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Abstract

A set of Fortran-77 subroutines to provide building blocks for Generalized Cross Validation
calculations is presented. We outline applications in ridge regression, thin-plate smoothing splines
to approximate smooth multivariate functions observed with noise and a new technique of using
partial spline models. Timing tests and the structure of the main driver routines are also

presented.

Purpose and Description

Purpose

These Fortran-77 subroutines provide building blocks for
Generalized Cross-Validation (GCV) (Craven and Wahba,
1979) calculations in data analysis and data smoothing including
ridge regression (Golub, Heath, and Wahba, 1979), thin plate
smoothing splines (Wahba and Wendelberger, 1980), deconvo-
lution (Wahba, 1982d), smoothing of generalized linear models
(O’Sullivan, Yandell and Raynor (1986), Green (1984) and
Green and Yandell (1985)), and ill-posed problems (Nychka et
al., 1984, O’Sullivan and Wahba, 1985). We present some of
the types of problems for which GCV is a useful method of
choosing a smoothing or regularization parameter and we
describe the structure of the subroutines.

Ridge Regression: A familiar example of a smoothing
parameter is the ridge parameter A in the ridge regression prob-
lem which we write as
min L Iy —Xyll%+ Ayty
¥ N

where 7y is a p-dimensional parameter vector, y is an n-
dimensional response vector and X is an nXp design matrix.

For any positive A, an optimal , can be easily calculated.
Unfortunately, this leaves the question of which value of A to
use. Golub, Heath, and Wahba (1979) demonstrated that
minimization of the GCV function V()) is a powerful criterion
for the choice of an optimal A, where

2
VoY= Un) 1@ - A(\))y ll
[(1/n) tr(T - A(A))]
and A(L) is the nxn “‘hat’” matrix of the ridge regression
AQ) =XX"X + nADIXT |

At first glance, optimization of V(A) seems a formidable
computational problem since each value of A has its correspond-
ing A(A). However, Golub, Heath, and Wahba (1979) gave a
method of expressing V' (A) as an easily-calculated rational func-
tion based on the singular value decomposition (SVD)
(Dongarra et al., 1979, chapter 10)

X=UDVT

where U is nxp with orthonormal columns, V is pXp and
orthogonal, and D is pXp and diagonal with diagonal elements

dy2dy> -+ 2d, >0

which are the nonnegative square roots of the eigenvalues of
X'X. The “‘hat’ matrix can then be written as



AQ)=UDXD?+ nAD)'UT

and using
z=UTy
we can write
; 2
P A
Nyll®= Nzl 2 2
V)= : (1.1)
. P a1
Bk 2
j=1dj -f-n?L

Once the SVD of X is computed, it is trivial to evaluate V (X) for
a wide range of values of A and determine the optimum value of
A. Equation (1.1) indicates that, for most problems,
d?<nk<df. After an optimal ) is chosen, the corresponding
Y. is calculated as

1= V(D*+ nAI)'Dz . (1.2)

Multivariate data smoothing with thin-plate splines: A
more important application of GCV is determining smooth
representations of an underlying multivariate function from
which noisy data is observed. The ridge regression problem
serves as an introduction to the idea of GCV and the computa-
tional steps for efficient evaluation of the GCV function but data
smoothing using thin-plate smoothing splines (TPSS) is a much
more common application of GCV. These methods extend the
computational methods derived in Wahba and Wendelberger
(1980), Wendelberger (1981), and Wahba (1984a).

For convenience we first describe the calculations for a
two-dimensional ‘‘independent’” variable x but the software is
designed for the general case. The data model for TPSS is

i=f@x)+e, i=1,...

where the (x;,5:),i=1,2,...,n, are observed data, f is an
unknown function which is assumed to be reasonably smooth,
and the g;,i=1,2,...,n, are independent, zero-mean random
variables.

o,

In general we will measure smoothness of f 'by the
integral over the entire plane of the square of the partial deriva-
tives of f of total order 2. That is,

o o az 2 az 2
=] [axflg} +2{ axlij;xz] +[

To allow generalizations, the software uses a smoothness
penalty defined by the partial derivatives of total order m as

o*f

ox?

2
] dxdx,

a e

J.(f)= [m] — | dxdx
") WJIEO L [ oxioxy™ ] e
In d dimensions,
- 2
% A m! g
Jm(f)'_:[” _LEal!,,,ad! AP dxy - dxg
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with the sum within the integral over Y o; =m. In general, one
must have 2m —d >0 with d the dimension of x. Using this

smoothness penalty, the TPSS estimate f of f is the minimizer
of

1 n
$x(f)= ;E@:—f(Xz))2+Mm(f) : 2.1)
i=1
From Duchon (1976), the minimizer f;, of (2.1) can be
represented as

fax) = iBiq)i(x) + iSiEm (x-x;)
e

i=l

2.2)

where
En(®=C1" 2727w (m=1))2 N1 "2 (Ul ¢ 1]

and ¢ is the dimension of the space of polynomials on two vari-
ables of total order at most m—1,

g [m; 1] :
A basis for this space is

o(x)=1

Gx(x) = x,

da(x) =x,

04(x) = x{

0s(x) = x;x2

o, (x) = x'zn_l .

The general definition of E,, which depends on the
dimension, d, of the independent variables x is

ks In(litll) ,d even

e dodd ’ @0

A a |t

E =
n(®) M

with



(~1)#m+di2 p1=2m 7=d2 (G 1)1 (m—d/2)!)™ ,d even

Apa =
‘ F(%—m)Z‘z’" 42 ((m-1)1)

dodd

The dimension, ¢, of the polynomial space is given in general by
e [m +d - 1]

d
A property of the TPSS representation is that both the
function f evaluated at the data points and the smoothing
penalty J,, can be expressed using the nxn matrix K with
entries

{K}j =En(x; —x;) . (24)
The function f also requires the nx ¢ matrix T with entries
{T}ij = q)j(xi) .

The matrix T having full column rank guarantees a unique
minimizer of (2.1). Duchon (1976) showed that 8 in (2.2) must
satisfy

T5=0 . 2.5)

Then B, and §, are the minimizers of (2.1), which can be writ-
ten as

S2(B.S) = % lly—TB-K5I%+18'KS .

Note that the restriction in (2.5) is important, as K will generally
have negative eigenvalues, but for any vectors & satisfying (2.5)
it can be shown that

3'KS>0 .

Our objective is to reduce the calculation of the parameters By
and &, the ‘*hat’’ matrix A()), and the GCV function V(X) to a
simplified form as was done for the ridge regression case.

No replicates case: When there are no replicates in the x’s,
we proceed by taking a QR decomposition (Dongarra et al.,
1979, chapter 9) of T as

Gy

0 = F‘lGl

T=FG= [Flez][

where F is nxn and orthogonal while G is nx¢ and zero below
the main diagonal. F, is the first ¢ columns of F and F, is the
trailing n — ¢ columns while G is the first ¢ rows of G. The
columns of F, provide a basis for the § which satisfy

T'5=0

SO we can set

d=F,(

where { has dimension n—¢. Using
w; =Fy
w,=Fy

the objective function of the optimization becomes

SA(B.5) = ;1; ly-TB-K8!I%+18"KS

= % I E%(y - TB - K&) Il + 1. 57K

1 5 (2.6)
= — "Wl— GIB—FFKcm. Il
n
g ;11- ll wy— FIKF,L 1% + A CTFTKF,L |
Assuming G; is non-singular (that is, the points

x;,i=1,...,n, are adequately dispersed so that the columns
of T are linearly independent) the first term in (2.6) can be made
zero by solving

G,By=w;—FIKF,{,
=W —F;I‘Kﬁl

for B,. In practice we check the condition of G, and return an
error condition if it is computationally singular, indicating that
the columns of T are strongly correlated. This condition is
equivalent to the computational singularity of the problem of
least squares regression of the data onto the span {6;}. Singu-
larity will rarely occur since the column dimension of T is
small.

