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Abstract
We propose a family of learning algorithms based on a new form of regularization that allows us
to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework
that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph
learning algorithms and standard methods including support vector machines and regularized least
squares can be obtained as special cases. We use properties of reproducing kernel Hilbert spaces
to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in
contrast to purely graph-based approaches) we obtain a natural out-of-sample extension to novel
examples and so are able to handle both transductive and truly semi-supervised settings. We present
experimental evidence suggesting that our semi-supervised algorithms are able to use unlabeled
data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning
within our general framework.
Keywords: semi-supervised learning, graph transduction, regularization, kernel methods, mani-
fold learning, spectral graph theory, unlabeled data, support vector machines

1. Introduction

In this paper, we introduce a framework for data-dependent regularization that exploits the geometry
of the probability distribution. While this framework allows us to approach the full range of learning
problems from unsupervised to supervised (discussed in Sections 6.1 and 6.2 respectively), we focus
on the problem of semi-supervised learning.

The problem of learning from labeled and unlabeled data (semi-supervised and transductive
learning) has attracted considerable attention in recent years. Some recently proposed methods
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include transductive SVM (Vapnik, 1998; Joachims, 1999), cotraining (Blum and Mitchell, 1998),
and a variety of graph-based methods (Blum and Chawla, 2001; Chapelle et al., 2003; Szummer
and Jaakkola, 2002; Kondor and Lafferty, 2002; Smola and Kondor, 2003; Zhou et al., 2004; Zhu
et al., 2003, 2005; Kemp et al., 2004; Joachims, 1999; Belkin and Niyogi, 2003b). We also note
the regularization based techniques of Corduneanu and Jaakkola (2003) and Bousquet et al. (2004).
The latter reference is closest in spirit to the intuitions of our paper. We postpone the discussion of
related algorithms and various connections until Section 4.5.

The idea of regularization has a rich mathematical history going back to Tikhonov (1963), where
it is used for solving ill-posed inverse problems. Regularization is a key idea in the theory of splines
(e.g., Wahba, 1990) and is widely used in machine learning (e.g., Evgeniou et al., 2000). Many
machine learning algorithms, including support vector machines, can be interpreted as instances of
regularization.

Our framework exploits the geometry of the probability distribution that generates the data and
incorporates it as an additional regularization term. Hence, there are two regularization terms—
one controlling the complexity of the classifier in the ambient space and the other controlling the
complexity as measured by the geometry of the distribution. We consider in some detail the special
case where this probability distribution is supported on a submanifold of the ambient space.

The points below highlight several aspects of the current paper:

1. Our general framework brings together three distinct concepts that have received some inde-
pendent recent attention in machine learning:
i. The first of these is the technology of spectral graph theory (see, e.g., Chung, 1997) that has
been applied to a wide range of clustering and classification tasks over the last two decades.
Such methods typically reduce to certain eigenvalue problems.
ii. The second is the geometric point of view embodied in a class of algorithms that can be
termed as manifold learning.1 These methods attempt to use the geometry of the probability
distribution by assuming that its support has the geometric structure of a Riemannian mani-
fold.
iii. The third important conceptual framework is the set of ideas surrounding regularization
in Reproducing Kernel Hilbert Spaces (RKHS). This leads to the class of kernel based al-
gorithms for classification and regression (e.g., Scholkopf and Smola, 2002; Wahba, 1990;
Evgeniou et al., 2000).

We show how these ideas can be brought together in a coherent and natural way to incorporate
geometric structure in a kernel based regularization framework. As far as we know, these
ideas have not been unified in a similar fashion before.

2. This general framework allows us to develop algorithms spanning the range from unsuper-
vised to fully supervised learning.

In this paper we primarily focus on the semi-supervised setting and present two families of
algorithms: the Laplacian Regularized Least Squares (hereafter, LapRLS) and the Laplacian
Support Vector Machines (hereafter LapSVM). These are natural extensions of RLS and SVM
respectively. In addition, several recently proposed transductive methods (e.g., Zhu et al.,
2003; Belkin and Niyogi, 2003b) are also seen to be special cases of this general approach.

1. See http://www.cse.msu.edu/∼lawhiu/manifold/ for a long list of references.
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In the absence of labeled examples our framework results in new algorithms for unsupervised
learning, which can be used both for data representation and clustering. These algorithms are
related to spectral clustering and Laplacian Eigenmaps (Belkin and Niyogi, 2003a).

