
Statistics 860 Lecture 6

Second Variational Problem:

H = H0 ⊕H1

{φ1, · · · , φM} span H0, H0 ⊥ H1

f = f0 + f1, f ∈ H
f0 ∈ H0
f1 ∈ H1
< f0, f1 >= 0

data y = (y1, · · · , yn),
L1, · · · , Ln bounded linear functionals in H.

Find fλ ∈ H to min

1

n

n∑

i=1

(yi − Lif)
2 + λ‖P1f‖

2 (∗)

where P1 is the orthogonal projection onto H1.
c©G. Wahba 2016
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Example: Wm = {f ∈ L2[0,1], f
(m) ∈ L2[0,1]}

Constructing the spline kernel:
Let kl(x) = Bl(x)/l!, Bl are the Bernoulli polynomi-
als.

Consider K(s, t) = (−1)m−1k2m([s− t]) (∗)

This is the RK for Wm(per) with the constant func-
tions removed. The square norm is

‖f‖2 =
∫ 1

0
(f(m))2du.

2



The elements in this space satisfy
∫ 1

0
f(u)du = 0

in adition to the periodic boundary conditions up to
f(m−1).

Now, add the one-dimensional space spanned by
multiples of km(x) to this space, with rank 1 kernel
km(s)km(t).
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Verify that

‖f‖2 =

∫ 1

0

(

fm(u)
)2

du

is the squared norm in the space with RK

km(s)km(t)+(−1)m−1k2m( [s− t] ) (∗∗)

We have taken the constant function out of Wm(per)

and added km to Wm(per).

∫ 1
0 k

(m)
m (u)f(m)(u) du = 0 for f ∈ the space with

RK (*) (slide 2) since k
(m)
m (x) = 1 and

f(m−1)(1)− f(m−1)(0) = 0.

Call this space H1.
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Let

M0f =

∫ 1

0
f(u) du

Mνf = f(ν)(1)− f(ν)(0), ν = 1,2, . . . ,m− 1

f ∈ H1 ⇒ Mνf = 0, ν = 0,1, . . .

Let H0 be the m-dimensional space spanned by
k0, k1, . . . , km−1 with

〈f, g〉 =
m−1∑

ν=0

(Mνf)(Mνg).

Mνkµ = 1 for ν = µ, = 0 otherwise so that
k0, k1, . . . , km−1 are an orthonormal basis.
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Let Wm = H0 ⊕H1.

‖f‖2Wm
=

m−1∑

ν=0

(Mνf)
2 +

∫ 1

0

(

f(m)(u)
)2

du

H0 and H1 are orthogonal subspaces since
(

f(m)(u)
)2

= 0 for f ∈ H0 and Mνf = 0 for f ∈

H1.

J(f) =
∫ 1

0

(

f(m)(u)
)2

du = ‖P1f‖
2

where P1 is the orthogonal projection in Wm onto H1.

J(f) is a semi-norm on Wm[0,1]
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Solve the second variational problem: Then it can be
applied to the spline smoothing problem
by letting:
f1 = P1f, ‖P1f‖

2 =
∫ 1
0 (f(m)(u))2du

Lif = f(ti)

FIND f ∈ Wm to min

1

n

n∑

i=1

(yi − f(ti))
2 + λ

∫ 1

0
(f(m)(u))2du
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Notation: Here we let H0 be of dimension M and
spanned by φ1, · · · , φM . For the particular spline case,
M = m, the kν, ν = 0, ...,m − 1 will span H0, and
Lif = f(xi). Let Lif =< ηi, f >, f ∈ H

and let

< ηi, φν >= tiν; Tn×M = {tiν}

be of rank M . This means that if we assume f ∈ H0,
the least squares problem has a unique solution: if
f =

∑M
ν=1 dνφν, then

mindν

n∑

i=1

(< ηi,
M∑

ν=1

dνφν > −yi)
2

has a unique minimizer

min‖Td− y‖2 unique

d = (T ′T )−1T ′y
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THEOREM

Let T have full column rank. Then the second vari-
ational problem (*) has a unique minimizer in H for
every λ > 0 and fλ has a representation

fλ =
M∑

ν=1

dνφν +
n∑

i=1

ciξi

where ξi = P1ηi, i = 1, · · · , n.

