
Statistics 860 Lecture 18 c©G. Wahba 2016

Numerical Methods for Very Large Data Sets

• What do iterative methods for the solution of large
linear systems do? Early stopping of iterative meth-
ods as a smoothing-regularization method.

- lecture18b: -

• Reprise of SS-ANOVA models in time and space

• Backfitting in Smoothing Spline ANOVA (probably
not discussed)

• Iterative imputation as a trick for missing data in
regular patterns
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Early stopping of iteration as a regularization/tuning
method.

• G. Wahba. Three topics in ill posed problems. In
H. Engl and C. Groetsch, editors, Proceedings of
the Alpine-U.S. Seminar on Inverse and Ill Posed
Problems, pages 37–51. Academic Press, 1987.
illpose.pdf

• G. Wahba, D. Johnson, F. Gao, and J. Gong. Adap-
tive tuning of numerical weather prediction mod-
els: randomized GCV in three and four dimen-
sional data assimilation. Mon. Wea. Rev., 123:3358-
3369, 1995. wahba.johnson.gao.gong.1995.pdf
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References for Backfitting, imputation - (lect18b).

• Z. Luo. Backfitting in smoothing spline ANOVA.
The Annals of Statistics, 26:1733–1759, 1998.
luo:annstat1998.pdf

• Wahba, G. and Luo, Z. ” Smoothing Spline ANOVA
Fits for Very Large, Nearly Regular Data Sets,
with Application to Historical Global Climate Data”
TR 952, October 1995. Slightly revised version in
Annals of Numerical Mathematics 4 (1997) 579-
598. (Festschrift in Honor of Ted Rivlin, C.Micchelli,
Ed.) lreg.rev.pdf

• Luo, Z. , Wahba, G, and Johnson, D. R. ” Spatial-
Temporal Analysis of Temperature Using Smooth-
ing Spline ANOVA ” J. Climate 11, 18-28 (1998).
luo:wahba:johnson:1998.pdf

3



Basic References in Matrix Computations and Opti-
mization

• G. Golub and C. VanLoan. Matrix Computations,
Third Edition. Johns Hopkins University Press,
pp694, 1996.

• J. Nocedal and S. Wright. Numerical Optimiza-
tion. Springer, 1999.
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Early stopping in the
Richardson/Landweber/Fridman/Cimino/Picard

iteration.

Solve Mx = y where M is a large, non-negative def-
inite matrix, with eigenvalues λν and eigenvectors uν
by this iterative method. The kth iterate is

xk = xk−1 + βM(y −Mxk−1).

The desired “exact’ solution is

x = M†y =
∑
λν 6=0

(y, uν)

λν
uν,

where M† is the Moore-Penrose generalized inverse.
If βλ2

1 < 1, then (in theory) the kth iterate approaches
the desired solution as k →∞.
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xk = xk−1 + βM(y −Mxk−1)

= (I − βM2)xk−1 + βMy

= (I − βM2)[(I − βM2)xk−2 + βMy] + βMy
...

giving

xk = (I − βM2)k x0

+[(I − βM2)k−1 + (I − βM2)k−2 + · · ·+ I]βMy.

Lemma: (proof later)

[(I − βM2)k−1 + (I − βM2)k−2 + · · ·+ I]βM2 =

I − (I − βM2)k.

Right multiply by M†, use M2M† = M to get:

[(I − βM2)k−1 + (I − βM2)k−2 + · · ·+ I]βM =

[I − ((I − βM2)k]M†.
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Proof of Lemma:

For |θ| < 1, we have the familiar formula

1

1− θ
= 1 + θ + θ2 + . . .+ θk[1 + θ + . . .

and setting θ = (1− ρ) we get

1− (1− ρ)k

1− (1− ρ)
= 1 + (1− ρ) + . . .+ (1− ρ)k−1

and

1−(1−ρ)k =
[
1 + (1− ρ) + . . .+ (1− ρ)k−1

]
ρ.

Let B = ΓDΓ′ with O ≺ B ≺ I. This lets us write

I−(I−B)k =
[
I + (I −B) + . . .+ (I −B)k−1

]
B.

Setting B = βM2 gives the lemma.
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Setting x0 = 0 the result is

xk = (I − (I − βM2)k)M†y

=
∑
λν 6=0

(
1− (1− βλ2

ν)k
)(y, uν)

λν
uν

Compare to

M†y =
∑
λν 6=0

(y, uν)

λν
uν

or to a regularized estimate:

y = Mx+ ε

(y −Mx)2 + λx′x

gives

x =
∑
λν 6=0

(
λ2
ν

λ2
ν + λ

)
(y, uν)

λν
uν
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Early Stopping

A semi-realistic ‘toy’ problem to test and demonstrate
the feasibility and efficiency of choosing both k and λ
via GCV or UBR, in conjunction with the randomized
trace estimation. Used pre-conditioned conjugate gra-
dient algorithm, with early stopping. See cj.pdf for
the conjugate gradient algorithm.

