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Including SNP data in an SS-ANOVA model

An SS-ANOVA model of retinal pigmentary abnormalities’ was able to show a nonlinear protective effect of
high total serum cholesterol for a cohort of subjects in the Beaver Dam Eye Study [1]. We replicate those
findings in Figure Sla.? By extending this model with SNP 1510490924 in the ARMS2 gene region, we were
able to see that the protective effect of total serum cholesterol disappears in older subjects which have the
risk variant of this SNP.

1Hereafter we will use the term pigmentary abnormalities when referring to retinal pigmentary abnormalities.
2There are minor differences between our plot in panel (a) and the corresponding plot in Lin et al. [1] since we use a subset
of the same cohort. We give details regarding this model in the Case Study section of the paper.
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(a) Model with only environmental covariates (b) Model including SNP rs10490924 from the ARMS2

gene. Label snp2:22 corresponds to the risk variant of
the SNP. Body mass index is fixed at the sample median
(28).

Figure S1: Probability from smoothing spline ANOVA logistic regression model. The z-axis of each plot is
total serum cholesterol, each curve is for the indicated fixed value of systolic blood pressure. Each plot fixes
body mass index and age to the shown values with hist = 0, horm = 0 and smoke = 0 (see Table 1 in main
paper for an explanation of model terms).

Pedigrees

Figure S2a shows an example of a pedigree. The dissimilarity in Definition 1 of the main paper is also the
degree of relationship between pedigree members ¢ and j [3]. Another dissimilarity based on the kinship
coefficient can be defined as 1 — 2. However, since we use Radial Basis Function kernels, defined by an
exponential decay with respect to the pedigree dissimilarities, including the exponential decay in ¢ resulted
in overly-diffused kernels. For example, Figure S2b shows the relationship graph for five female BDES
subjects in the pedigree from Figure S2a. Edge labels are the pedigree dissimilarities derived from the
kinship coefficient, and dotted lines indicate unrelated pairs.

Regularized Kernel Estimation

Figure S3 shows a three-dimensional embedding derived by RKE of the relationship graph in Figure S2b.
Notice that the z-axis is order of magnitudes larger than the other two axes and that the unrelated edges
in the relationship graph occur along this dimension. That is, the first dimension of this RKE embedding
separates the two clusters of relatives in the relationship graph. The remaining dimensions encode the
relationship distance.

Not all relationship graphs can be embedded in three-dimensional space, and thus analyzed by inspection
as in Figure S3. For example, Figure S5 shows the embedding of a larger relationship graph that requires
more than three-dimensions to embed the pedigree members uniquely. For example, subjects coded 27 and
17 are superposed in this three dimensional embedding, with the fourth dimension separating them.

The pedigree dissimilarity of Definition 1 is not a distance since it does not satisfy the triangle inequality
for general pedigrees. In Figures S4a and S4b we show an example where this is the case, where the
dissimilarities between subjects labeled 17, 7 and 5 do not satisfy the triangle inequality. An embedding
given by RKE for this graph is shown in Figure S5.
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(b) Relationship graph. Edge labels are dissimilarities de-
fined by the kinship coefficient (sibling/parental=1, avun-
cular=2, first cousins=3,...). Dotted edges indicate unre-
lated pairs.

(a) Example pedigree.

Figure S2: An example pedigree from the BDES and a relationship graph for five subjects in our cohort.
Colored nodes are subjects assessed for retinal pigmentary abnormalities (red encodes a positive result).
Circles are females and rectangles are males. Our cohort only includes female subjects assessed for retinal
pigmentary abnormalities with full genetic marker and environmental covariate data.
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Figure S3: Embedding of relationship graph in Figure S2 by RKE. The z-axis of this plot is order of
magnitudes larger than the other two axes. The unrelated edges in the relationship graph occur along this
dimension, while the other two dimensions encode the relationship distance.



HeLJHL/® Ne NEEEN

(b) Corresponding relationship graph

(a) Second example pedigree.

Figure S4: A different example pedigree and its corresponding relationship graph. The dissimilarities between
nodes labeled 17, 7 and 5 in this pedigree show that the pedigree dissimilarity of Definition 1 is not a distance.
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Figure S5: RKE Embedding for second example graph. Subjects 27 and 17 are superimposed in this three
dimensional plot, but are separated by the fourth dimension.



