
Time and Space Models on the Globe:
Thirty years (1961-90) of Dec. Jan. Feb. aver-
age temperature measurements at 1000 stations
around the globe (with missing data- 23,119 ob-
servations), t = (t1, t2) = (x, P ) where x is
year, and P is (latitude, longitude). The RKHS of
historical global temperature functions that was
used is

H = [[1(1)]⊕ [φ]⊕H(1)
s ]⊗ [[1(2)]⊕H(2)

s ],

a collection of functions f(x, P ), on

{1,2, ...,30} ⊗ S,

where S is the sphere. H and f have the corre-
sponding (six term) decompositions given next:
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H = [1] ⊕ [φ] ⊕ [H(1)
s ] ⊕ [H(2)

s ]
f(x, P ) = C + dφ(x) + f1(x) + f2(P )

= mean + global + time + space
time main main
trend effect effect

⊕ [[φ]⊗H(2)
s ] ⊕ [H(1)

s ⊗H(2)
s ]

+ φ(x)fφ,2(P ) + f12(x, P )
+ trend + space−

by space time
effect interaction

Here φ is a linear function which averages to 0.
A sum of squares of second differences was ap-
plied to the time variable, and a spline on the
sphere penalty was applied to the space variable.
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β RKHS RK Rβ(s, t)

1 H(1)
s R1(x, P ;x′, P ′) = R̃1(x, x′)

2 H(2)
s R2(x, P ;x′, P ′) = R̃2(P, P ′)

3 [φ]⊗H(2)
s R3(x, P ;x′, P ′) = φ(x)φ(x′)R̃2(P, P ′)

4 H(1)
s ⊗H(2)

s R4(x, P ;x′, P ′) = R̃1(x, x′)R̃2(P, P ′)

1 = time, 2 = space, 3 = time main effect × space
interaction (trend by space), 4 = smooth time ×
smooth space interaction.
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Find f in M = H0 ⊕
∑

βHβ to minimize

n∑
i=1

(yi − f(t(i)))2 +
4∑

β=1

θ−1
β ‖Pβf‖2, (1)

where Pβ is the orthogonal projector in M onto
Hβ, and θ−1

β = λβ. The minimizer fλ (λ =
(λ1, · · · , λ4)) is of the following form: Letting

Qθ(s, t) =
4∑

β=1

θβRβ(s, t),

then

fθ(t) =
2∑

ν=1

dνφν(t) +
n∑

i=1

ciQθ(t(i), t). (2)

cn×1 and d2×1 are vectors of coefficients which
satisfy

(Qθ + I)c + Sd = y

S′c = 0

Qθ is the n×n matrix with ijth entry Qθ(t(i), t(j)),
and S is the n×2 matrix with iνth entry φν(t(i)).
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This system will have a unique solution for any
set of positive {λβ} provided S is of full column
rank, which we will always assume. If all 1000

stations reported for each of the 30 years, then
n = 30,000. Results in an unpleasantly large
linear system to solve.
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The backfitting algorithm:

The representation (2) can certainly be written as

fθ(t) =
2∑

ν=1

dνφν(t) +
4∑

α=1

θα

n∑
i=1

ci,αRα(ti, t)

(3)

too, where ci,α differs for different α. Since the
minimizer of (2) is unique (assuming as usual that
S is of full rank), we can minimize (2) within the
class of functions of form (3) and get the same
smoothing spline estimates as before. This leads
to a problem of minimizing:

‖y−Sd−
4∑

α=1

θαQαcα‖2+
4∑

α=1

θαcT
αQαcα (4)

over d and cα, for α = 1,2,3,4, where
Qα := (Rα(t(i), t(j)))n×n.
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The corresponding stationary equations are:{
(STS)d = ST (y −

∑p
α=1 θαQαcα)

(θβQβ + I)Qβcβ = Qα(y − Sd−
∑

α 6=β θαQαcα),

(5)
for β = 1,2,3,4.

With an argument similar to the one used in the
last section, any solution to the above equations
will result in the uniquely defined smoothing spline
estimate fθ and its components. Without con-
fusion within their context, we denote the com-
ponent functions of SS estimate fθ evaluated at
data points as f0,f1, · · · , f4 also. That is,

f0 = Sd
fα = θαQαcα,

for α = 1,2, · · · , p. They must satisfy{
f0 = S0(y −

∑p
α=1 fα)

fβ = Sβ(y −
∑

α 6=β fα), for β = 1,2,3,4.

(6)
where
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S0 := S(STS)−1ST and Sβ := (Qβ+
1
θβ

I)−1Qβ,

for β = 1,2, · · · ,4. These S matrices are all
”smoother matrices” (S0, a projection matrix, is
an extreme case of smoother matrices.)

This suggests an iterative method to solve the
above equations, i.e. f

(k)
0 = S0(y −

∑p
α=1 f

(k−1)
α )

f
(k)
β = Sβ(y −

∑
α<β f

(k)
α −

∑
α>β f

(k−1)
α ),

(7)
for β = 1,2, · · · ,4.

This is exactly the backfitting algorithm studied in
Buja, Hastie and Tibshirani (1989), “Linear Smoothers
and Additive Models”, Ann. Statist. 17, No2 453-
510, in JSTOR.
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Rewrite the equations (6) as
I S0 · · · S0
S1 I · · · S1
· · ·
S4 S4 · · · I




f0
f1
...

f4

 =


S0y
S1y

...
S4y

 (8)



It is clear that the backfitting algorithm we have
just described, (7), is a (block) Gauss-Seidel al-
gorithm.

Having known f0(= Sd), we know d immedi-
ately. By (3), (Qθ + I)c = y − Sd, hence

c = y − Sd−Qθc = y −
4∑

α=0

fα (9)

Therefore c is available after we get the fα’s.