In the case of the example T = {tiν} with

tiν = k(ν−1)(xi), ν = 1, · · · ,m

T will be of full rank m if there are at least m distinct
values of the xi’s. (polynomial interpolation is unique)
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ARGUMENT

Claim: fλ =
∑M

ν=1 dνφν +
∑n

i=1 ciξi
< φν, ξi >= 0, since ξi = P1ηi ∈ H1 ⊥ H0.

Let Σn×n = {< ξi, ξj >} and suppose Σ ≻ 0, then

φ1, · · · , φM , ξ1, · · · , ξn

span an n+M dimensional subspace of H, and any
f ∈ H can be written

f =
M∑

ν=1

dνφν +
n∑

i=1

ciξi + ρ

for some d = (d1, · · · , dM)′, (c1, · · · , cn)′ = c, with
< ρ, φν >= 0 =< ρ, ξi >, all i, ν.
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P1f =
∑n

i=1 ciξi + ρ

(since ρ ⊥ φν, ν = 1, · · · ,M )

‖P1f‖
2 = c′Σc+ ‖ρ‖2 since < ρ, ξi >= 0.

Let P0 be the orthogonal projection onto H0. Then

< ηi, ξj > = < ηi − P0ηi, ξj >
= < ξi, ξj > : Σ = {< ξi, ξj >}

< ηi, φν > = tiν, T = {tiν}.

The second variational problem can then be written

1
n

∑n
i=1 (yi − Lif)

2 + λ‖P1f‖
2

= 1
n

∑n
i=1 (yi− < ηi,

∑M
ν=1 dνφν +

∑n
j=1 cjξj + ρ >)2

+ λ[c′Σc+ ‖ρ‖2] note ρ ⊥ ξi

= 1
n‖y − Td−Σc‖2 + λ[c′Σc+ ‖ρ‖2]
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‖ρ‖2 = 0, find d, c to minimize

1

n
‖y − Td−Σc‖2 + λc′Σc

Differentiate with respect to d and c,
let M = (Σ+ nλI)
c = M−1(I − T (T ′M−1T )−1T ′M−1)y (*)
d = (T ′M−1T )−1T ′M−1y (**)

from Kimeldolf and Wahba (1971).
DONT USE THIS TO COMPUTE!!

multiply left and right of (*) by M to get

Mc = y − T (T ′M−1T )−1T ′M−1y = y - Td

T’c = T ′M−1y − T ′M−1T (T ′M−1T )−1T ′M−1y ≡ 0

(Σ+ nλI)c+ Td = y
T ′c = 0

n+M equations in n+M unknowns.
[DONT NEED Σ ≻ 0].
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To solve for c:

T =

M n−M



 Q1 : Q2






M





R
−−−

0






M

n−M

Q = (Q1 : Q2), Q′Q = I (orthogonal).

THE Q−R decomposition
R is upper triangular

span{τ1, τ2, · · · , τM} τν columns of T
= span{columns of Q1}

c = Q2γ, for some γ ∈ En−M

since columns of Q2 are ⊥ to columns of Q1 and
(hence) ⊥ to columns of T ′ ⇒ T ′c = 0.
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(Σ+ nλI)c+ Td = y

Let c = Q2γ

(Σ+ nλI)Q2γ + Td = y

Q′
2(Σ+ nλI)Q2γ = Q′

2y

γ = [Q′
2(Σ+ nλI)Q2]

−1Q′
2y

c = Q2[Q
′
2(Σ+ nλI)Q2]

−1Q′
2y

Td = y −Mc

Q′
1Td = Q′

1(y −Mc)

Use T = Q1R to get

Rd = Q′
1(y −Mc)
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Find f ∈ Wm to minimize

1

n

n∑

i=1

(yi − f(xi))
2 + λ

∫ 1

0
(f(m)(u))2du

xi ∈ [0,1]

I. Schoenberg: (1940’s): Solution fλ is a ”natural poly-
nomial spline” of degree 2m− 1.

(1) fλ(s) ∈ π2m−1 in each interval [xi, xi+1], i =

1, · · · , n

(2) fλ ∈ C2m−2 (2m− 2 continuous derivatives)

(3) fλ ∈ πm−1 for x ≤ x1 and x ≥ xn (the “natural”
boundary conditions)

x1 x2 x3

Linear Spline

m=1

xi xi+1

Cubic Spline

m=2

xi+2 xi+3
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To match up coefficients and data

xix1 xi+1 xn0 1
... ...

