
Statistics 860 Lecture 21 c©G. Wahba 2016

Brief Recap of a few of the major topics covered.

1. Regularization Class of Statistical Methods, cost functionals,

penalty functionals.

2. Ridge Regression, Penalized Least Squares, Relation to Bayes

methods.

3. Geometry and inner products based on positive definite

functions

4. Reproducing Kernel Hilbert Spaces, Bounded linear functionals

and the Riesz representation theorem.

5. First and Second variational problems, the (Kimeldorf-Wahba)

representer theorem.

6. Univariate cubic and higher order splines, thin plate splines,

splines on the sphere, Smoothing Spline ANOVA(SS-ANOVA)
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7. Choosing the smoothing parameter, the leaving-out-one lemma.

8. Unbiassed Risk, GML, GCV, GACV, AIC, BGACV, BIC.

Degrees of freedom for signal. train-tune-test, 10-fold cross

valication

9. The degrees of freedom for signal, the randomized trace

method.

10. Radial basis functions, Gaussian, Matern rbf’s.

11. Properties of GCV. Convergence rates for smoothing splines

tuned by GCV

12. Data from exponential families, Bernoulli, Poisson. The

Comparative Kullback-Distance criteria for tuning, as a

generalization of least squares.

13. Bayesian “Confidence Intervals”.

14. Standard and Non Standard Support Vector Machines (SVM’s)
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SVM’s and penalized likelihood for Bernoulli data compared.

The standard SVM is estimating the sign of the log odds ratio.

15. The Multicategory SVM

16. The LASSO. The Multivariate Bernoulli Distribution. The

LASSO-Patternsearch Algorithm, Variable and pattern

selection. GACV and BGACV for Bernoulli responses.

17. Early stopping as a regularization method.

18. Regularized Kernel Estimation (RKE), and embedding of

pairwise dissimilarity information.

19. Distance correlation, (DCOR), using pairwise distance

information (pedigrees) with Spline ANOVA.
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Penalty Functionals Jλ(y, f)

Quadratic (RKHS) Penalties:

x ∈ T , some domain, can be very general.

f ∈ HK , a Reproducing kernel Hilbert Space (RKHS)

of functions, characterized by some positive

definite function K(s, t), s, t ∈ T . λ‖f‖2HK , etc.

lp Penalties:

x ∈ T , some domain, can be very general.

f ∈ span {Br(x), r = 1, · · · , N},
a specified set of basis functions on T .
f(x) =

∑N
r=1 crBr(x) λ

∑N
r=1 |cr|p

λ→ (λ1, · · · , λq) Combinations of RKHS and lp penalties. Lect 1
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Cost Functions C(y, f)

(Univariate)

Regression:

Gaussian data (y − f)2

Bernoulli, f = log[p/(1− p)] −yf + log(1 + ef )

Other exponential families other log likelihoods

Data with outliers robust functionals

Quantile functionals ρq(y − f), ρq(τ) = τ(q − I(τ ≤ 0))

Classification: y ∈ {−1, 1}
Support vector machines (1− yf)+, (τ)+ = τ, τ ≥ 0, 0 otherwise

Other “large margin classifiers” e−yf and other functions of yf

Multivariate (vector-valued y) versions of the above. Lect 1
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Degrees of Freedom for Signal

Recall that the degrees of freedom for penalized likelihood

estimation for Gaussian data with a quadratic norm penalty

functional generalizes the ordinary parametric notion of degrees of

freedom.

Parametric least squares regression:

yn×p = Xβ + ε

where ε ∼ N(0, σ2I) and X is of full column rank. Find β to

min‖y −Xβ‖2, β̂ = X(XTX)−1XT y.
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ŷ, the predicted y is given by

ŷ = Xβ̂ = Ay

where

A = X(XTX)−1XT .

A (the ”influence matrix”) is an orthogonal projectiom onto the p

dimensional columm space of X with trace p. Notice that

dŷ

dy
= aii,

the iith entry of A.
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Nonparametric Regression

Let yi = f(xi) + εi, i = 1, · · · , n or, more compactly,

y = f + ε

where f ∈ HK , an RKHS with RK K, and some domain X . Find

f ∈ HK , to

min‖y − f‖2 + λ‖f‖2HK .

Letting fλ be the minimizer, then ŷ ≡ fλ depends linearly on y and

has the property that

fλ = A(λ)y.