ECMWF Gridded Level IIIB FGGE data for the 500mb
height for January 2, 1979, was used to obtain a spher-
ical harmonic representation for the 500mb height field
of the form

f(P ) =
30∑
`=0

∑̀
s=−`

x`sY`s(P ),

where P is a point on the sphere, and the Y`s are
spherical harmonics. This representation was obtained
by solving a variational problem given the gridded data.
The amount of smoothing was chosen to make the re-
sulting contour plots match the ECMWF plots visually.
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500mb heght forecast from ECMWF:

March 27 72 hour forecast 500 hPa geopotential
height (in 10’s of meters), from ECMWF.
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Simulated observational data at n = 600 North Amer-
ican radiosonde stations generated by

yi = f(Pi) + εi

where ε = (ε1, ..., ε600)′ ∼ N (0, σ2I), and the Pi
are station locations. σ = 9m. is realistic observa-
tional error. An approximate spline on the sphere can
be obtained by letting x̂λ = (x̂00,λ, x̂10,λ, ...) be the
minimizer of

n∑
i=1

(yi −
30∑
`=0

∑̀
s=−`

x`sY`s(Pi))2

+λ
30∑
`=0

∑̀
s=−`

[(`)(`+ 1)]2x2
`s.

The penalty functional J(f) =
∑
`s[(`)(`+1)]2x2

`s is
a multiple of J(f) =

∫
S(4f)2 where4 is the Lapla-

cian on the sphere (see Wahba(1981,1982a))
sphspl.pdf.

11



LettingK be the 600×960 matrix with entries Y`s(Pi)
andD be the diagonal matrix with `s, `s entries [`(`+
1)]2, then the minimizer x̂λ satisfies

(K′K + λD)x̂λ = K′y.

A preconditioned conjugate gradient algorithm with (sym-
metric, invertible) preconditionerC replaces x̂λ byC−1w
and solves for w in

C−1(K′K + λD)C−1w = C−1K′y.

See Golub and van Loan (1989), Section 10.3, or cj.pdf.
In the experiment belowC was taken as [diag(K′K+
λD)]1/2.

The predictive mean square error is

R(λ, k) =
1

n

n∑
i=1

(fkλ(Pi)− f(Pi))2

where

fkλ(P ) =
∑
`s

x̂k`s,λY`s(P ), (1)

x̂kλ = {x̂k`s,λ}, (2)

and x̂kλ is the approximate solution after k iterations.
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The root predictive mean square errorR1/2 as a func-
tion of log10(λ) and k, where k is the number of iter-
ations in the cj iterative solution.

R(λ, k) is minimized at around −log10(λ) = 4.5,
and k = 75. The value of R1/2(λ, k) at the minimum
is about 6m. The smoothing procedure has resulted
in a smoothed minus true standard deviation which is
about 1/3 less than the observational standard devi-
ation.
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RanU1/2, the randomized version of Unbiased Risk,
as a function of log10(λ) and k.

RanU(λ, k) =
1

n
‖y −Kx̂kλ‖

2

+
2σ2

n

 1

σ2
ξ

ξ′[Kx̂kλ(y + ξ)−Kx̂kλ(y)]

 ,
where ξ came from a random number generator, ξ ∼
N (0, σ2

ξ I) and the true σ2 = 9m. was used.
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[Recall U(λ, k) = 1
nRSS(λ, k) + 2σ2

n traceA(λ, k).]



The first term in RanU is the mean residual sum of
squares and the expression in large brackets is the
randomized trace estimate of the influence operator.
The standard deviation σξ for the random vector ξ
should be chosen carefully if the implied influence ma-
trix Aky(θ)y is not linear in y (as it won’t be if the con-
jugate gradient algorithm is used). If σξ is too small,
then the calculation of the difference may be unstable,
if σξ is too large the behavior at Aky(θ) may not be
captured. Trial and error gave a σξ somewhat smaller
than the presumed σ of the noise in y, σξ = 3m =
1
3σ. RanU1/2(λ, k), estimates R1/2(λ, k) well. The
smallest value of R1/2(λ, k) is 5.987. The minimum
of RanU1/2(λ, k) is located in a region for which the
value of R1/2 is less than or equal to 6.12 in the
R plot, so that if a value of λ and a stopping rule k

based on minimizing RanU were used, then the ra-
tio of the resulting predictive mean square error to the
minimum possible predictive mean square error (the
inefficiency), would be no larger than 6.12/5.987 =

1.022.
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RanV 1/2 as function of log10(λ) and k.

The randomized GCV function is computed as

RanV (λ, k) =
1
n‖y −Kx̂

k
λ‖

2(
1
n

{
1
σ2
ξ

ξ′[ξ − (Kx̂kλ(y + ξ)−Kx̂kλ(y))]

})2.

[Recall that V (λ, k) =
1
nRSS(λ,k)

1
n(trace(I−A(λ,k))2 .]
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The value of RanV 1/2 at the minimum (11.354) is
roughly an estimate of

√
minλ,kR(λ, k) + σ2 = 10.8,

as predicted by the theory. The minimum GCV score
is located in a region for which the PMSE score R1/2

is less than or equal to 6.25 so that the inefficiency is
no bigger than 6.25/5.987 = 1.044.

In this experiment, the optimum λ was insensitive to
k, but in other experiments with larger noise, it was.
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