Coefficients of the piecewise polynomials

m+2m+ · · ·+2m
︸ ︷︷ ︸

n−1

+m = 2nm

f ∈ C2m−2, f(ν)(xi+)− f(ν)(xi−) = 0

ν = 0, · · · ,2m− 2

This gives n(2m− 1) conditions.

The “natural” polynomial spline of degree 2m− 1

has 2mn coefficients
satisfying (2m− 1)n conditions

n

It will be determined given its values at n points (The-
orem) (assuming least squares in πm−1 is unique).
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Polynomial splines, the hard way:

1

n

n∑

i=1

(yi − Lif)
2 + λ‖P1f‖

2

Lif = f(xi), ‖P1f‖
2 =

∫ 1
0 (f(m)(u))2du

H = Wm = H0 + H1 where H0 is spanned by
k0, k1, · · · , km−1 and the RK for H1 is

‖f‖2 =

∫ 1

0

(

fm(u)
)2

du

is the squared norm in the space with RK

km(s)km(t)+(−1)m−1k2m( [s− t] ) (∗∗)

Although it looks like the spline will be of degree 2m, it
can be shown that the condition T ′c = 0 will guaran-
tee that it is a piecewise polynomial of degree at most
2m− 1
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MATRIX DECOMPOSITIONS
(Golub and Van Loan)

Σn×n � 0 ΓDΓ′ Eigenvalue-
Eigenvector
Decomposition

Xn×p UDV T Singular
n×n n×p p×p Value

UUT = In, V V T = Ip Decomposition

p < n, D =








λ1 . . . 0
... . . . ...
0 . . . λp
0 · · · 0
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Tn×M = Qn×n Rn×M , Q-R

(

Q
)






R
−−
0




 QQ′ = In

Q is orthogonal, R is upper triangular.

Σ ≻ 0 = LL′

where L is lower triangular (Cholesky Factorization).
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A(λ) – the influence matrix

Very important

ŷ =






L1fλ...
Lnfλ




 = A(λ)y

Definition of the influence matrix.

fλ =
∑M

ν=1 dνφν +
∑n

i=1 ciξi






L1fλ...
Lnfλ




 =






< η1, fλ >
...

< ηn, fλ >




 = Td+Σc

From the equations for c, d
(Σ+ nλI)c + Td = y
Σc + Td = A(λ)y

So

nλc = (I −A(λ))y
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nλc = (I −A(λ))y

From earlier

T =
(

Q1 | Q2

)






R
−−
0






c = Q2[Q
′
2(Σ+ nλI)Q2]

−1Q′
2y

so

(I −A(λ)) = nλQ2[Q
′
2(Σ+ nλI)Q2]

−1Q′
2

Note A(λ)T = Tn×M since

(I −A(λ))Q1 = 0n×M since Q′
2Q1 = 0(n−M)×M

columns of T are eigenvectors of A with eigenvalue
1.
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What are the remaining eigenvalues of I −A(λ) ?

I − A = nλQ2[Q
′
2ΣQ2

︸ ︷︷ ︸
+nλIn−M ]−1Q′

2

Q′
2ΣQ2 = UDU ′

(n−M)×(n−M)

Dn−M has eigs. {dν}, ν = 1, · · · , n−M

= nλQ2[U(D + nλIn−M)−1UT ]Q′
2

= Q2U︸ ︷︷ ︸
[diag( nλ

nλ+dν
)]n−MU ′Q′

2

n× (n−M) orthogonal

Eigenvalues of I − A are
M

︷ ︸︸ ︷

0, · · · ,0, { nλ
nλ+dν

}n−M
ν=1 .
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The eigenvalues of A:

M
︷ ︸︸ ︷

1, · · · ,1, dν
nλ+dν

, ν = 1, · · · , n−M

A is a “smoother” matrix:

0 � A(λ) � I ALWAYS

as λ → 0, A(λ) → I

as λ → ∞, A(λ) → projection

operator onto columns of T

AT = T ⇒ If y = Tθ for some θ, then Ay = y

If you give it “EXACT” data from some f ∈ H0, it will
give you f back, any λ.
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