Statistics 860 Lecture 6
Second Variational Problem:
H=Ho®H,

{1, -+, om}span Ho, Ho L Ha

f=lot+hHh, f eH

Jo € Ho
J1 € Ha
< fo, J1>=0
data Yy — (y17 T 7yn)1
Lq,---, Lybounded linear functionals in 4.

Find f) € H to min

1 n
=3 i L2 PP ()
1=1

where P; is the orthogonal projection onto 1.
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Example: W, = {f € L5]O0, 1], £ e £5]0, 1]}

Constructing the spline kernel:
Let k;(x) = B;(x)/l!, B; are the Bernoulli polynomi-
als.

Consider K(s,t) = (—1)" ko ([s — t]) (%)

This is the RK for Wy, (per) with the constant func-
tions removed. The square norm Is

1
1P = [ (7)) du



The elements In this space satisfy

/01 f(u)du =0

In adition to the periodic boundary conditions up to
flm—1)

Now, add the one-dimensional space spanned by
multiples of k,,(x) to this space, with rank 1 kernel

km(s)km(t).



Verify that

1 2
2 m
= d
172 = [ (W) du
IS the squared norm in the space with RK

Fim(8)km () + (=1)" ko ([s —1]) ()

We have taken the constant function out of Wy, (per)
and added k&, to Wy, (per).

fol kf,(nm)(u)f(m)(u) du = O for f € the space with
RK (*) (siide 2) since k™ (z) = 1 and
Fim=1(1) — fm=1(0) = 0.

Call this space H;.



Let
1
1%f=£fwwu

Myf =) —-r»0), v=1,2,...,m-1

feH{=M,f=0,v=0,1,...

Let Hp be the m-dimensional space spanned by
ko,k1,...,km—1 With

m—1

<f7 g> — Z (Myf)(Myg).

vr=0

Myk, = 1 for v = pu, = 0 otherwise so that
ko, k1,...,k,,—1 are an orthonormal basis.



Let Wi, = Ho & Hj.

m—1 1 . 5
llfllﬁfm=V§:jO(MVf)2+/o (£0) (w))” du

Hgy and H4 are orthogonal subspaces since

2
(f(m)(u)) = Ofor f € Hyand M,f = O for f €
H,.

15 = [ (1) du = P2

where P; is the orthogonal projection in W, onto H.

J(f) is a semi-norm on W, [0, 1]



Solve the second variational problem: Then it can be
applied to the spline smoothing problem

by letting:

f1=Pif, IIPLfI? = Jo (f0™) (w))2du

Lif = f(t;)

FIND f € W, to min

LS i a2+ [ (O @)
n,—1



Notation: Here we let Hy be of dimension M and
spanned by ¢4, - - - , ¢s. Forthe particular spline case,
M = m, the ky,v = 0,..., m — 1 will span Hgp, and
Lif = f(=z;). Let Lif =<m;, f >, feH

and let

<N Qv >=t;,; Thoxym = {til/}

be of rank M. This means that if we assume f € Hy,
the least squares problem has a unique solution: if

f — ZI]/\JZJ. d]/¢1/, then

n M
ming, > (<mi, Y. dudy > —y;)?

=1 v=1

has a unigue minimizer
min|/Td — y|| unique

d= (T'T) 1Ty



THEOREM

Let 7" have full column rank. Then the second vari-
ational problem (*) has a unique minimizer in H for
every A > 0 and f, has a representation

= Z dydv + Z ci&i

v=1 =1

where §;, = Pin;,i=1,--- ., n

In the case of the example T' = {¢;, } with

tV — k(y—l)(xi)a UV — 17 , TN

T will be of full rank m if there are at least m distinct
values of the z;’s. (polynomial interpolation is unigque)



ARGUMENT

Claim: fy = X)L dvgw + X7y cié;
< ¢y, & >=0,since & = Pim; € H1 L Hop.

Let >, xn = {< §;,&; >} and suppose 3 >~ 0, then

¢17"' 7¢M7‘£17"' 75”1

span an n + M dimensional subspace of #, and any
f € H can be written

M n
J = Z dyoy + Z c;& +p
vr=1 )

=1
forsome d = (d1,--- ,dy;), (e1,--- ,cn) = ¢, with
< p, oy >=0=<p,§& >,alli,v.
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Pif=%i—1¢& +p
(sincep L ¢pp,v=1,--- , M)

|PLf|[? = ¢Zc+ ||pl|? since < p, & >= 0.

Let Py be the orthogonal projection onto Hg. Then

<m,€j> - <77i—P077ia€j>
= <§¢,§j> :Z:{<€i7€j >}
<N Qv > = tyy, T = {tiu}'

The second variational problem can then be written

L0 (yi — Lif)? + M| PLf|I?