Matérn Kernel Family

A standard kernel function commonly used is the Gaussian kernel:
k(zi,2;) = exp{—7llzi — z;]*}. (1)

This kernel function is a good candidate for this setting since it depends only on the distance between
objects and is rotationally invariant. However, its exponential decay poses a problem in this setting since
the relationship graphs derived from pedigrees are very sparse, and the dissimilarity measure of Definition 1
makes the kernel very diffuse, in that most non-zero entries are relatively small.

The Matérn family of radial basis functions [10, 11] also have the same two appealing features of the
Gaussian kernel — dependence only on distance and rotational invariance — while providing a parametrized
way of controlling exponential decay. The v-th order Matérn function is given by

ky(i,7) = exp{—ad;; }m,(, d;j), (2)

where « is a tunable scale hyper-parameter and 7, is a polynomial of a certain form. In our results, we use
the third order Matérn function:

1
k(i) = — exp{—at}[15 + 15a7 + 6a*7% + o373, (3)

where 7 = d;;. The general recursion relation for the m + 1-th Matérn function is

1 m—+1
km+1(i7j) = a2m+1 exp{—aT} Z am+17ial7_1’ (4)
=0
where m+1,0 = (2m + 1)047”70, Am+41,i = (2m +1-— i)a,m + Am,i—1, for i = 1, R 1) and Am+41,m+1 = 1.

The Matérn family is defined for general positive orders but closed form expressions are available only for
integral orders.

The Pedigree Term

In this section we specify completely the pedigree term h(z(t)) in Equation (5) of the paper. For subject ¢,
2(t) is the pseudo-attribute obtained as the corresponding row of embedding matrix Z where K = ZZ7 and
K is the solution to the RKE problem in Equation (4) as described in the Section Representing Pedigree
Data as Kernels. The smooth function h is then defined by a kernel function k, e.g. from the Matérn family
described in the previous Section. Thus for subject ¢, h(z(t)) = 65 >, c;ik(2(t), 2(i)), where ¢; is obtained
as the solution of the penalized likelihood problem of Equation (3) and 6}, is the coefficient of the pedigree
term in the SS-ANOVA decomposition.

Case Study

We also compared the two methods presented for incorporating pedigree data described in the paper. We
refer to the method using a kernel defined over an embedding resulting from RKE as RKE/MATERN,
and to the alternative method, that defines a kernel over the pedigree dissimilarities directly as MATERN.
Therefore, the abbreviation P+S+C (MATERN) refers to a model containing all three data sources, where
pedigree data were incorporated using the graph kernel method with a Matérn third-order kernel.

Table S1 shows the resulting mean and standard deviations of the AUC over the ten cross-validation
folds of each individual model/method combination summarized in Figure 1 of paper. The values of the 7
diagnostic discussed in the text are given in Table S2. In Figure 1 of the paper, the AUC for models that
include pedigrees is shown for the best scoring method in Table S1.

We also tested the Gaussian kernel, but it consistently showed similar or worse performance as the Matérn
kernels and thus is not reported. The relationship graphs in this setting lead to kernels that are highly diffuse
in the sense that, due to the nature of the pedigree dissimilarity, there is rapid decay as the radial basis
functions extend away from each subject. The use of the third order Matérn kernel function significantly
improved the predictive ability of our methods over the Gaussian kernel (results not shown), probably due



Table S1: Ten-fold cross-validation mean for area under ROC curve. Columns correspond to models indexed
by components: P (pedigrees), S (genetic markers), C (environmental covariates). Rows correspond to
methods tested (NO/PED are SS-ANOVA models without pedigree data). Numbers in parentheses are
standard deviations.

S-only C-only S+C
NO/PED 0.6089 (0.05876) 0.6814 (0.07614) 0.7115 (0.04165)
P-only S+P C+P S+C+P

MATERN  0.6414 (0.11856) 0.7015 (0.12218) 0.7123 (0.07158) 0.7455 (0.08037)
RKE/MATERN  0.6267 (0.10851)  0.6676 (0.08086) 0.6947 (0.10354) 0.7332 (0.06469)

Table S2: 7 diagnostic comparison of the S+C+P and S+C model fits. Diagnostic 7 gives relative weight
to each of the model terms indexed in the columns. Row and column labels correspond to those defined in
Table S1.

S C P
S+C 0.34 0.66
S+C+P 0.17 0.26 0.53

to the Matérn kernel softening this diffusion effect. Tuning the order of the Matérn kernel could further
improve our models. Further understanding of the type of situations in which the Matérn kernel would
perform better than the Gaussian is another direction for further research.
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