Statistics 860 Lecture 5

Let 7 be an index set and let H be an RKHS of real-
valued functions on 7.

This means that all the point evaluations

Lf — f(t«)

are bounded. Equivalently, if f € H, then for each
tx € T, AM;, such that

[f(@)] < M [ fIl VS
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Thus we may associate with 7 the unique positive
definite function K (s,t) on T x 7T given by

K(s,t) = (£s,&t)

where &; is the representer of evaluation at t:

f(ts) = (f, &) Yf € H.

K (s,t) is called the “reproducing kernel” for H.



Conversely [Moore-Aronszajn Theorem], let K (s,t)
be a positive definite function on 7 x 7. We may iden-
tify with K a unique RKHS with K as its reproducing
kernel.

PKOOF: We construct the space.
Let K;(-) be the function given by

Ki(s) = K(s,t).



Let all functions of the form

L
f(s) = ) ¢ Ky(s)
=1
beinHforany L=1,2,...,
t1,... tp €T,and cq,...,cy.
Define the inner product by
<Ktl7Ktk> — K(tlatk)

and extend by linearity:



If

L
f1(s) = > ¢ Ky,(s)
=1

K
fo(s) = ) di Ks,.(s)
k=1
then

(f1, f2) = Z Z cidi K(t,s1).

I=1k=1
It can be verified that the positive-definiteness of K is
enough to insure that this has all the properties of an

inner product.

H i will be the RKHS with reproducing kernel K.



This collection of functions is a linear manifold—it will
be a Hilbert space if we add to it all the limits of all the
Cauchy sequences:

Let

n
fn= ZCantln n=12...
[=1

be a Cauchy sequence—that means

1 fn— fmll® = 0 asn,m — oo

Now

|fn(t) — fm(@)] = [{fn — fm, Kt)|

(by the inner product we have defined) and so

< lfn — fmll [ K]]-
Let f(¢t) = limy, frn(¢) —add to space.



Important Remark:

Note that K is the representer of evaluation in H .

Ky =&

Reproducing kernel:
(Ks, f) = f(s)
In particular

(Ks, Kp) = Ki(s) = K(s,t) |
“Reproducing” Property
IMPORTANT REMARK

All this works with no assumptions on the nature of
T/



Mercer—Hilbert—Schmidt Theorems:
(see /pdfl/riesz.nagy.pdf)

Suppose K (s, t) is a symmetric, positive definite func-
tionon 7 x T with

// K?(s,t) ds dt < oo
TxT

Then 3 a sequence of eigenvalues {)\,}, and or-
thonormal eigenfunctions {¢. } in L>(7T") such that

/T K (s, ) (t) dt = A\ ¢ (5)

and

K(s,t) = Z v du(s) du(t)

r=1



Then,

©.@)
K2(s,t) ds dt = A2
//TxT (5:2) V; g

Why?

// K?(s,t) ds dt =
TxT

S [ [ dsdt M 6u()60(D6u()8u(®)
U

Use
oo as={ ] nZ"
— = 2
/TK(t,t) dt = ;::1//\,, @5 (t) dt

= > X if thisis finite

(K of ‘trace class’)



Remark: ‘T can be “anything” on which you can define
a positive definite function.

An RK that does not satisfy [ [ K2(s,t)dsdt < oo is

K(s,t) = e—alls—t]1”

where s, t in the real line or E¢, || - || is the Euclidean
norm, and 3 satisfies 0 < 8 < 2.

These are perfectly good RK’s even though they don’t
have a countable sequence of eigenvalues and eigen
functions.

The g = 2 case (‘Gaussian’) is a very popular choice
for large d. This RK depends only on the difference
s — t and the representers of evaluation are so-called
radial basis functions. Other RK’s which depend only
on the difference s — t and generate radial basis func-
tions will be discussed later.
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Remark: We noted that sines and cosines provide a
complete orthonormal sequence for £5[0, 1].
L-(—00, c0) does not posess a (countable) complete
orthonormal sequence. Instead, we have the Fourier
transform

fwy = [ et

instead of Fourier coefficients a,, and b,, and the fam-
ily et v € (—o0, 00) instead of the countable set of
sines and cosines.