We can now reduce the problem to a form like ridge
regression by using the fact that FJKF, is positive definite to
form the Cholesky decomposition (Dongarra et al,
1979, chapter 8)

FJKF,=L"L

where L is (n—t)X(n—t) and upper triangular. In practice we
use a pivoted Cholesky decomposition so we can check the con-
ditioning of F; KF,. If this matrix is computationally singular,
which can occur if Ilx; —x; Il is very small but non-zero for
some i#j, we return an error condition. A near-singular
FJKF, is usually avoided since, in checking for replicates, we
declare x; and x; to be replicates if the distance between them is
very small. See Appendix 1 for more information on the detec-
tion of replicates and the computational singularity of L.

After ensuring that L is non-singular, we define
Y=L{
and the last two terms of §,(B,8) in (2.6) can be written as



% llwy— LIy 1% + Myly .

This has the same form as the ridge regression problem
with solution

Y= (LLT+ nAD)'Lw, .
We take a SVD of LT as
LT=uDVT
and write the estimate as |
= V(D?+ nAl)'DUw,
and the “‘hat’’ matrix as
A(M) = F,F{ + F,UDXD? + n A1) 'UTRS

10| (I 0 I 0 2.7)
=F FT
0 Ul |0 DXD?+n2AD)Y| |0 UT :
As in the ridge regression case, we use
zZ= UTw2
to write
] BN I
2
njé[ dj2+ ﬂ?\,] i
VO =T ; 28)
¥ n\
j= d 12 +n A.J

The actual calculation of the parameter &, corresponding to the
E,,’s is performed as

3, = FUMD? + nAl) 'z

2.9)
=F,UMD*+nAD)'UTF]y . :

Replicated x values: Replicates of x values introduce some
minor complications since we must define only one §;
corresponding to each unique x position. The best way to han-
dle this is to pre-process the data by sorting the x values to
determine the unique x values and the number of replicates of
each value. Let k£ be the number of unique x values. We can
express the objective function optimized by 8, and B, as

s,m,&:%ily-Tﬁ—KsuzmaTKUs 3.1)

subject to the condition
Tj8=0

where T and K are of size nxt and nxk respectively, while Ty
and Ky are of size kXt and kxk respectively. These matrices
are related by

-4-

T =MT
K=MK,

where M is an nxk indicator matrix (all its entries are ones or
zeros and there is only a single one in each row) which, for each
row, indicates the unique x that corresponds to that observation.

If we take a QR decomposition of M as
¢
0 - B1C1

and pre-multiply all the vectors in the first term of (3.1) by B,
(3.1) divides into

M=BC= [BI:Bg][

S:B8 =" 1By 1%+ L 18Iy - C,T - C K511
n n
(32)
+A8TK S .

In practice, it is not necessary to explicitly form M and take its
QR decomposition since C, is diagonal with ¢; being the square
root of the number of replicates of the i’th unique x. The ele-
ments of the vector C'B{ly are the means of the y’s at the
corresponding unique x’s. Further, |IBJyll ? is the sum of
squares due to replication.

With this information available we can write
0=C;'8
to produce

S,(B.0) = % BTy ll*+ —:: By - C,TyB- C,K,Clall®

+ lmTclKUC;rm

and proceed as in the case with no replications using C;Ty in
place of T, and C;KyC{ in place of K. That is, take a QR
decomposition

G,
0

and form F;C,Ky C{F, which then determines the Cholesky
decomposition

CITU =FG= [Fle][ =F1G1

FIC,KyC{F,=LTL .
ASVDof LT as
LT=ypVvT
and the product
w,=F;B/y

allows us to write



k-t
By II2 n)
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2
n Zj
j=1
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Given the value of 4, the calculation of 8, and Bs, follow
as in the no-replicates case. That is,

8,.= CIFU(D*+n A1) 'UTF] By
and B, is the solution of

GB=F[(Bly-CKy$,) .

Partial spline models: These are an extension to the thin-
plate smoothing spline model in which some of the coordinates
of x, the “‘covariates’’, do not enter into the thin-plate spline.
See Wahba (1984b, 1985) and Shiau, Wahba, and Johnson
(1985). The model is

4

Yi =f () + Y oy;(x;,8;) + g @.1)

j=1
in which s; are the *‘covariates™ and {y;} are ¢ given func-
tions. For convenience, we will consider these variables as

forming another matrix S of size nxc. The partial spline esti-
mates of f and « are the minimizers of

SHABO= T 05~ )= Doy ks +An(r)
i= f=

and it is known that the minimizing f, has a representation of
the form (2.2). Let § be the nxc matrix with ij’th entry
V;(X;,s;). The matrix [T:S] must be of full column rank. The
objective function for a fixed A becomes

Sl(a,B,B):% ly—Sa—TB-K& 1%+ 187KS .

When determining replicates, we only consider the d variables
which determine the spline. When there are no replicates, we
proceed as in the basic TPSS case except that we take the initial
QR decomposition as

G
0
so V(M) is calculated as in (2.8) with all summations running to

n—t—c. Thatis, after the Cholesky decomposition of FYKF,
and the SVD of the transpose of the Cholesky factor, we have

[T : S] =FG= [F1F2] = F1G1

gk 1"
df-bnl
ni :
dj2+n7£

The calculation of §; and &, proceeds as in the basic TPSS case.
With these available, we solve for o, and B, simultaneously. In
other words, we have simply replaced TP in (2.6) by

[T:S] [g] ;

It can be shown that the implied constraint 876=0 does not
change the solution.

2
Zj

n=t-¢
ny
j=1

n—t—¢

)

Jj=1

When we have covariates as well as some replications in
the d coordinates of the x’s, we have to distinguish between
those columns of § which follow the replication pattern of the
x’s and those which do not. If all the columns of S follow the
replication pattern, we have an indicator matrix M for which

T=MTU
K=MK,
S=MS;, .

Taking the QR decomposition of M as M=BC, we then take a
QR decomposition of C;[Ty:S;] and proceed as above.

If there are columns of S which do not follow the replica-
tion pattern of the design, we need a more general approach.
The covariate matrix is divided into S = [S;:S,] in which the
columns of §; have the same replication structure as the design
points x;, i=1,--+,n. We have an indicator matrix M for
which

[T:S;:K]=M[Ty:S,y:Ky],

and a QR decomposition of M=BC as above. However, we
cannot easily reduce the objective function to a form such as
(3.2) by premultiplying by B, as BJS, is not annihilated.
Instead we choose to take a QR decomposition of

G
0

which is used to reduce the parameter vector and penalty matrix.
We proceed as in the case of a general design matrix with a
semi-norm penalty as described in the next section by creating
the parameter vector

CI[TU :SIU]=FG: [Fl:F2][ =F1G1

0= [%] , with 8= CIF,C ,

and the design matrix



X=[T:S,;:S,:KC[F,] .
The penalty becomes 67 0, with

0 0
£=lp F;C,KyCIF,| -

Partial spline models with nodes at selected points, which
may not actually correspond to data points, are discussed in
Appendix 2.

General design matrix with a semi-norm penalty: The
ridge regression case and the TPSS cases which we have con-
sidered both have some special structure. In the ridge regression
case, the design matrix, X, is general but the penalty term, ™y,
has a special form so we can streamline the calculations. In the
TPSS cases, the penalty term, 8'K$ subject to T8 = 0, is more
general but the design matrix, [T:K] is related to the penalty so,
again, we can exploit this special structure to provide faster
algorithms. Even in the case with both a general design and a
general penalty, though, we can still form efficient computa-
tional methods for GCV.

The most general GCV calculation we consider is the
penalized least squares problem with an objective function
5,0 =L lly—x01I>+167z0 .1)

n
where 0 is a p-dimensional parameter vector, y is an n-
dimensional response vector, X is an nx p design matrix, and £
is a pxp positive semi-definite symmetric matrix defining the

smoothness penalty. Note that partial splines can be written in
this form as a special case.

A partial spline model with discontinuities in the {y;} of
(4.1) which fits in the context of (5.1) is described in Shiau,
Wahba, and Johnson (1985). Other special cases included
splines and vector splines on the sphere (Wahba (1981), Wahba
(1982a, 1982b, 1982¢c)) and remote sensing problems (Wahba
(1980a)). Appendix 2 presents some examples and the algebra
needed for a partial spline model with basis functions.

