Statistics 860 Lecture 17©G. wahba 2016

Splines on the Sphere, Diffusion Covariances on the
Sphere, Other Isotropic Covariances on the Sphere
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Spherical Harmonics
P=point on the sphere
P = (latitude, longitude) = (A, @)

A S (O,Qﬂ'),gb < (_%7%)

v 0y, COS(sA) Py(Sin @) 0<s</
“ 7 | Osssin(sA) Py (sing) —£ < s <0
¢=0,1,2,..., P,, = Legendre Polynomials

The spherical harmonics are the eigenfunctions of the

(horizontal) Laplacian A on the sphere:

1 1 1
5 Fax =+

a

A= CcoSs2 ¢ COS ¢

(COsS P fp) e

AYys = —L(£L 4+ 1)Y,

and play the same role on the sphere as sines and
cosines on the circle.



Spherical Harmonics (con’t)

f € £2 (Sphere)

f ~ Z Z fésyﬁs

=0 s=—/
where

fos = /sphm f(P)Yes(P)dP.



Positive Definite Functions on the Sphere

Letting P, P’ be two points on the sphere. B(P, P')
given by

B(P, P') = Sy ¥ prabys g1 Yos(P) Yy g (P')
will be positive definite if the matrix {6y, ». } is positive
definite. If this matrix is diagonal, and the entries only

depend on ¢, by, ps = Ay then we have the famous
addition formula for spherical harmonics:

S V(PP = o Y (U+1)NF (P, P))
ls ¢=0

where P, is the /th Legendre polynomial, and v (P, P’)
is the cosine of the angle between P and P'.

The addition formula for spherical harmonics:

I
S Yo (P)Yp(P) = 211

s=—¢

is the generalization to the sphere of

Py(v(P, P'))

sin(z)sin(z)) + cos(z)cos(z") = cos(z — =)
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Positive Definite Functions on the Sphere (continued)

According to a very old theorem of Schoenberg, an
isotropic covariance on the sphere is always of the
form
1 @)
B(P.P) =~ 3 MP(y(P,F")
T =0

with non-negative \,. We describe two different fam-
ilies of isotropic covariances on the sphere that have
been used in meteorological and biological applica-
tions. The first is based on a model of a stochas-
tic process which is the solution of the mth iterated
Laplacian driven by formal white noise, and the sec-
ond is based on a diffusion model. They involve dif-
ferent rates of decay of the energy content of the pro-
cesses. Probably one of the most important param-
eters in B is the implied rate of decay of energy with
wavenumber. [Oversimplification of course].



First Family: Splines on the Sphere

Recall that AYy;, = —4(£ + 1)Yy..
Consider the zero-mean Gaussian stochastic process

X(P) =) XyYes(P)
ls

with { X,,} independent, A/ (0, [B(E-Fll)]m)' Then

Am/zX(P) = dW (P), [formal white noise].
Then

EX(P)X(P) =

205 [g(g_|_1)]mns(P)Y'£’ /(P")
Km(P,P"), say.

Closed form expressions for a good approximation to
Km,m =3/2,2,5/2,--- 6 appear in Wahba 1981,
1982 sphspl.pdf.



00 14
fN Z Z fésyés

=0 s=—/
fos = [Sphmfwms(P)dP

00 14
AfN Z Z _£(£‘|‘ 1)f£S}/€S

{=0s=—/¢
00 14
In(f) = [(A™p2aP =3 3 @+ 1))>"f3
(=1s=—4
00 14
Km(PPY=Y Y —— v, (P)Y(P)

(=1 s=2 (L4 1))2m

1
Ms = e+ D
Km(P, Py =3 221D _p o p phy)

i=o [e(L + 1)]2m

null space of Jy, is Ypo(P) = 1.
let 49 (S) be space of functions for which Jy, is fi-
nite/constant functions.



In order to have a closed form expression for K, (P, P'),
it is necessary to sum the series

s 2v 41
k = P,
n) =Y @ O
To attempt to sum () for m=2, we note that
2v+ 1 1 1 1 1

= — = log h(1 — —)hYdh

2(v+1)2 12 (v+1)2 /O 9n( h) ’
v=12--.

Using the generating formula for Legendre polynomi-
als (Sansone,p.169),

S RYP(2) = (1—2hz+h2) "3 -1,  (sx)
v=1

~1<h<1
gives

1
V(1 = 2hz 4+ h2)

kQ(Z)::Ajlogh(l——%)( ~1)dh



Thin plate pseudo-splines on the sphere

1
We seek a norm Q2,(u) on HO (S) which is topolog-
1

ically equivalent to J2,(v) on H9 (S) and for which
the reproducing kernel can be obtained in closed form
convenient for computation.

Define

Qn() =3 S b = [ u(P)Y,(P)P,
v= 1k——1/

where

&= [(v+ )(u+1>(u+2> (v 42m —1)]71

Recall A\, = (1/(1/—|—1))2m' Since
1 1 1
2 S S )
m<"E, g Ak §uk
V:1727 ) k:_l/7' y UV, m:2737 )
we have

#Qm@) < Jn(u) < Qm(u), u € HI(S)



1 1
The norms J3,(-) and Q#,(-) are topologically equiv-

alent on HY,(S). The reproducing kernel R(P, P') for
1
#O (S) with norm Q32,(+) is then

R(P,P") = Rmn(P, P)

= > Y &Y @)YiP)
v=1k=—v

_ 1 & 1

2t = (v+1)---(v+2m—1)

A closed form expression can be obtained for R, (P, P")
as follows. Use the fact that

Py(v(P, P")).