Similarly

K(s,t) = e 1st°%/2 — c/oo V(s =207 ),

— 00

The {e~2"} play the role of the eigenvalues and et
the role of eigenfunctions, v € (—o0,c0). See the
elegant book ”Introduction to Hilbert Space and the
Theory of Spectral Multiplicity”, Paul K. Halmos.
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POSITIVE DEFINITE MATRICES:

Let A, «n, and By be positive definite. Then the ten-
sor product (Kronecker Product) is positive definite.

allB alnB
AR B = : :

This is part of HW 2
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If & = n, the Shur product C with 7j-th entry
Cij = aijbij

is also positive definite.

This is part of HW 2.

Let K be any matrix. Then K K’ and K’ K are positive
definite matrices and

K(s,t) = /L[G(s,u)G(t,u) du

is positive definite for any G(-, -) such that G(s,) €
Lo(U) Vs.
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Moore-Aronszajn Theorem:

Let 7 be an index set, let K (s, t) be a positive definite
function on 7 x 7. To every such K (-,-) there cor-
responds a unigue RKHS withK as its RK, and con-
versely.

Remark:

K;(-) is the representer of evaluation at ¢, in H j-,where
Kt(s) = K(t7 S)
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Wm(per), periodic functions with f(m) € L>[0,1]:

IR = Z (f,¢v)2
- — (f7¢v) (97¢U)
=2 T,
¢o = 1
by = V2sin2mut
— V/2cos2nut v=1,2,..
H )\0:1
Ao = (2m0v) 72" v=1,2,..

f(t) ~ a0+\/§Zav Sin 27Tvt—|—\/§va COSs 27t
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< o0

2
Z (f7>ijv)

1 2 o
[/O f(t)dt] +§::1(2m)2 (a3 +52)

\ . 4

, 1 f ]?z'rnite
— [/01 f(t)dt] —|-/O1 (£ (t))zdt

f € Wm(per) if its Fourier coefficients with respect to
the sines and cosines satisfies

3" (2m0)2 ™ (ag + b3) < oo

v=1
If f € Wi (per) itis legitimate to differentiate f m — 1
times and the series will converge pointwise. So

f(v>(1)_f(v)(0)zoa v=0,1,---,m—1.
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Wm(per), periodic functions with f(m) e L>[0,1].
Periodic: f*~1(1)— f»~1(0)=0,v=1,2,--- ,m
with

1712 = [ Fw)dul® + ¢ (£ (w))?du.

Claim:

K (s, t)—l—I—QZ

(2 5 [cos(2nvs) cos(2nvt)

+ sin (27rus) sin (27rut)]

=142 Z NG 7”/)2 cos2mv(s — t)
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A closed form for K (s, t) is available using the Bernoulli

Polynomials:
Bo(z) = 1
Bi(x) = z— %
By(z) = 22 -2+ %
Bz(z) = 23— %382 -+ %az
Ba(z) = z2%—223 + 22— %

Abramowitz and Stegun, 1972.

Note that B,(1) — B-(0) =0,r = 2,3, ....
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Abramowitz-Stegun: Bernoulli polynomials of even de-
gree Bo,,:

Bop(z) = (—1)™2(2m!) Y02, m COS 2mvx

SO

_ (=1t
K(s,t) =1+ 2m)! Boy,([s —t])

where [s —t] is the fractional partof s —¢t. (Ifs—t =
1.2,then [s — t] = 0.2) (See
http://mathworld.wolfram.com/
BernoulliPolynomial.html) for formulas.

The RK squared norm for the RKHS with this RK is:
112 = Ug f(w)dul? + fg (0™ (u))2du.

Convince Yourself.
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WHAT DOES THE RK DO FOR YOU?

Let Hj be the RKHS with RK K. Then (K¢, f) =
f(t), forall f € Hx and each fixed t. You can find the
representer of any other bounded linear functional, if
you know K(-,-). We illustrate this by an example.
We examine the derivative at ¢t as a possible bounded
linear functional: Fix t,

(Kiqs— Kt, f) = f(t+6) — f(t),eacht,t+0 € T.

K5 — Ki, f) = $[f(t+8) — f(£)]
(The divided difference.)