The minimization of (5.1) can also be used as a step in the
iterative solution of penalized GLIM models (O’Sullivan
(1983), O’Sullivan, Yandell and Raynor (1986)), nonlinear reg-
ularization (O’Sullivan (1983) and O’Sullivan and Wahba
(1985)) and iteratively reweighted least squares (Green (1984),
Green (1985) and Green and Yandell (1985)).

We can find the GCV estimate of A in the general case by
using a series of matrix decompositions to reduce (5.1) to the
form of the ridge regression calculation as was done in the TPSS
case. First we must isolate the null-space of the semi-norm
defined by Z. That is, we must describe the set of 0’s for which

0'z0=0 .

We assume the dimension, %, of this space is known and take a
pivoted Cholesky decomposition (Dongarra et al., 1979, chapter
8)

ETTE=LTL

where E is a pXp permutation matrix and L is (p—h)Xp with
zeros below the main diagonal. The conditioning of L is
evaluated to ensure that L actually has computational rank p—#.
If L is rank deficient, we increase A until the resulting (p—h )xp
matrix L is of full row rank and return a non-fatal error code. If
the user’s value of & was too large, we return a fatal error code
as this indicates that the null space of X is smaller than expected.
As described in Appendix 1, the technique of increasing 4 until
L is of full row rank is incompatible with the partial spline code
as written here.

A QR decomposition of LT as

R
LT=QR:[QI:QZJ[ 0| = QR

provides the AXp matrix Q, which is an orthogonal basis for
the null space of the semi-norm defined by =. We can now
transform to parameters y and B of dimension p — 4 and 4,
respectively, as

R{
=]

where B lies in the null space and S,(0) from (5.1) can be writ-
ten

0
[ Q'ETo

BT
0

S: = lly- XEQ[ N

[g] 1%+ 1 yTy

=% Ily-z[g] 1%+ AyTy

|

This provides the desired form of the penalty term. We
must now divide the least squares term into a part that can be
made zero by an appropriate choice of B and a part that depends
only on Y. Another QR decomposition, this time as

G,
0

with
R;T

Z=[Z;Z,)=XEQ| ,

Z,=FG = [F;:F,]

is used to form



1
SiBp) = llwi-G,B-Jyll’

] (5.2)
+;‘ ”W'2‘—J2'¥”2+R'YTY
where
and
_ ) (R e

After checking that G, is non-singular, the first term in
(5.2) can be made zero for any value of y by solving

GB=w,-Jyy (5.3)

for B. This reduces the general penalized least squares to the
same form as the ridge regression. A singular value decomposi-
tion

J=UDV’ (5.4)
produces the representation of the “‘hat’’ matrix as
I0f|IX 0 I0 "
AM=F o ul |0 D22+ nryt| |0 | ¥ -

The matrix D is axa, with g = min(n,p)—h, and the matrices
U and V are rectangular of sizes (n—h)xa and (p—-h)xa,
respectively. Again, using

z=Uw, (5.5)
the GCV function can be expressed as
" 2
OR[N P A
V(A= = o & « 45.6)
n
-p+
{n " E{df+n7nJ

and the parameters vectors y,, By, and 0, are determined in the
usual way given &, with (5.3) and

¥..= VD2 +n A 'DU W, ,

L

The biggest computational bottleneck is the SVD of J2
when n and p are large, particularly since J, is often
ill-conditioned. We can accelerate the SVD calculation by

yielding
RiT
0

0

0, =EQ I

7=

using a truncated version of the singular value decomposition
(Bates and Wahba, 1982). Notice that, in (5.6) and the solution
of 1, values of d; such that

d? < nk

can be set to zero without significantly changing the results.
Starting with a tolerance 1p, usually a small multiple (1) of the
relative machine precision (p), the truncated SVD algorithm
finds a matrix J, which has ¢* <a positive singular values and
satisfies

i
”J2 ”F

in which llell 7 is the Frobenius norm. For details of the trun-
cated SVD algorithm, see Appendix 3. We replace Joby J,in
(5.4), thereby reducing the effective number of parameters to
a". With the truncation we only calculate an (1~ h )Xa" matrix
U and a (p-h)xa" matrix V so the vector z defined in (5.5)
will be a”-dimensional, with a replaced by a*. When J, is
ill-conditioned, we get a* considerably less than a and, since
the calculation of the SVD is of order O (na?), this can create
substantial savings in computing time. However, V is sensitive
to T for small A. To check on the effect of the truncation on the
value of V(1) and hence the calculation of X we return the diag-
nostic quantity

< ,

nki A+ 13-L01 % .7

This is a lower bound on each of the quantities n 4 / (d ,-2+ nk) in
(5.6) which are replaced by 1 when d; is set to zero. Prelim-
inary tests indicate that if the diagnostic quantity is above 0.999
then the truncation has negligible effect on V.

Another important method of accelerating the GCV calcu-
lations by avoiding the final reduction to diagonal form in the
SVD was given by Elden (1984 ). This involves stopping the
evaluation of the singular value decomposition at the intermedi-
ate step of the reduction of J, to a bidiagonal form, then forming
an expression for V (7).

Description

The package has three main subroutine drivers. The first
driver, dipss for thin plate smoothing splines, is the most
efficient and the most restrictive, allowing covariates only in the
case where the replication pattern is the same as that found in
the design. The second driver, dptpss for partial thin plate
smoothing splines, handles general covariates and in turn calls
the third driver, dsnsm which handles penalized least squares
problems with a semi-norm penalty. After a call to dipss or
dptpss the subroutine dpred can be called to evaluate predicted
values for additional points not in the design.



Replicates are handled in dipss and dptpss using the fol-
lowing routines. The subroutine dreps sorts the x vectors and
returns C; and the information necessary for the routines duni
and dsuy (used only in dipss ). Subroutine duni reduces a matrix
(T or K) to the corresponding matrix with unique entries (T or
Ky). The routine dsuy sorts y and computes B{'y and the sum
of squares due to replication.

The subroutine dpss, the thin plate spline driver, calls the
routine dsetup to create the matrices C;Ky C{ and C4[Ty:S,y]
from the design points x;,i=1,2,...,n using the routines
dmakek and dmaket. The LINPACK routine dgrdc is called to
decompose C;[T;:S;y] into its QR decomposition FG, fol-
lowed by the routine dfif to calculate FTC,K,C{'F. Dsgdcl
does the Cholesky decomposition of F;C;Ky,C{F, and the
singular value decomposition of the Cholesky factor, Dgcvl
uses these results to compute the generalized cross validation
estimate of A and the corresponding estimates of the other
parameters. The work in dgcv! is divided into application of the
rotations by FT in drsap, optimization of the V (1) function in
dvlop, computation of predictive mean square error (if
requested) in dpmse, creation of the coefficient vector in defcrl,
creation of the predicted values in dpdcr, and creation of the
diagonal of A(R) in ddiag. Subroutine dviop calls dvmin to
minimize V(A) by repeated calls to dvl. The minimization is
done by an initial grid search in the In(n) scale followed by a
golden ratio search in the neighborhood of the minimizing grid
point. The input variable ntbl controls the resolution of the ini-
tial grid search. A value for ntbl of 100 or greater is recom-
mended to ensure that the global optimum is located. If a plot of
V() versus In(n) indicates that a local optimum has been
obtained the user may either increase the value of ntb! or use the
option to specify a reduced range for the search. The grid of
In(n}) values is returned along with the corresponding V (A)
values in the variable thl. The variable auxtbl is returned con-
taining X, V.(X), V(0) and V (o).

The driver dptpss for partial thin plate splines calls rou-
tines dreps, dmaket, duni, and dmakek to set up [T:S], [Ty:S;y]
and K. These are fed to detsx to create the matrices T and X
which are used by the driver dsnsm.

The subroutine dsnsm is a general driver for penalized
least squares problems with a semi-norm penalty. It calls ddcom
which decomposes Z and X and returns information used by
dgev to find 4, 0y, and other results. The work in ddcom is split
into the decomposition of Z in a call to dsgdc and the transfor-
mation and decomposition of the design in dertz and dzdc which
in tum calls disvdc or dsvdc to perform the singular value
decomposition. The work in dgcv is divided into the same sub-
routines as dgevl with the exception that dcfer! is replaced by
dcfer.