%z?zl (yi— < i, Zﬂil dyoy + Zgb:l ijj +p >)2

+ A[dZe+ o)1) note p L &

slly = Td — Zc|? + AldZc + [|p]1?]
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1p]|2 = 0, find d, c to minimize

1
“ly —Td — =¢||? + A'Zc
n

Differentiate with respect to d and c,
let M = (X 4+ n\I)
¢c = M IU-1T(TMID)1T'M 1)y *
d = (T/M_]'T)_]'T/M_ly (**)
from Kimeldolf and Wahba (1971).
DONT USE THIS TO COMPUTE!

multiply left and right of (*) by M to get

Mc| =y —T(T"M 1) 17'M~1y =|y-Td

Te| =T'M Yy —T'M- (M1 M—1y =

(Z4+nA\)c+Td Yy

T c 0)

n + M equations in n + M unknowns.
[DONT NEED X = 0].
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To solve for c:

M n—M M
R M
T =
Q1 ¢ Q2 —— =
O n—M

Q = (Q1: Q2), Q'Q = I (orthogonal).

THE Q — R decomposition

R is upper triangular
span{ry, 1o, -+, Tz} 7, columns of T’
= span{columns of Q1 }

c= Qoy,forsome~ e FE,_

since columns of ) are L to columns of ; and
(hence) L to columns of 77 = T’c = 0.
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(Z4+nA\l)c+Td = y

Let c = Qo>
(Z+nADQxy+Td = y

Q5(X + nA)Q2y = QLY
v = [QL(Z 4+ nAT)Q2] 1 Qby

c = Q2[Q5(Z + nA)Q2]1Qby

Td = y— Mc
QYTd = Qy(y— Mc)
Use T' = Q1 R to get

Rd = Q" (y — Mc)
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Find f € W, to minimize
LS (0 — f(@)? L am) ()2
2 2 = F@)P 4 W)
T; € [O, 1]

|. Schoenberg: (1940’s): Solution f) is a "natural poly-
nomial spline” of degree 2m — 1.

(1) fr(s) € mop,—1 in each interval [x;, x;41],7 =
1,---.n

(2) f) € C?™m~2  (2m — 2 continuous derivatives)

(3) f\ € w1 for x < z1 and x > z, (the “natural”
boundary conditions)

/\ Linear Spline|
Cubic Spli
: m=1 i u 1c_p ine
| m=2
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To match up coefficients and data

Coefficients of the piecewise polynomials

m—+2m—+ -+ 2m—+m = 2nm
n—1
fec?m =2 W (zy) - (2 ) =0
v=20,---,2m—2
This gives n(2m — 1) conditions.

The “natural” polynomial spline of degree 2m — 1

has 2mn  coefficients
satisfying (2m — 1)n  conditions
n

It will be determined given its values at n points (The-
orem) (assuming least squares in m,,_1 IS unigue).
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Polynomial splines, the hard way:
1 & 2 y
=3 (5= L2+ AP
i=1

Lif = f(z), | PLfII? = J& (™) (w))2du

H = Wpy = Hgy + Hy where Hp is spanned by
ko,k1, -, k,,—1 and the RK for H1 is

191P= [ (5mw)? o

IS the squared norm in the space with RK

ki (8)km(t) + (= 1) ko ([s —1]) ()

Although it looks like the spline will be of degree 2m, it
can be shown that the condition 77c = 0 will guaran-
tee that it is a piecewise polynomial of degree at most
2m — 1
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MATRIX DECOMPOSITIONS
(Golub and Van Loan)

2 nxn — 0 rDr’

Xnxp UDVT
XN nNXp pXp

Eigenvalue-
Eigenvector
Decomposition

Singular
Value

UUT = 1,,VVT = I, Decomposition

A1
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Thxv = @nxn Bpxy, QR
(@) — | Q@=mh

(Q Is orthogonal, R is upper triangular.

>0 = LL

where L is lower triangular (Cholesky Factorization).
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A()N\) —the influence matrix

Very important

. L1 fx
y = i = ANy
Lnf)\
Definition of the influence matrix.
= 254:1 dvov + Z?:l ci&;
Lyfx <1, fo >
: = : = Td —I— 2 C
Lnf)\ < T, f)\ >
From the equations for ¢, d
(Z+nA\)ec + Td = vy
>c + Td = ANy
So
nic = (I—A\))y
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nxc= (I — A(\))y

From earlier

¢ = Qo[Q5(Z + nAI)Q2] 1Qby

SO

(I — AN)) = nAQ2[Q5(= + nANQo]1Q5

Note A(N)T = T, s Since

(I — A(N)Q1 = Oy Since QoQ1 = O,y pryx

columns of T' are eigenvectors of A with eigenvalue
1.
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What are the remaining eigenvalues of I — A(\) ?

I—A = nAQ2[Q0XQo+nAl,_p] 1Q5
\——
QoX Q2 =UDU(, 11y (no1p)
D, _yrhaseigs. {dy}, v=1,--- . n— M
= nAQo[U(D + nAl,_ ) tUT]Q5
= QU ldiag(G3% )] n—mU'Qb

n X (n — M) orthogonal

oM
Eigenvalues of I — Aare O, .-, 0 {n/\_|_dy}”
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The eigenvalues of A:

/_/\H d
17...’1, m’ V:l,...’n_M

A Is a “smoother” matrix:

0 < A(\) < I ALWAYS

as A — 0, A\) — 1
as A — oo, A(\) — projection

operator onto columns of T
AT =T = If y = T6 for some 6, then Ay =y
If you give it “EXACT” data from some f € H, it will

give you f back, any .
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