zero: di = 0 for i /∈ Wk.

Still need to evaluate the full vector ∇F (ck) to check optimality.

To solve for 21 values of λ on a 3 GHz dual-core PC reqired

• a few seconds for 128 basis functions

• 4.5 minutes for 403,000 basis functions.
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Step 2: Parametric Linear Logistic Regression

The NB∗ patterns surviving the LASSO step are entered into a

linear logistic regression model using glmfit in MATLAB and final

pattern selection is then carried out by backward elimination.

(Step 2). This is a heuristic step which has given us good results in

a large number of simulations and a small number of applications.

It was initially motivated by observing that putting the entire set

of NB∗ surviving patterns in a linear logistic regression resulted in

patterns whose coefficients were not significantly different from

zero. One of the NB∗ patterns is removed, the model is fit, and the

BGACV score is computed. The pattern that gives the best score

to the model after being taken out is removed from the model.

This continues to the end and the final model is chosen from the

pattern set with the best tuning score.
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Global vs. Greedy Algorithms

Conjecture: It is harder to pick out the right patterns if variables

that are not directly related to the response are more highly

correlated with those that are. Loosely speaking this is verified by

the “Irrepresentable Condition” of Zhao and Yu(2006), which can

be thought of as a measure of how much unimportant variables are

correlated with important ones. This condition is almost necessary

and sufficient for the oracle property.

Conjecture: The LASSO-Patternsearch algorithm does better than

greedy competitors in these hard cases.
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Correlated attribute vectors, an experiment

Sample size n = 2000, p = 20 variables, x = (x1, · · · , x20).

f(x) = −2 + 2B9(x) + 2B67(x) + 2B1234(x),

so there are three patterns relevant to y. Variables x1, x2, x3, x4

pairwise correlated among each other according to ρ1. Variables

x5, x6, x7, x8 are pairwise correlated between important and

unimportant variables, x5 with x1, and so forth, according to ρ2.

Variables 9, · · · , 20 are uncorrelated. All patterns up to order 4 are

tentatively in the model, which results in NB = 6196 basis

functions.

The next slide compares LASSO-Patternsearch, Logic Regression

(Ruczinski, Kooperberg and LeBlanc(2003)) and SPLR (Stepwise

Penalized Logistic Regression, Park and Hastie(2008)) according to

their ability to select B1234.
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Correlation Experiment

Number of times in which B1234 appears in the fitted model, 100

replications. Left: LASSO-Patternsearch, Logic Regression, and

SPLR, as it varies with ρ1 (within) for two values of ρ2 (between).

Right: Same data as ρ2 varies, for two values of ρ1 (dashed = low,

continuous = high). LPS is robust against high ρ1 and ρ2.
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Details for the simulation example

Table 1: In each row of a cell the first three numbers are the appear-

ance frequencies of the three important patterns and the last number

is the appearance frequency of patterns not in the model. Summary:

LR and especially SPLR generate irrelevant patterns.

ρ2\ρ1 0 0.2 0.5 0.7

LPS 96/100/100/54 98/100/100/46 100/100/100/43 100/100/100/44

0 Logic 100/98/96/120 98/95/93/107 99/94/92/83 100/98/83/134

SPLR 100/100/100/527 100/100/98/525 100/100/98/487 100/100/97/489

LPS 99/100/100/46 100/100/100/49 100/100/100/39 100/100/98/36

0.2 Logic 99/97/94/96 100/99/87/94 100/100/88/73 100/99/86/117

SPLR 100/100/94/517 100/99/96/530 100/97/95/495 100/100/96/485

LPS 99/100/99/47 99/100/100/51 100/100/99/51 100/100/98/46

0.5 Logic 99/96/86/162 100/95/87/109 100/96/78/122 100/99/80/143

SPLR 100/98/75/548 100/96/80/552 100/99/80/531 100/98/78/518

LPS 100/99/96/44 99/99/97/51 100/99/96/67 100/99/94/65

0.7 Logic 100/83/70/195 100/88/69/167 100/85/70/153 100/89/74/126

SPLR 100/91/51/580 100/85/49/594 100/81/52/584 100/72/55/570
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Example 1: Risk of myopic change in a demographic study.

Applied to to “myopic change” from the Beaver Dam Eye Study,

BDES 1 to BDES 2, five years apart. n = 876 records of persons

aged 60-69 at BDES 1. A person whose “worse eye” scored at a

decrease of .75 diopters or more is labeled y = 1, and 0 otherwise.