In the general case, the driver dsnsm allows an option to
use a truncation singular value decomposition through the rou-
tine dtsvde which preprocesses the design matrix J, to reduce
the dimensionality before invoking dsvdc (see Appendix 3).
The truncation tolerance, Tx p is passed to dtsvdc as the parame-
ter minrat. The drivers dtpss and dptpss would not benefit from
truncation in the SVD calculation so they use the LINPACK
routine dsvdc.

Simulation Applications: When GCVPACK is used for
simulation studies the option to compute the predictive mean
square error should be used. The known ‘‘true’” response is
input in the variable adiag and the predictive mean square error,
R(}), is returned, along with V(X), in the variable bl It is
recommended that plots of V' (A) and R (A) versus In(z A) be used
to evaluate the success of the GCV function in finding the
optimal A (the A which minimizes predictive mean square error).
The variable auxtbl contains R (1), R (0) and R (co).

The decomposition of the X matrix requires the most
intensive computation. The subroutines dipss and dptpss are
both set up to take advantage of the savings in computation that
exist for multiple response vectors with the same design. To
modify dipss to handle a problem with more than one response
vector all code up to and including the call to dsgdc] is executed
once. A loop can be added to execute the remaining code for
each y vector. In practice this modification would involve
adding only a few lines of code.

To modify dptpss, or any other driver which calls dsnsm,
a loop must be added in dsnsm. In dsnsm there are two subrou-
tines, ddcom which needs to be executed once, and dgcv which
must be executed once for each response vector. In dptpss, after
the call to dsnsm, a transformation is applied to the coefficient
vector. This must be done to the coefficient vector correspond-
ing to each y vector.

Related Algorithms

The numerical linear algebra in our routines is performed
using the LINPACK (Dongarra et al., 1979) routines. The intro-
ductory comments of each GCVPACK routine list which LIN-
PACK and BLAS (Basic Linear Algebra Subroutines) routines
are called directly or indirectly. There is one
machine—dependent constant, the relative machine precision,
which is used in these routines to determine error conditions
caused by ill-conditioning, but that constant is computed each
time it is needed.

The present work generalizes algorithms for ridge regres-
sion of Golub, Heath, and Wahba (1979) and Bates and Wahba



(1982) which use the singular value decomposition. Elden
(1977) gives an algorithm which terminates the singular value
decomposition at an intermediate step, reducing X to a bidiago-
nal form, thereby saving time (see the Test Results section).
This could be incorporated into GCVPACK but we have not
done so yet.

Wendelberger (1981) implemented an algorithm for thin
plate splines based on eigenvalue-eigenvector decompositions
for one-dimensional and multi-dimensional thin plate smoothing
splines. Hutchinson (1984) developed an algorithm for thin
plate splines with large data sets using the thin plate basis func-
tions of Wahba (1980b); see Appendix 2.

Reinsch (1967) initially proposed a fast algorithm for
fixed A using a Cholesky decomposition (see De Boor (1978)).
In the one-dimensional case, the penalty can be written as a pro-
duct of matrices with only 2m—1 non-zero diagonals. Hutchin-
son and de Hoog (1985) give an O (n) algorithm for computing
V() using a Cholesky decomposition of these matrices. See
also O’Sullivan (1985). GCVPACK is not designed to take
advantage of the unique structure of one dimensional polyno-
mial smoothing splines, and runs much slower than the code of
Hutchinson and de Hoog (1985) in this case.

O’Sullivan, Yandell and Raynor (1986) developed algo-
rithms for smooth generalized linear models based on a Chole-
sky decomposition of X"X + nAL. Green (1985) and Green and
Yandell (1985) presented algorithms for penalized likelihood
schemes which include generalized lincar models and other
iteratively reweighted least squares methods. They present a
one-dimensional algorithm based on Reinsch (1967) and a gen-
cral algorithm based on the Cholesky decomposition. They
have also incorporated an iterative algorithm using the SVD to
automate the choice of X, but it needs extensive testing to deter-
mine if it is stable. Shiau (1985) developed algorithms for a
particular class of partial splines consisting of discontinuities of
f or higher order derivatives at known or unknown points. This
includes a one-dimensional algorithm based on Hutchinson and
de Hoog (1985) and a multidimensional algorithm based on the
Cholesky decomposition.

Test Results

The package and drivers have been tested for internal
consistency and for accuracy against other known algorithms.
Here we present some timing results to show that the methods
are feasible for relatively large data sets and to offer insight into
which portions of the code should be avoided, if possible. For
example, the code allows the computation of the diagonal of
A(%) for forming diagnostics (Eubank, 1984) but this calculation

alone can take 15% or more of the total execution time.

All timing runs were performed on a Vax-11/750 com-
puter with a floating point accelerator and running the 4.2 BSD
UNIX™ operating system. We quote two sets of times for the
example: one using the driver dtpss and the other using dpipss.
Each of the drivers was timed twice: first using the Fortran ver-
sion of the Basic Linear Algebra Routines (BLAS) then using
Assembler Language BLAS. As explained in Dongarra et al.
(1979), the BLAS are a set of low-level routines that perform
such elementary tasks as accumulation of dot products and, by
replacing them with Assembler language versions, the Linpack
routines can be made to run faster.

The design for the example is a 9 by 9 factorial in x; and
X, with one covariate, x?. Two replicate observations were
simulated at each of the 81 design points. Thus n = 162, k =81,
m=2,d =2and ¢ =1. Our timing results are shown in Tables
1 and 2. The total times are slightly greater than the sum of the
times spent in the lower level subroutines since the driver rou-
tines have to do some definition of pointers, etc.

The first thing to notice from these tables is that dtpss is
strongly preferred over dpipss for this example since it executes
approximately 3 times faster. In general, if dfpss can solve the
problem, it will do so more quickly. Also, the Assembler BLAS
speed things up considerably with most of the gain being in the
call to the Linpack SVD routine dsvdc.

Fortran BLAS | Assembler BLAS
Routine Seconds % | Seconds %
dreps 3.07 5 3.03 4
dsetup 8y 1 942 12
dsgdcl
Cholesky C AT | S 2.13 3
bidiag. 3155 -9 | 1550 19
diag. 36.10 - 33 |.:34.65 43
dsuy 085 20 0.05 0
dgevl
drsap 020 0 0.12 0
dvlop 190 - 2 1.68 2
dpmse 1.47 1 137 2
dcferl 0.28 0 0.15 0
dpdcr 025 O 0.12 0
ddiag 1807 11 1L15 14
Total dtpss | 108.92 79.88

Table 1: Example 1 using dipss

UNIX is a trademark of AT&T Bell Laboratories



Fortran BLAS | Assembler BLAS
Routine Seconds % | Seconds %
dreps 3.02 1 3.03 1
make K and T 1445 4 14.62 6
dctsx 8.38 2 3.98 2
ddcom
dsgdc
Cholesky 4.05 1 222 1
QR 10.85 3 5.40 )
dertz 3030 16 | 2745 12
dzdc
bidiag. 8643 24 | 4177 18
diag,. 101.55 28 82.55 36
dgev
drsap 042 0 0.23 0
dvlop 1.67 0 1.67 1
dpmse 1.65 0 1.45 1
dcfer 0.57 0 0.28 0
dpder 0.47 0 0.25 0
ddiag 66.02 18 39.65 18
Total dptpss 35943 226.28

Table 2: Example 1 using dptpss

We have divided the time for dsvdc into two subsections,
bidiag and diag. Elden (1984 ) gave a method of expressing the
GCV function V() avoiding the diag step. This would result in
considerable savings in the dsgdcl or ddcom routines. This sav-
ings is offset by the calculations in dgcvl or dgev becoming
more complicated and, possibly, taking longer. However, since
those routines take up much less time than diag, we would
expect that the overall savings would be worthwhile.

Notice that the calculation of the diagonal of A(X) in
ddiag is comparatively expensive — usually around 15% of the
total execution time. If this optional information is not going to
be used, it should not be calculated.