1 /1 L 1
ﬁ/o (1=h)h dh:(u+1)-.-(u+r+1)’
r=0,1,2,.--.
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Then by using the generating function (xx) for the
Legendre polynomials we have

1 = 1

B (P, P7) = 2 & (w4 1) (v +2m — 1)P”(Z)
1 1 1
= onlam =222~
where
z = (P, P")

(cosine of the angle between P and P’), and

am(2) = [ (1= hY" (1~ 2hz + h) "2dn

m=0,1,- -

Formulas for [ A™(1 — 2hz 4+ h2) " 2dh,m = 0, 1,2
and recursion formulas for general m in terms of the
formulars for m = 1 and m = 2 can be found in B.
O. Pierce and R. M. Foster, A Short Table of Integrals,
Grun and Co, 1956[pp. 165,174,177,196]. Macsyma
evaluated ¢,,(z) recursively. The results appear in
the following table.
12



S j SC1. STAT. COMPUT. © 1982 Society for Industrial and Applied Mathematics

Vod 3 No-3- September 1982 0196-5204/82/0303-0008 S01.00/0

ERRATUM: SPLINE INTERPOLATION AND SMOOTHING
ON THE SPHERE*

GRACE WAHBA+
Table 1 contains several misprints in lines g [6], ¢ [7] and q [8]. The correct
table appears below.
TABLE 1
1
q...(z)=L (A—h)"(1—2hz+h*) " dn, m=0,1,---,10.

Key. qlml=dm(z), A=lnQ+Y{W), C=2/W, W=(-2)2

qlL035 &
ql1l;
2AU-C+1
ql213
2
A(I2 U -4 4U)-6C U+ 56U+ 1
2
qlL31;
3 2 2 2
A (60U —-346U) + 30U +C(BU-30UW)~-3U=+1
3
QL4133
4 3 2 3 2 3

2
A(B40 U - 7204 + 72 U ) + 420U + C (220U - 420 4 ) - 150 U =~ 4 U + 3

qfS13

H 4 3 4
(A (7560 U - B400 U + 1800 W ) + 3780 U

4 3 2 3 2
+ C(-3780U ¢ 2940 4 - 256U ) - 2310W + 60U -5 U + 6)/30

qlé]1;
é S 4 3 H
(A (27720 U - 37800 U + 12500 4 - 600 W ) ¢+ 13860 W

s 4 3 4 3 2
$C (- 13860 U + 14280 8 - 2772 W ) - 11970 U + 14704 + 154 - 3 ¥ + 5)

/30

* This Journal, 2 (1981), pp. 5-16.
+ Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706.

385

con‘/'(n uea?
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Thus, for example,R( P, P") for m=2 involves ¢> and ,
from the table,

J2] = A(12W?2 — 4W) — 6CW + 6W + 1
= . ,

(where A,C and W are defined on the Table) giving

G = (4ot 5?2 a2

—12(1_Z)3/2—|—6(1_Z)—|—1}

Note that ¢[0] which appears in the m = 1 case does
not lead to a proper rk since qg(1) is not finite. How-
ever, a proper rk exists for any m > 1, and the table

can be used to define go,,,_» for m = 3 2,3, 6.
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Splines on the Sphere, continued.

Figure 1: Sample Fourier coefficients.

: CN 1
Figure 2: \p) = [Z]Q:O A TOENER

2
S a;AIX(P) = dW(P).
=0
Figure 3: Correlation function corresponding to the
covariance for Figure 2.
Figure 4: A sample correlation function from another

data set.

then the corre-

Alternatively, if Ags = Y, j?rq)zj,
sponding covariance is 3., by Ry (P, P"), and the closed
form approximating expressions in Wahba(1982) could
be used.
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Fig1. Temperature Spectral Power, as a function of 2.

Fig2. ldealized Power Spectrum, as a function of /.

Fig3. Correlation for the power spectrum of Fig2. as

a function of distance, in degrees.

Fig4. Sample correlation vs distance, from Fig1. data.
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Second Family: Diffusion Models on the Sphere.

Consider the diffusion equation

Of B
5 ~RAf(P) =0

Letting f(P,t) = > ps fos(£) Yy, (P), f will satisfy the
diffusion equation if

d
s — et + 1) 1),

so that f(P,0) "diffuses” in time T to

F(P,T) =Y f3,(0)e HVTy, (p).
ls

Courtier and Weaver, QJRM(2001) used this argu-
ment to propose the isotropic covariance model with
Aps = e ®+1) or, more generally they proposed
considering the more general p.d.e.

0 :
S+ Y R (-aY () =0,
J

which leadsto Ay = e 225 msleCe+1Y
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Diffusion Models on the Sphere (continued).

Figure (a): (Weaver and Courtier) gives several dif-
ferent plots of A\y,. The heavy line corresponds to a
4 = 1 model and the dotted lines correspond to par-
ticular 5 = 2 and 5 = 3 models, all scaled to have

the same length scale.
Figure (b): Coresponding correlation functions.
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(Optional, remark) The sphere is a compact Rieman-

nian manifold, (Riemannian manifold: has an inner
product on the tangent space at each point that varies
smoothly.. on the sphere the tangent space is 2-dimensional
Euclidean space). kim.2000.pdf discusses a definition

of splines on a Riemannian manifold. Note the role of

the Laplacian and its eigenfunctions).
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