One advantage of the backfitting algorithm is that
it enables us to take advantage of some special
structures of Qα in some specific applications. In
Buja et. al. (1989), additive models are fitted
by backfitting where each marginal smoother is
a one-dimensional smoother which has a sparse
matrix representation due to O’Sullivan. Here marginal
smoothers are full matrices, but they have a ten-
sor product structure if the data have a tensor-
product design. This structure is what we want to
make use of.
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Example (continued) Suppose we have data at
every point (xi, Pj) for i = 1,2, · · · , n1 = 30
and j = 1,2,· · · ,n2 = 1000. That is, the data
have a tensor product design. Hence the sample
size n = n1n2 = 30,000. Then the S and Qα’s
have the following forms:

S = 1⊗ S̃

Q1 = 11T ⊗Qt

Q2 = Qs ⊗ 11T

Q3 = Qs ⊗ φφT

Q4 = Qs ⊗Qt

where 1 is a vector of ones of appropriate length,
φ = (φ(1), · · · , φ(n1))

T , S̃ = (1 φ)n1×2, Qs

is an n2×n2 matrix with (i, j)-th element Rs(Pi, Pj),
and Qt is an n1×n1 matrix with (i, j)-th element
Rt(i, j).

Given such tensor product structures, in order to
get the eigen-decomposition of matrices {Qα},
we only need to decompose Qs and Qt which are
much smaller in size compared with {Qα}.
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Note that we cannot take advantage of this struc-
ture in (2), because Qθ =

∑4
α=1 θαQα does not

have a tensor-product structure even though ev-
ery single Qα does. This is exactly the reason
why we want to use the backfitting algorithm. Now
with the eigen-decompositions of {Qα}, hence
{Sα}, updating (7) involves just a few matrix mul-
tiplications. �

Unfortunately there were about 3000 missing data
points which destroyed the tensor product struc-
ture, but that was gotten around by a generaliza-
tion of the leaving-out-one lemma.
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The Leaving-Out-K Lemma

Let H be an RKHS with subspace H0 of dimen-
sion M and for f ∈ H let ‖Pf‖2 =

∑p
β=1 θ−1

β ‖Pβf‖2.

Let f [K] be the solution to the variational prob-
lem: Find f ∈ H to minimize

n∑
i=1

i6∈SK

(yi − f(t(i)))2 + ‖Pf‖2,

where SK = {i1, · · · , iK} is a subset of 1, · · · , n

with the property that the above has a unique
minimizer, and let y∗i , i ∈ SK be ‘imputed’ values
for the ‘missing’ data imputed as y∗i = f [K](t(i)), i ∈
SK . Then the solution to the problem: Find f ∈
H to minimize

n∑
i=1

i6∈SK

(yi−f(t(i))2+
∑

i∈SK

(y∗i−f(t(i)))2+‖Pf‖2

is f [K].
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Let y be partitioned as

y =

 y(1)

· · ·
y(2)

 (10)

where y(1) are observed and y(2) have been im-
puted. and let A(λ) be defined as before by f̃ =

A(λ)y. Let A(λ) be partitioned corresponding to
(10) as

A(λ) =

(
A11 A12
A21 A22

)
. (11)

Then, by the Leaving-Out-K Lemma, f [K](t(i1))
...

f [K](t(iK))

 = A21y(1)+A22

 f [K](t(i1))
...

f [K](t(iK))

 ,

(12)
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and, if furthermore (I −A22) � 0, then f [K](t(i1))
...

f [K](t(iK))

 = (I −A22)
−1A21y(1).

(13)
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There is an easy necessary and sufficient condi-
tion for (I −A22) � 0

Pre-Imputation Lemma:

Let Γ1 be an n×M matrix of orthonormal columns
which span the column space of S, partitioned af-
ter the first n−K rows to match y in (10) as Γ11

· · ·
Γ21

 . (14)

Then (I − A22) � 0 if and only if 1 is not an
eigenvalue of Γ21Γ

′
21.

Proof by contradiction, if 1 is an eigenvalue, then
the problem does not have a unique solution.
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The Imputation Lemma:

Let g
(2)
(o) be a K-vector of initial values for an im-

putation of (f [K](t(i1)), · · · f [K](t(iK))′, and sup-
pose 0 ≺ (I −A22). Let successive imputations
g
(2)
(`) for ` = 1,2, · · · be obtained via

g1
(`)
· · ·
g2
(`)

 = A(λ)


y1

· · ·
g2
(`−1)

 . (15)

Then

lim
`→∞


g
(1)
(`)
· · ·
g
(2)
(`)

 =

 f [K](t(1))
· · ·

f [K](t(n))

 . (16)
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Proof: By the Leaving-Out-K Lemma,

 f [K](t(1))
...

f [K](t(n))

 = A(λ)


y(1)

· · ·
f [K](t(i1)

...
f [K](t(iK))

 ,

so we only need to show that

lim
`→∞

g
(2)
(`) =

 f [K](t(i1)
...

f [K](t(iK))

 .

But

g
(2)
(`) = A21y(1) + A22[A21y(1) + A22g

(2)
(`−1)]

= · · ·
= (I + A22 + · · ·+ A`−1

22 )A21y(1) + A`
22g

(2)
(o) .

so that assuming 0 ≺ (I −A22) then A`
22 tends

to 0, giving

g
(2)
(`) → (I −A22)

−1A21y(1),

and the result follows.
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We remark that the randomized trace technique
works perfectly well in conjunction with the impu-
tation technique. The components of the noise
vector ξ in the randomization techique are gener-
ated only where there are observations.
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