In circumstances where there are multiple y vectors being
analysed for the same design and penalty matrices, such as in
Monte-Carlo runs, the decomposition portion, dsgdcl or ddcom,
should be called only once while the analysis portion, dgcvl or
dgcv, called for each y. The analysis portion represents less
than 5% of the total time if the calculation of the diagonal of
A(X) is not undertaken.

The sorting method used in dreps is a comparatively prim-
itive sort (a modification of the bubble sort) but, even so, the
time taken by dreps is a small percentage of the total time. It
would be possible to speed up this step by using a more sophisti-
cated sort, but it doesn’t appear worthwhile. Also, the evalua-
tion of V (A) after the matrices are decomposed is very quick. In
these runs the variable ntbl was set to 200 so both V(A) and the

mean squared error of prediction (since the data were simulated)
were evaluated at 200 different values of A. Even with 200
evaluations dvlop and dpmse each represented, at most, 2% of
the execution time.

Appendix 1. — replicates and rank-deficient
penalty matrices

Because the functions E,, defined in (2.3) are increasing
functions of the length of their argument, the matrix K defined
in (2.4) will be close to singular if |lx; —x; Il is very small for
some i #j. To avoid an indeterminacy in the parameters of the
thin-plate spline, we determine replicates by comparing
llx; —x; |l to a tolerance level rather than checking for x; =X;.
The tolerance level is calculated as 100 times the relative
machine precision times the length of the diagonal of the smal-
lest rectangle which encloses the x;,i =1, ...,n. In all our test
cases, this check has been adequate to ensure that the matrix

F;KF, is computationally positive definite.

It is important to note that the determination of replicates
involves sorting the x;,i =1, ... ,n, in increasing lexicographic
order. Thatis,

(1 13 M1 1"
21 12
31 2.1
41 22
the rows of 12 would be re—ordered as 31
22 32
32 41

42 42

As mentioned in the Test Results section, the sorting algorithm
is comparatively primitive (a modification of a bubble sort) and,
even though it does not take a substantial percentage of the total
execution time, it is to the user’s advantage to pass the argument
des t0 dipss or dptpss with the rows in increasing lexicographic
order, if possible, as the sorting time will be minimized.

Replicates are determined in such a way as to avoid a
singular penalty matrix because a singular penalty matrix has a
different effect for the thin-plate smoothing spline (or partial
spline) than it does for the case of a general design matrix with a
semi-norm penalty. In the general case, we determine the null
space of the penalty so unexpected singularities simply increase
the dimension of the null space and that part of the parameter
vector is incorporated into the B. Ordinary regression is used to
determine B and we assume (and check) that the part of the
design matrix corresponding to B is non-singular. Unless the
singularity in the penalty corresponds to a singularity in the



design, everything works well.

In the case of a thin-plate smoothing spline the least
squares part of the objective function (2.6) uses the same matrix
(F7KF,) as the penalty part. Thus, when the penalty is rank-
deficient, the ‘‘design’® matrix (in the regression sense) is also
rank deficient and the parameters which lie in the extended null
space of the penalty are indeterminant. This can be seen from
the form of (2.6). If there are singular values of zero, the
corresponding parameters have no effect on the predictions and
thus do not enter into the objective function §,(B,5). There is a
parameter vector which can be calculated using (2.9) even with
some zero singular values but the part corresponding to the zero
singular values can be changed to an arbitrary value without
affecting the predictions so, in particular, it could be set to zero.
More specifically, consider the last two terms in the last line of
(2.6), after the Cholesky decomposition:

% [lwy—LTLS Il + A8TLTLS . (A1.1)

If L is not of full row rank, any & satisfying
L™Lw, = [(LTL)®+nALTL] &
minimizes (A1.1), and in particular we could take
S=(L"L+nAD'w, .

However, we have chosen not to write the special code that
would be required to handle this case. We have eliminated one
source of a computationally singular penalty matrix for the thin
plate spline by merging nearly replicated data points. If the
computational singularity of F7KF; is due to other than nearly
replicated data points, i.e., due to very large sets of highly irreg-
ularly spaced data, the user should consider using thin plate
basis functions as described in Appendix 2.

Appendix 2. — partial splines with basis func-
tions

One can use the algorithm for a general design matrix
with semi-norm penalty to find partial thin-plate smoothing
splines determined by basis functions centered at specified
nodes. See Shiau, Wahba, and Johnson (1985). For example,
consider the model

yi=[ [Kox,xf @dx+e
=L"f +Ei .

The estimate f of f is the minimizer, in an appropriate space,
of
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n

Y Gi-Lif*+MI(f)

i=1

% (A2.1)

where J (f) is an appropriate (quadratic) roughness penalty. If
we can approximate f; by

b
fa=29;B;
i=1

where {B;} are suitably chosen basis functions, then we can
define the ij’th entry of X as L;B; and the matrix T by

The thin plate basis functions were proposed for this pur-
pose by Wahba (1980a). Starting with a set of suitably distri-
buted distinct nodes t; , t,, - - - , t,, the approximation is

t b
f1&)= Y30 (x) + Y 8E,, (x—t;) (A2.2)
i=1 i=l

where §=(8,, - - -, &, )T must satisfy
b
>.5:0;(t:)=0 , j=1,---¢t .
i=1
If f5 is required to be of the form (A2.2), then (A2.1) becomes
s,m,a)% ly-TB-K5 1%+ 18K, 5
subject to T3 = 0, with
{Telij = 0;(t;) .
Here, T is nxt and K is nx b, with entries
{T}ij =L;¢; ,
{K}j =LE,(e—t;) ,
and Kj is bx b with entries

{Kp}ij =En(t;-t;) .

If we are interested simply in evaluation functionals, then L; f =
f(x;). The matrices Tz and Kz remain the same, but the
matrices T and K have entries

{Thj=6;(x;) ,
{K}ij =En(x; - t;) .
We take a QR decomposition
G,
Ty =FG= [Fl:szl 0] ~F,G,

and use this to construct the parameter vector

[E] , with§=F,( ,

and to create the design matrix

0



X = [T:KF,]

o rse,

We then proceed as in the case of a general design matrix with a
semi-norm penalty as described earlier,

and penalty matrix

0 o0
0 FJK;F

Hutchinson’s (1984) code implements thin plate basis
functions for the case L; f =f (x;), where b is chosen to be
much less than » when n is large. Hutchinson’s code, or the
partial thin plate smoothing spline code described here, should
be considered in the case that n is very large or F; KF, of (2.6)
is computationally singular.

Covariates and replicates are handled as before and enter
in the same way as for partial spline models. Considering here
only the case of no replicates, the model with covariates is

t b ¢
Fax,8)=YB;0:(X) + HE,(x-t;) + T o, y,(x,8) .
i=1 i=1 j=1
The objective function for a fixed A becomes
§5(0uB.8) = % ly-Sa—TB-K5!I%+ 157K, 3

subject to T8 = 0, in which S is nX ¢ with entries
{8} =Liy;(e,s;) ,
or, for evaluation functionals,
{8} =v;(x;,s;) .
The design matrix becomes
X =[T:S:KF,]

i)

The penalty Z has the same form, with the addition of rows and
columns of zeroes corresponding to a.. One would then proceed
with the general design matrix with semi-norm penalty.

with parameter vector

0

Appendix 3. — the truncated singular value
decomposition

The following theorem of Mirsky (1960) provides a
bound for the error in the singular values when using an approx-
imation to a matrix.

Theorem 1: Let X and Y be nXp (n 2 p) matrices with singular
value decompositions UDVT and RSWT respectively.