A(λ) is known as the influence matrix, note that

dŷi
dyi

= aii,

the iith entry of A. A(λ) is a smoother matrix, that is, it is

symmetric non-negative definite with all its eigenvalues in [0, 1].
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Trace A(λ) was called the Equivalent Degrees of Freedom for signal

in wahba.ci.83.pdf p 139, (1983). by analogy with regression.
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Methods for Choosing λ

The unbiased risk estimate (UBR). Need to know σ2, the variance

of the Gaussian noise. Choose λ to min

U(λ) = ‖(I −A(λ))y‖2 + 2σ2tr(A(λ)).

The expected value of U(λ) is, up to a constant, an unbiased

estimate of ‖fλ − f‖2.

The generalized cross validation estimate (GCV). Do not need to

know σ2. Signal to noise ratio needs to satisfy some conditions.

Choose λ to min

V (λ) =
‖(I −A(λ))y‖2

[tr(I −A(λ))]2

drived from a leaving-out-one argument. Optimality properties

have been discussed and some references are in lect7.
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λ too small, to big, and just right. Lect 7
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Thin Plate Spline Demo Lect 8
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The Randomized Trace Estimate

The randomized trace method may be used to estimate the

expected value of the degrees of freedom for signal when ŷ depends

linearly or (mildly) nonlinearly on the data. Let ξ be an iid random

vector with mean zero and component variances σ2
ξ . Let fzλ be the

estimate with data z. Then, if fλ depends linearly on the data,

E
1

σ2
ξ

ξT (fy+ξλ − fyλ) =
1

σ2
ξ

EξTA(λ)ξ = trA(λ)

Note that even if ŷ depends (mildly) nonlinearly on y, the left hand

side above could be considered a divided difference approximation

to
∑n
i=1

∂fλ,i
∂yi

which is exactly what you want for d̂f .
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The randomized trace estimate was proposed by Hutchinson and

Girard independently in 1979, Girard later proved theorems about

its properties in Ann. Statist. Note that the same ξ should be used

as λ varies. If fλ depends linearly on y, then the result does not

depend on σ2
ξ . If the relationship is not linear, then the value of σ2

ξ

can make a difference. It can be shown, given that the variance of

the components of ξ are the same, that centered Bernoulli random

components for ξ are more efficient, than a Gaussian ξ.
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Dashed lines ranGCV, upper solid line exact GCV, bottom solid

line mean square error as a function of log λ Lect 13
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Tuning for Exponential Families:

The general form of the probability density for exponential families

with no nuisance parameter is of the form negative log likelihood

= −yf + b(f) where f is the so-called canonical link. ∂b(f)
∂f is the

mean and ∂2b(f)
∂2f is the variance of the distribution for exponential

families. See McCullough and Nelder’s (1989) book. A popular

criteria for tuning members of the exponential family is the

Comparative Kullback- Liebler (CKL) distance of the estimate

from the true distribution.
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The Kullback-Liebler distance is not a real distance, and is not

even symmetric, but it is defined for most tuning purposes as

KL(F̂ , F ) = EF log
(F, y)

(F̂ , y)

where F̂ and F are the two densities to be compared and the

expectation is taken with respect to F . The CKL is the KL with

terms not dependent on λ deleted, and is

n∑
i=1

−Eyif(xi) + b(f(xi)).

The residual sum of squares for the Gaussian distribution N(0, I) is

an example of the CKL.
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The two most common cases are the Bernoulli distribution, where

f is the log odds ratio and b(f) = log(1 + ef ), and the Poisson

distribution, where f = logΛ and b(f) = ef . Λ is mean of the

Poisson distribution. The Poisson distribution has an exact

unbiased risk estimate for f , wong.bickelvol.loss.pdf, with the

CKL criteria, but it involves solving an optimization problem

solved n times. Readily computable approximations can be found

in yuan.poisson.pdf.
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For the Bernoulli distribution, it is known that no unbiased risk

estimate is possible. The Generalized Approximate Cross

Validation (GACV) estimate xiang.wahba.sinica.pdf. is an

approximte unbiased risk estimate for the CKL for the Bernoilli

distributon. Letting OBS(λ) be the observed (sample) CKL

OBS(λ)
n∑
i=1

−yifλ(xi) + b(fλ(xi).

the GACV becomes

GACV (λ) = OBS(λ) +

∑n
i=1 yi(yi − pλ(xi))

tr(I −W 1/2HW 1/2)
trH

where pλ is the fitted mean, W is the diagonal matrix with

diagonal entries the fitted variances and H is the inverse hessian of

the optimization problem and plays the role of the influence

matrix. Lect 10
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Tuning the LASSO with Gaussian Data.