Which variables or clusters of variables are predictive of this

outcome? Consider seven variables of possible interest and want to

see if there are high order interactions among the variables. The

continuous variables are dichotomized so as to be able to do this.
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Table 1: Trial Variables and Cutpoints

variable description binary cut point

(higher risk)

(X = 1)

X1 sex sex Male

X2 inc income < 30

X3 jomyop juvenile myopia < 21

X4 catct cataract 4-5

X5 pky packyear >30

X6 asa aspirin not taking

X7 vtm vitamin not taking

There are 27 possible subsets (clusters) of variables that could be

important.
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Eight patterns (plus µ) that survived the LASSO (Step 1), entered

in a parametric linear logistic regression. Patterns numbered 2,6,8

and 9 passed Step 2, giving the final model

f = −2.84 + 2.42 · catct+ 1.11 · pky · vtm
+1.98 · sex · inc · jomyop · asa+ 1.15 · sex · inc · catct · asa.

The significance levels for the coefficients of the four patterns in

this model can be formally computed and are, respectively

3.3340e-21, 1.7253e-05, 1.5721e-04, and 0.0428.
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Smokers, Vitamins and Cataracts

Recalling “smoking = 1”, “not taking vitamins = 1” “having

cataract(s) = 1”, we can read from this model:

f = −2.84 + 2.42 · catct+ 1.11 · pky · vtm

+1.98 · sex · inc · jomyop · asa+ 1.15 · sex · inc · catct · asa.

Letting variable indicate “0”: we see that smokers with cataract or

without cataract are protected by taking vitamins, Bpky·vtm = 0.

For non-smokers Bpky·vtm = 0, taking or not taking vitamins makes

no (significant) difference.
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Smokers, Vitamins and Cataracts

This result is physiologically meaningful-recent literature suggests:

a) Certain vitamins are good for eye health.

b) Smoking depletes the serum and tissue vitamin level, especially

Vitamins C and E.

“However, our data are observational and subject to uncontrolled

confounding. A randomized controlled clinical trial would provide

the best evidence of any effect of vitamins on myopic change in

smokers. ” (R. Klein in Shi et al (2008))
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Example 2. Rheumatoid Arthritis and SNPS in a Generative Model

From GAW 15

The 15th Genetic Analysis Workshop (GAW 15) provided an

extensive simulation data set of cases and controls with simulated

single nucleotide polymorphisms (snp’s) related to the risk of

rheumatoid arthritis. This was an opportuniity to apply LPS to a

set of large genetic attribute vectors with a known (hopefully

realistic!) architecture, and compare the results with the

description of the architecture generating the data. There were

1500 cases and 2000 controls, and 100 replicates. For the analysis

we used the 674 snps in chromosome 6 along with three

environmental variables, age, sex and smoking. Older than 55,

female and smoking are the risky (y = 1) attributes. Most of the

snps have three levels, normal, one variant allele and two variant

alleles so two dummy variables were created to code this.
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Example 2. Rheumatoid Arthritis and SNPS in a Generative Model

From GAW 15

A screen step one variable at a time with a (generous) passing

criteria of at least one p value less than 0.05 resulted in 72 snps, sex

and smoking. Using all main effects and second order patterns from

these 72 snps, sex and smoking resulted in 10371 basis functions.

After some correction for an obvious miscoding in the GAW data, a

model with five main effects and five two factor interactions was fit.

(Next slide, above the double line). The LPS found the important

variables.
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Simulated and Fitted Models, With and Without Third Order Patterns

Variable 1 Level 1 Variable 2 Level 2 Coef Est

constant - - - -4.8546 -4.6002

smoking - - - 0.8603 0.9901

Main effects SNP6 153 1 - - 1.8911 1.5604

SNP6 162 1 - - 2.2013 1.9965

SNP6 154 2 - - 0.7700 1.0808

sex - SNP6 153 1 0.7848 0.9984

sex - SNP6 154 2 0.9330 0.9464

Second order SNP6 153 2 SNP6 154 2 4.5877 4.2465

patterns SNP6 153 1 SNP6 553 2 0.4021 0

SNP6 154 2 SNP6 490 1 0.3888 0

Added

Third order pattern sex · SNP6 108 2 · SNP6 334 2 3 2.9106

Simulated model adapted from GAW 15 analysis. “Coef” is

simulated coefficients. LPS run with main effects and two factor

terms. “Est” is the estimated coefficients. LPS run with third

order patterns (403,594 patterns) resulted in the same fit. Then a

third order pattern added to the model, LPS successfully fitted it.
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Summary and Conclusions

Results can be generalized in several ways. The message is:

1. The log linear expansion of the multivariate Bernoulli

distribution is good way to think about Bernoulli responses

with attribute vectors consisting of bits. See

ding.wahba.zhu.2011 for another approach to the

multivariate Bernoulli distribution.

2. Bernoulli data can tuned in a manner appropriate for Bernoulli

data. BGACV is good for the variable selection problem with

Bernoulli data.

3. An algorithm for fitting a very large number of unknowns

simultaneously in a LASSO model is available. See

shi:wahba.irizarry.corrada.2011.pdf

4. It is argued that global methods based on simultaneous fits are

better at fitting correlated predictors in the variable selection
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problem than greedy methods.

5. Firm theoretical foundations for items 2. and 4. would be nice

to have.
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