-12-

Denote the ordered singular values of X as
{d;},i=1,---,p withd,2d,> --- 2d, and the ordered
singular values of Y as {s;},i=1,---,p . Then

i(d,-—s,- P<IX-YI}=e [(X-Y)'(X-Y)]

i=]

We will take advantage of this theorem to calculate the
SVD of a matrix X,+ which is close to X in the sense that
I X-X_ Il is small but is better conditioned than is X so the
iterative portion of the SVD tends to converge faster and the
computational burden is reduced. First, we take a pivoted QR
decomposition of X using the pivoting scheme from LINPACK
(Dongarra et al., 1979). That is, we determine Q, nxn orthogo-
nal, R, nXp and zero below the main diagonal, and E, a pxp
permutation matrix, such that

XE=QR
and R has the property that

(A3.1)

j
rha2z Yk (j=a*a*+l,---,p).

i=gq%

(A3.2)

If we take the SVD of R,,, the triangular matrix composed of the
first p rows of R, as

R, =KDLT (A3.3)
we can produce the SVD of X as
X = Q,KDL'E" = UDVT (A3.4)

where Q,, is the nxp matrix composed of the first p columns of
Qand U=Q,K is nxp while V=EL is pxp and orthogonal.
This method would not, however, produce better conditioning
for the SVD algorithm since the singular values of R, are the
same as the singular values of X.

To provide better conditioning, we truncate the matrix R,
after the a*’th row and take the SVD of the resulting n xa*
matrix R« (a* <p) as

Ra* = Kat Da* Lat (AB.S)

where K« is a*xa* and L« is a*xp. The diagonal elements
of D, are no longer the singular values of X but now represent
the singular values of a matrix

R,
Xa* = QP 6 ET (A36)
which is different from X. However,
i s e
Il X-X ”F = E Z?','J (A3.7)
|i=a*+1 j=i

so we can choose a* to be as small as possible subject to the



constraint that
p kG

X, (858

<1p
where p is the relative machine precision (the smallest number
such that 1+p>1 in floating point arithmetic) and 7 is a small
multiplier,

We initially choose T as unity but increase it if the LIN-
PACK singular value decomposition routine (dsvdc) fails to
converge. When such a convergence failure occurs, the user
can either increase the number of iterations per singular value
allowed in dsvdc (we increase this from 30 to 90) or increase T
or both. To increase the maximum allowable number of itera-
tions, change the value of MAXIT in dsvdc.

Allowing 7 to get too large can result in inaccuracies in
the calculation of V. The effect of the truncation is measured by
the diagnostic ratio defined in (5.7). In general, values of T
above 100 are not recommended.

The double sum on the right of (A3.7) is easily evaluated
a row at a time starting at the p’th row until the constraint
(A3.8) is violated and the smallest a* is determined.

By theorem 1, if {d; }, i=1,...,p are the ordered singular
values of X and {d; , }, i=1,...,p are the ordered singular values
of X «, then

(i(d,- —d; o))<t X =1p (f‘,dﬁ)"ﬁ

i=l

(A3.9)

i=1

If n <p, the same procedure is applied to X'.

Acknowledgements

This research has been supported in part by National Sci-
ence Foundation grants DMS-8404970 and ATM-8410373,
United States Department of Agriculture CSRS grant 511-100,
NASA grant NAG5-316 and ONR contract N00014-77-C-0675.
Computing was performed on the UW-Madison Statistics
Research Computer. We wish to thank Mr. Shee Ham, Dept. of
Economics, UW-Madison, for helping us debug early drafts of
the code and document.

Bibliography

Bates, D. M. and Wahba, G. (1982), ‘‘Computational Methods
for Generalized Cross Validation with Large Data Sets,”’
in Treatment of Integral Equations by Numerical
Methods, eds. C.T.H. Baker and G.F. Miller, New York:

13

Academic Press.

Craven, P. and Wahba, G. (1979), “‘Smoothing Noisy Data with
Spline Functions: Estimating the Correct Degree of
Smoothing by the Method of Generalized Cross-
Validation,”” Numerische Mathematik, 31, 377-403.

de Boor, C. (1978), A Practical Guide to Splines, New York:
Springer.

Dongarra, J.J., Bunch, J.R., Moler, C.B., and Stewart, G. W,
(1979), Linpack Users’ Guide, Philadelphia: STAM.

Duchon, J. (1976), “‘Splines Minimizing Rotation-Invariant
Semi-Norms in Sobolev Spaces,’” in Constructive Theory
of Functions of Several Variables, eds. W. Schempp and
K. Zeller, 85-100.

Elden, L. (1977), “‘Algorithms for the Regularization of IlI-
Conditioned Least Squares Problems,”” BIT, 17, 134-145.

Elden, L. (1984 ), ‘A Note on the Computation of the General-
ized Cross-Validation Function for Ill-Conditioned Least
Squares Problems,’’ BIT, 24, 467-472.

Eubank, R.L. (1984), ““The Hat Matrix for Smoothing Splines,”’
Statistics & Probability Letters, 2, 9-14.

Golub, G.H., Heath, M., and Wahba, G. (1979), ‘‘Generalised
Cross Validation as a Method for Choosing a Good Ridge
Parameter,”’ Technometrics, 21, 215-224.

Green, P.J. (1984), “‘Iteratively Reweighted Least Squares for
Maximum Likelihood Estimation, and Some Robust and
Resistant Alternatives,”” Journal of the Royal Statistical
Society, Ser. B, 46, 149-170. (Discussion 171-192)

Green, P.J. (1985) “‘Penalized Likelihood for General Semi-
Parametric Regression Models.’” Technical Report #2819,
Mathematics Research Center, Univ. of
Wisconsin—Madison.

Green, P.J. and Yandell, B.S. (1985), ‘‘Semi-Parametric Gen-
eralized Linear Models,”” in GLIMS8S: Proceedings of the
International Conference on Generalized Linear Models,
September 1985, ed. R. Gilchrist Lecture Notes in Statis-
tics, Springer-Verlag. (Technical Report#2847, Math.
Res. Cen., U. of Wisconsin)

Hutchinson, M. F. (1984) “‘A Summary of Some Surface Fitting



and Contouring Programs for Noisy Data.”” Technical
Report #ACT84/6, Div. Math. and Stat., CSIRO.

Hutchinson, M.F. and de Hoog, F.R. (1985) ‘‘Smoothing Noisy
Data with Spline Functions.”” Numerische Mathematik, .
(to appear)

Mirsky, L. (1960), “‘Symmetric Gauge Functions and Unitarily
Invariant Norms,”’ Quart. J. Math. Oxford, 11, 50-59.

Nychka, D., Wahba, G., Goldfarb, S., and Pugh, T. (1984),
“Cross-Validated Spline Methods for the Estimation of
Three Dimensional Tumor Size Distributions from Obser-
vations on Two Dimensional Cross Sections,” J. Am.
Stat. Assoc., 79, 832-846.

O’Sullivan, F. (1983) ““The Analysis of Some Penalized Likeli-
hood Estimation Schemes.” Technical Report #726,
Department of Statistics, University of
Wisconsin—Madison.

O’Sullivan, F. (1985), ““‘Discussion of Dr. Silverman’s Paper,’’
Journal of the Royal Statistical Society, Ser. B, 47, 39-40.

O’Sullivan, F. and Wahba, G. (1985), ‘‘A Cross Validated
Bayesian Retrieval Algorithm for Non-Linear Remote
Sensing Experiments,” Journal of Computational Phy-
sics, 59,441-455.

O’Sullivan, F., Yandell, B.S., and Raynor, Jr., W.J. (1986),
““Automatic Smoothing of Regression Functions in Gen-
eralized Linear Models,”’ Journal of the American Statist-
ical Association, 81, 96-103.

Reinsch, C.H. (1967), ‘‘Smoothing by Spline Functions,”
Numerische Mathematik, 10, 177-183.

Shiau, J. (1985) ““Smoothing Spline Estimation of Functions
with Discontinuities.”” Technical Report #768, Depart-
ment of Statistics, University of Wisconsin—Madison.

Shiau, J., Wahba, G., and Johnson, D.R. (1985) ‘‘Partial Spline
Models for the Inclusion of the Tropopause and Frontal
Boundary Information in Otherwise Smooth Two- and
Three-Dimensional Objective  Analysis.”” Technical
Report #777, Department of Statistics, University of
Wisconsin — Madison.

Wahba, G. (1980a) ‘‘IlI-Posed Problems: Numerical and Statist-
ical Methods for Mildly, Moderately and Severly Ill-

-14-

Posed Problems with Noisy Data.”” Technical Report
#595, Department of Statistics, University of
Wisconsin-Madison. (to appear in Proceedings of the
International Conference on Ill-Posed Problems, M. Z.
Nashed, ed.)