Let & = 3[Ky1s — K], tfixed and & € H for
any o >0
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then

(&5, f) = [f(E+ ) — f(1)]

Suppose for any sequence

51,52,---—)0,

that

5517 5527 o
is a Cauchy sequence in H. That means that
lim

s oo 186m — &8l =0

n — o0

and, for each fixed s,

€5, (8) — &5, (8)| < 11€s,, — s, I Ksl| — O

so that, limn—oco&s, (s) = £(s) exists.
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Recalling,
£ (s) = in[KtHn(s) K9]

— %[K(t + on,s) — K(t,s)]

we have
i . 8[( . . .
Sim &5,(s) = - K(us)lu=t (f it exists)
= £1(s)

Suppose this & € H, then

(&, f) = lim i[f(t+5n) O] = 2 f ) st

n—oo

Lemma: Let &(s) = a%K(“v S)|u=t € H, then

Lf = f(t)

is a bounded linear functional in A with representer
&1(s) = 5K (u, ) |u=t
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MORE GENERALLY:

Let L be a bounded linear functional in H, then
Lf = (n, f)forsomen e H.

What is ??
n(s) = (n, Ks)
equivalently,
n(s) = LK
= L(U)K(s, u)

where L,y means L applied to what follows consid-
ered as a function of u,(u is the dummy variable).
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To check whether a particular L is a bouned linear
functional. If n given by the formula :

n(s) = LK (s, u)

is an element of H, then L is a bounded linear func-
tional in ‘H with representer n(-)

Another example:
Let

Lf = Jw(u)f(u)du
If
£(s) = [w(u)Ks(u)du = [w(u)K(s,u)du

IS In H, then L is a bounded linear functional in +
with representer &.
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Consider W, (per):

Convince yourself that

Lf = f¥(t)

is a bounded linear functional for fixed t«in [0, 1] and
vr=0,1,---,m— 1.
That is,

o)

Ly Ks(u) = 205

K(S U)|u =1«

considered as a function of s, is in H, for fixed tx.
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The first variational problem:
The statistical model is
feH

L;;i =1,---,n are bounded linear functionals in .
One observes

yZ:LZf+€Za i:]-)"'an
[
e=| - | ~N(0,0°I)
\ en )
fx, the 'penalized least squares’ estimate of f, is the
minimizer in H of

%Z?’:l(yz‘ — L;f)2 4+ )| f||%, where A > 0
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The first variational problem:
Find f € H to minimize

Ly (yi — Lif)% + Allf12, where A > 0
Let n; be the representer of L;,
Lif = (i, [)-
Let o5 = (mimj) = Liu) L) K (w,v)
> = {0y}
> > 0, since it is a Gram matrix,

dTa=|Tamn* >0
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Theorem:

Iy = 5= cin
with ¢ = (= 4 nAI) "1y

Proof:(follows Kimeldorf and Wahba, 1971). Any ele-
ment g in ‘H can be represented as

g = 2?’21 cin; + p

where p € H,pln;j=1,2,--n
Set

fx=225=1¢mj+p
and solve for c = (¢1,- - -, cn)’ and p.
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1 n
" Z (i — (i, Y cmj + p)) >+

j=1
2
AZCiCj (nis ;) + Allpl
1,]

(using (n;, p) = 0)

1 < ’ / 2
Eg Z (yi — Z Cj 7737772 )+ AcZce+ Alpll
j=1

1
E;Hy — 3 c|? + AZc+ A|lp||?

minimize over ¢,p,= ||p||? = O
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minimize ¢
%Hy— Zc||2—|—)\c’Zc (%)
If 3" is of full rank,then c is unique

(*) = Hy'y — 2y'Zc+ T + AZe

lg(*) =0=->y+ > 2 + nA2c ()
20c

or y= (X +nAl)c

c= (= +ni)" 1y

where we have multiplied (xx) by =1
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Suppose 3 is not of full rank: since
> =0y} = (i, mj)
that means there exist (cq, - - -, ¢n) such that
2= M =0
and we only know
(Z2 +nAX)e= Xy (* * %)
any two solutions to (x * *) differ by v with >« = 0.

Therefore if u = (uy, - -, upn)’, then || 27, um;||? =
w'>u = 0 and Xu;n; = 0.
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So if
(Z2 4+ nA\X)e= Xy
AND
(Z2 4+ nAX)é= Xy
IZein; — Z&m;||* =0
sothat f, = >_7"_; ¢;m; is the minimizer of
allvi = Lif 2 + AlLFII2
and is unique even though its representation may not

be.
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Where do | get

oij = (N> Mj)
ni(s) = L) Ks(u)
(njsni) = Ljm;
= LipLinK(s,t) 1

Examples:

Lif = [wi(u)f(u)du
mi() = [ wiw)K (u,)du
<77z7"'73 //wz(U)w](v)K(u v)dudv

33