Let yi = x(i)Tβ + εi, i = 1, ..., n, where ε is N(0, σ2I) and β is a p

dimensional vector of possible coefficients, and x(i) is the ith design

vector. The LASSO finds β to min

‖y −Xβ‖2 + λ

p∑
j=1

|βj |

The LASSO penalty, also known as the `1 penalty is known to give

a sparse solution, that is, depending on λ, the larger the λ the

fewer non-zero βs will appear in the solution.
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c1

c2

l1 l2

The `1 penalty
∑
` |c`| is known to give a sparse representation - as

λ increases, an increasing number of the c` become 0. This is in

contrast to the `2 penalty
∑
` c

2
` , in which, typically the c` tend to

all be non-zero. The choice of λ is an important issue in practice.

LASSO-Patternsearch algorithm used in the smokers, vitamins and

cataracts study. Lect 16.

21 November 21, 2016



−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

ττ

((−− ττ))+

((1 −− ττ))+

log2((1 ++ e−−ττ))

[Let τ = yf ]. Comparison of (−τ)∗,

(1− τ)+ and loge(1 + e−τ ). log2(1 + e−τ ) goes through 1 at τ = 0.

Any strictly convex function that goes through 1 at τ = 0 will be

an upper bound on the missclassification function. Lect 14.
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Zou, Hastie and Tibshirani zou.hastie.tibshirani.lasso09.pdf

show that in Gaussian LASSO setting, the appropriate choice of

degrees of freedom for signal is the number of non-zero basis

functions, leading to the unbiased risk-type estimate for λ as the

minimizer of

ULASSO(λ) = ‖y −Xβ̂‖2 + 2σ2d̂f

where d̂f is the number of non zero βs. See

zou.hastie.tibshirani.lasso09.pdf for details. If d̂f
n is small

and σ2 is unknown, then GCV can be used.
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Tuning the LASSO with Bernoulli Data

The LASSO with Bernoulli data can be tuned with the GACV, see

shi.wahba.wright.lee.08.pdf, tr1166.pdf. The GACV

becomes

GACV (λ) = OBS(λ) +

∑n
i=1 yi(yi − pλ(xi))

n−Nβ0

trH

where Nβ0 is the number of non-zero coefficients in the model.
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Tuning the LASSO: Prediction vs Variable Selection.

All of the tuning methods so far have been based on a prediction

criteria, either the residual sum of squares or the CKL. When the

LASSO is used, typically it is believed that the model is sparse,

that is, if a tentative model is given as f(x) =
∑p
j=1 cjBj(x), for

large p and some basis functions Bj , and some c, the number of true

non-zero c’s is believed to be small. The difference between tuning

for prediction and tuning for sparsity can be seen by comparing the

tuning criteria AIC and BIC in their simplest forms: (see

Wikipedia and references there) AIC = −2loglikelihood+ 2k and

BIC = −2loglikelihood+ klogn, where k is the number of terms in

the model, according to the descriptions given in Wikipedia.
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For the present argument, think of k as the degrees of freedom.

Then AIC is essentially a UBR method, while BIC was proposed as

a variable selection method. To get from AIC to BIC you just

replace 2k by klogn. BIC (“Bayesian Information Criteria”) was

proposed by Schwartz by assuming that p < n and that all of the p

coefficients were a priori equally likely to appear. For logn > 2 BIC

will give a model that is no larger than, and generally smaller than

AIC. For tuning the LASSO with Bernoulli data, GACV was

replaced by BGACV, by the replacement suggested above.

However, simulation experience has shown that when p >> n,

BGACV is not strong enough to return a small model when one is

warranted. See shi.wahba.wright.lee.08.pdf, tr1166.pdf.

When the true model is small, prediction criteria will tend to give

models that include the true model but are bigger. Open questions

remain as to appropriate tuning for variable selection.
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Finally, Tuning the Support Vector Machine

Often the SVM is applied to very large data sets, then the luxury

of dividing the observational data set into train, tune and test

subsets can be carried out. Ten fold cross validation is also

popular. Regarding internal tuning, a GACV based method for the

SVM can be found in tr1039.pdf, a similar method was earlier

given by Thorsten Joachims, called the ξ/α method.
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Classification boundaries determined by the nonstandard MSVM

when the cost of misclassifying clear clouds is 4 times higher than

other types of misclassifications. Lect 15
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Smoothing Spline ANOVA and Global Warming. Lect 12
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Pairwise Distances in Heterogenous Risk Models

• Regularized Kernel Estimation (RKE), protein sequences and

Blast Scores. Lect 19

• Use of pairwise pedigree distances using Distance Correlation

(DCOR) along with genetic and other variables in risk of

pigmentary abnormalities Lect 19.5

• Does Life Span Run in Families? Uses DCOR and SSANOVA

to investigate correlations between familial relationships,

lifestyle factors, disease and mortality Lect 20.
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