Wahba, G. (1980b), ““‘Spline Bases, Regularization, and Gen-
eralized Cross Validation for Solving Approximation
Problems with Large Quantities of Noisy Data,”’ in
Approximation Theory IIl, ed. W. Cheney Academic
Press, 905-912.

Wahba, G. (1981), *“Spline Interpolation and Smoothing on the
Sphere.,”” SIAM Journal of Scientific and Statistical Com-
puting, 2, 5-16.

Wahba, G. (1982a), *“Vector Splines on the Sphere, with Appli-
cation to the Estimation of Vorticity and Divergence from
Discrete, Noisy Data,” in Multivariate Approximation
Theory, Vol. 2, eds. W. Schempp and K. Zeller Birkhauser
Verlag, 407-429.

Wahba, G. (1982b), “‘Erratum: Spline Interpolation and
Smoothing on the Sphere,”” SIAM Journal of Scientific
and Statistical Computing, 3, 385-386.

Wahba, G. (1982c), ‘‘Variational Methods in Simultaneous
Optimum Interpolation and Initialization,”” in The Interac-
tion Between Objective Analysis and Investigation, ed. D.
Williamson, Boulder, CO: NCAR, 178-185.

Wahba, G. (1982d), ““Constrained Regularization for Il Posed
Linear Operator Equations, with Applications in
Meteorology and Medicine,” in Statistical Decision
Theory and Related Topics 111, Vol. 2, eds. S.S. Gupta and
J. O. Berger Academic Press, 383-418.

Wahba, G. (1984a), “‘Surface Fitting with Scattered, Noisy Data
on Euclidean D-Spaces and on the Sphere,”” Rocky Moun-
tain J. Math., 14, 281-299.

Wahba, G. (1984b), ‘“‘Cross Validated Spline Methods for the
Estimation of Multivariate Functions from Data on Func-
tionals,” in Statistics: An Appraisal, Proceedings 50th
Anniversary Conference Iowa State Statistical Labora-
tory, eds. H. A, David and H. T. David, Ames: Iowa State
University Press.

Wahba, G. (1985), *“Comments on "Projection Pursuit" by Peter
J. Huber,”” Annals of Statistics, 13, 518-521.



~-15-

Wahba, G. and Wendelberger, J. (1980) Some New Mathemati-
cal Methods for Variational Objective Analysis Using
Splines and Cross-Validation. Monthly Weather Review,
108, 36-57. A

Wendelberger, J.G. (1981) The Computation of Laplacian

Smoothing Splines with Examples. Technical Report#648,
Dept. of Statistics, U. of Wisconsin.

Table 3. GCVPACK notation correspondence
integer constants
n nobs number of observations
d dim dimension of polynomial space
m m order of derivatives of penalty
c ncov number of covariates
cq ncovl : number of covariates in S replicating structure of T
c—cCq ncov2 ncov —ncovl
a nuobs iout[4] = number of unique obs. (dtpss & dptpss)
a* npsing jout[1] = number of positive singular values
t mkpoly(m,dim)  dimension of polynomial space
h=t+c nnull jout[3] = size of null space of X
p=a+t+c npar jout[2] = number of parameters
t+cy nctsl number of columns in [T : 8]
p-h pmh npar — nnull
n—h nmh nobs — nnull
data and parameter vectors
y y response vector
B beta coefficients for covariates
a alpha coefficients for polynomial
o delta coefficients for smooth
v coef coefficients for well-defined smooth basis
0 coef coefficients (in several forms)
matrices
X des design matrix for splined variables
[T:S;] tsl polynomials and replicated covariates
[Ty :S1vl tbsbl unique polynomials and replicated covariates
S, 52 unreplicated covariates ’
(AR} u adiag[il diagonal of hat matrix
D} svals[i] singular values
z sigma penalty matrix
F,G fg & fgaux QR decomposition of [T:S]
E sgpvt permutation for pivoted Cholesky of £
Q.R qr & graux QR decomposition of Cholesky factor of Z
{Cyi c1fi] square root of number of replicates of i’th unique x
double precision summaries
A lamhat dout[1] = GCV estimate of lambda
F(L) penlty dout[2] = smoothing penalty
|1-AR) || 2 rss dout[3] = residual sum of squares
tr(d- A(i)) = dout[4] = trace of I-A
| By |l ssqrep dout[5] = sum of squares for replication (dpss)
P machep relative machine precision
T tau small multiple
TP minrat machine tolerance
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Major Changes in Second Release

This is a listing of the major changes to Gevpack for the second release. Users who call only the drivers
dpipss.f and dtpss.f will not have to make any modifications to their calling routines. Users who call the driver
dsnsm.f must add the argument factor to the calling sequence (start with a value of 1.0) and must declare dout to
be of length 5 rather than 4. All users must note that the search for lambda hat is now done in the log base 10 scale
rather than the natural log scale. This will change the output from all drivers. Users who call any other routines
must be very careful to mote the changes in calling sequences listed below. We do not expect to release
another version of Gevpack after this one. You must replace all of the release 1 routines with release 2

routines to insure correct computation. The set of necessary linpack routines has not changed.

affected routines

ddsdc.f T, ddcom.f , dcrtz.f **,
dzdc.f **

ddcom.f , dzdc.f
dsgdcl f
dptpss.f , dsnsm.f , dipss.f

dpdcr.f *, ddiag.f **, dgev.f,
dgevl f

dipss.f , dsnsm.f , dptpss.f ,
dgevl f, dgev.f

dgev.f , dgevl f, dpmse.f ,
dptpss.f , dsnsm.f , dipss.f ,
avl.f , dviop.f

dsuy.f *, dreps.f *, dipss.f ,
dptpss.f

dvlop.f *,dgcevl f, dgev.f
defer f *, dgev.f

ddcom.f , dcrtz f *

ddcom.f *, dsnsm.f *, dzdc.f *

dsnsm.f

ddcom.f *, dzdc.f *, disvde. f *

defer.f , deferl f, dgemy. f **,

ddiag.f , dpdcr.f , dpmse.f ,
dpred.f , drsap.f

testipss.out , testptpss.out

description
ddsdc.f isreplaced with dertz.f |, dzde.f .

Nonzero info and svals from dsvdc are now returned in npsing and svals .
Nonzero info and svals from dsvdc are now returned in p and svals.
Nonzero info and svals from dsvdc are now returned in iout (1) and svals .

Calculation of the diagonal of the hat matrix has been removed from
dpdcr.f and is now done in the new routine ddiag.f .

Tout and dout are now assigned as early as possible to return more infor-
mation when info is positive.

Lambda values are expressed as log base 10 rather than natural log.

The argument dfrep is removed from the calling sequences of dsuy.f and
dreps.f .

The argument npar is removed from the calling sequence of dviop.f .
The argument fgaux is removed from the calling sequence of defer.f .
The argument Iwa is removed from the calling sequence of dcrtz.f .

The argument factor is added to allow control over the amount of trunca-
tion.

The argument dout must be declared with length 5 rather than length 4.
The truncation ratio is now returned in dout (5).

The Frobenius norm of R — R, is now returned as an argument.

The routine dgemy.f is called to perform matrix multiplication. (Dgemv.f
is from the extended BLAS)

Changes due to the switch from natural log to log base 10 and reformatting
of output.
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SJort. 87, testtpss.in**, The input files testtpss.in and testpipss.in replace fort.8 and are now read
testpipss.in **, testtpss.f , as standard input.

testptpss.f

integn.f **, inteqn.in **, Routines and files used for new integral equation test driver integn.f .
integn.out **, mktpar.f **,

mkxys.f **

* Calling sequence changed, ** New routine or file, 1 Deleted routine or file

Non-zero Error Codes from Driver Routines

Below are all the error codes which may arise during use of the drivers dpipss, dsnsm and dipss. Refer to
Description section and code for further details.

Non-zero Error Codes from dpipss
Code OccuredIn Meaning

-2 dvmin log(nobs *lamhat ) > lamlim (2) (not fatal)
-1 dvmin log(nobs *lamhat ) < lamlim(1) (not fatal), will occur if limits on lambda hat are input by
user and are equal.
1 dptpss dimension error (nobs <0 or m <0 or dim <0 or nthl <0 or nthl > ldthl or 2*m -
dim <£0)
2 dptpss error in dreps, the first ncov 1 columns of s do not duplicate the replication structure of des
3 dptpss Iwa (length of work) < ncts 1*(nobs + nuobs + 1) + npar*(nobs + npar + 1) + (npar -
nnull )* (npar -2* nnull +2+nobs +npar +nobs
4 dptpss liwa (length of iwork) < 3*nobs - ncts 1
5 dpipss error in dmaket (error in creation of T)
6 dptpss sigma is rank deficient
1001*  dsnsm dimension error (nobs <0 or npar <0 ornnull <0 or (npar - nnull)<0)
1002* dsnsm Iwa (length of work) < (npar - nnull}*(npar - 2*nnull + 2 + nobs) + npar + nobs
1003*  dsnsm liwa (length of iwork) < 2*npar - nnull
1004* dsnsm error in ntbl (ntbl <0 or ntbl > ldibl)
1101* ddcom dimension error (nobs <0 or npar <0 or nnull <0 or (npar - nnull) <0 or ldx < nobs
or ldx < npar)
1102* ddcom ldcaux (length of decaux) < (npar - nnull)* + 2*npar - nnull
1103* ddcom Iwa (length of work) < (npar - nnull)* (nobs - nnull + 1) + nobs
1104*  ddcom liwa (length of iwork) < npar - nnull
1111% - .dsgdc calculated nnull is smaller than input nnull
1121 dcrtz error in dirsl, R is singular
1131% - dzde lwa (length of work) < (npar - nnully* (nobs - nnull) + npar - nnull + nobs
1132 dzdc transpose of J; is necessary (npar > nobs) but npar > ldx
1133*  dzdc failure to converge in dsvdc called from dtsvdc (using J3)
1134 dzdc failure to converge in dsvdc (using J7), this error can usually be cured by increasing the

parameter MAXIT in the LINPACK routine dsvdc
1135% dzdc failure to converge in dsvdc called from dtsvdc
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1201*
1202*
1203*
1204*
1205
1214;
1212%*
1213%
1221
1222

dzdc

dgcv
dgev
dgev
dgcv
dgcv
aviop
dvlop
dvlop
dcfer
dcfer

~3D..

failure to converge in dsvdc, this error can usually be cured by increasing the parameter
MAXIT in the LINPACK routine dsvdc

dimension error (nobs <0 or npar <0 or nnull <0 or (npar - nnull) < 0)
error in ntbl (ntbl <0 or ntbl > ldtbl)

ldcaux (length of dcaux) < (npar - nnull)? + 2*npar - nnull

Iwa (length of work) < (npar - nnull) + nobs

lamlim (1) > lamlim (2)

svals (1) = 0.0d0

npsing is incorrect

lamlim (1) > lamlim (2)

error in dtrco, G is singular

error in dirsl, R is singular

*Should not occur in normal circumstances

FEN TS I O

101

102*
103*
104*
111
121
131+
132
133
134

135

136

137

201*
202%
203*

Occured In
dsgdc
dvmin
dvmin

dsnsm
dsnsm
dsnsm
dsnsm
ddcom

ddcom
ddcom
ddcom
dsgdc
dcrtz
dzdc
dzdc
dzdc
dzdc

dzdc

dzdc

dzdc

dgcey
dgcv
dgev

Non-zero Error Codes from dsnsm
Meaning
calculated nnull is larger than input nnull (not fatal)
log(nobs *lamhat ) > lamlim (2) (not fatal)
log(nobs *lamhat ) < lamlim (1) (not fatal), will occur if limits on lambda hat are input by
user and are equal.
dimension error (nobs <0 or npar <0 or nnull <0 or (npar - nnull) <0)
Iwa (length of work) < (npar - nnull )* (npar -2*nnull +2+nobs )+npar +nobs
liwa (length of iwork) < 2*npar - nnull
error in ntbl (ntbl <0 or ntbl > Idtbl) or 1<0
<0 or dimension error (nobs <0 or npar <0 or nnull <0 or (npar - nnull) <0 or ldx <
nobs or ldx < npar)
Idcaux (length of dcaux) < (npar - nnull)? + 2*npar - nnull
Iwa (length of work) < (npar - nnull )* (nobs - nnull + 1) + nobs
liwa (length of iwork) < npar - nnull
calculated nnull is smaller than input nnull
error in dtrsl, R is singular
Iwa (length of work) < (npar - nnully* (nobs - nnull) + npar - nnull + nobs
<0
transpose of J, is necessary (npar > nobs) but npar > ldx
failure to converge in dsvdc called from dtsvdc (using JJ), this error can usually be cured by
increasing the parameter MAXIT in the LINPACK routine dsvdc or by increasing the value
of the argument 7 to dsnsm (see discussion in TR775 (rev.))
failure to converge in dsvdc (using J7), this error can usually be cured by using the trunca-
tion option or by increasing the parameter MAXIT in the LINPACK routine dsvdc
failure to converge in dsvdc called from dtsvdc, this error can usually be cured by increasing
the parameter MAXIT in the LINPACK routine dsvdc or by increasing the value of the argu-
ment T to dsnsm (see discussion in TR775 (rev.))
failure to converge in dsvdc (using J7), this error can usually be cured by using the trunca-
tion option or by increasing the parameter MAXIT in the LINPACK routine dsvdc
dimension error (nobs <0 or npar <0 or nnull <0 or (npar - nnull )<0)
error in ntbl (ntbl <0 or ntbl > ldtbl)
ldcaux (length of dcaux) < (npar - nnull)? + 2*npar - nnull



204%
205
211
212
213>
221
222

dgcv

dgcv

dviop
avlop
dvlop
dcfer
dcfer

23

lwa (length of work) < (npar - nnull) + nobs
lamlim (1) > lamlim (2)

svals (1) = 0.0d0

npsing is incorrect

lamlim (1) > lamlim (2)

error in dtrco, G is singular

error in dtrsl, R is singular

*Should not occur in normal circumstances

Code
-2
-1

1

2

3

4

i1
101*

102

103

201*
202*
203*
204
211
212%
213
221

Occured In
dvmin
dvmin

dipss

dtpss
dipss
dipss
dsetup
dsgdcl
dsgdcl
dsgdcl

dgcvl
dgcevl
dgcvl
dgevl
dviop
dvlop
dvlop
dcferl

Non-zero Error Codes from dipss
Meaning
log(nobs *lamhat) 2 lamlim (2) (not fatal)
log(nobs *lamhat) < lamlim (1) (not fatal), will occur if limits on lambda hat are input by
user and are equal.
dimension error (nobs <0 or m <0 or dim <0 or nthl <0 or ntbl > ldibl or 2*m -
dim £0)
error in dreps, covariates do not duplicate the replication structure of des
Iwa (length of work) < nuobs*(2 + ncts + nuobs) + nobs
liwa (length of iwork) < 2*nobs + nuobs - ncts
error in dmaket (error in creation of T)
lwa < 2*npar
F7KF, is not of full rank
failure to converge in dsvdc, this error can usually be cured by increasing the parameter
MAXIT in the LINPACK routine dsvdc
dimension error ( nuobs <0 or ncts1 <0 or nuobs - ncts1<0 )
error in ntbl (ntbl <0 or ntbl > Idthl )
Iwa (length of work) < nuobs - ncts 1 + nobs
lamlim (1) > lamlim (2)
svals (1) = 0.0d0
npsing is incorrect
lamlim (1) > lamlim (2)
error in dtrco, G is singular

*Should not occur in normal circumstances

Code
1

2
3
4

Occured In
dpred
dpred
dpred
dpred

Non-zero Error Codes from dpred
Meaning
dimension error (nobs <Oornct<0orm <Qordim <0)
npar # ndesb + nct + ncov 1 + ncov2
Iwa (length of work) < npred * ( nct + ndesb )
error in dmaket (error in creation of T)