3. We elaborate on the RKHS foundations of our algorithms and show how geometric knowledge
of the probability distribution may be incorporated in such a setting through an additional
regularization penalty. In particular, a new Representer theorem provides a functional form of
the solution when the distribution is known; its empirical version involves an expansion over
labeled and unlabeled points when the distribution is unknown. These Representer theorems
provide the basis for our algorithms.

4. Our framework with an ambiently defined RKHS and the associated Representer theorems
result in a natural out-of-sample extension from the data set (labeled and unlabeled) to novel
examples. This is in contrast to the variety of purely graph-based approaches that have been
considered in the last few years. Such graph-based approaches work in a transductive setting
and do not naturally extend to the semi-supervised case where novel test examples need to
be classified (predicted). Also see Bengio et al. (2004) and Brand (2003) for some recent
related work on out-of-sample extensions. We also note that a method similar to our regu-
larized spectral clustering algorithm has been independently proposed in the context of graph
inference in Vert and Yamanishi (2005).

The work presented here is based on the University of Chicago Technical Report TR-2004-05,
a short version in the Proceedings of AI and Statistics 2005, Belkin et al. (2005) and Sindhwani
(2004).

1.1 The Significance of Semi-Supervised Learning

From an engineering standpoint, it is clear that collecting labeled data is generally more involved
than collecting unlabeled data. As a result, an approach to pattern recognition that is able to make
better use of unlabeled data to improve recognition performance is of potentially great practical
significance.

However, the significance of semi-supervised learning extends beyond purely utilitarian consid-
erations. Arguably, most natural (human or animal) learning occurs in the semi-supervised regime.
We live in a world where we are constantly exposed to a stream of natural stimuli. These stimuli
comprise the unlabeled data that we have easy access to. For example, in phonological acquisi-
tion contexts, a child is exposed to many acoustic utterances. These utterances do not come with
identifiable phonological markers. Corrective feedback is the main source of directly labeled ex-
amples. In many cases, a small amount of feedback is sufficient to allow the child to master the
acoustic-to-phonetic mapping of any language.

The ability of humans to learn unsupervised concepts (e.g., learning clusters and categories of
objects) suggests that unlabeled data can be usefully processed to learn natural invariances, to form
categories, and to develop classifiers. In most pattern recognition tasks, humans have access only
to a small number of labeled examples. Therefore the success of human learning in this “small
sample” regime is plausibly due to effective utilization of the large amounts of unlabeled data to
extract information that is useful for generalization.

Consequently, if we are to make progress in understanding how natural learning comes about,
we need to think about the basis of semi-supervised learning. Figure 1 illustrates how unlabeled
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Figure 1: Unlabeled data and prior beliefs

examples may force us to restructure our hypotheses during learning. Imagine a situation where one
is given two labeled examples—one positive and one negative—as shown in the left panel. If one is
to induce a classifier on the basis of this, a natural choice would seem to be the linear separator as
shown. Indeed, a variety of theoretical formalisms (Bayesian paradigms, regularization, minimum
description length or structural risk minimization principles, and the like) have been constructed to
rationalize such a choice. In most of these formalisms, one structures the set of one’s hypothesis
functions by a prior notion of simplicity and one may then justify why the linear separator is the
simplest structure consistent with the data.

Now consider the situation where one is given additional unlabeled examples as shown in the
right panel. We argue that it is self-evident that in the light of this new unlabeled set, one must
re-evaluate one’s prior notion of simplicity. The particular geometric structure of the marginal
distribution suggests that the most natural classifier is now the circular one indicated in the right
panel. Thus the geometry of the marginal distribution must be incorporated in our regularization
principle to impose structure on the space of functions in nonparametric classification or regression.
This is the intuition we formalize in the rest of the paper. The success of our approach depends on
whether we can extract structure from the marginal distribution, and on the extent to which such
structure may reveal the underlying truth.

1.2 Outline of the Paper

The paper is organized as follows: in Section 2, we develop the basic framework for semi-supervised
learning where we ultimately formulate an objective function that can use both labeled and unla-
beled data. The framework is developed in an RKHS setting and we state two kinds of Representer
theorems describing the functional form of the solutions. In Section 3, we elaborate on the theo-
retical underpinnings of this framework and prove the Representer theorems of Section 2. While
the Representer theorem for the finite sample case can be proved using standard orthogonality ar-
guments, the Representer theorem for the known marginal distribution requires more subtle consid-
erations. In Section 4, we derive the different algorithms for semi-supervised learning that arise out
of our framework. Connections to related algorithms are stated. In Section 5, we describe experi-
ments that evaluate the algorithms and demonstrate the usefulness of unlabeled data. In Section 6,

2402



MANIFOLD REGULARIZATION

we consider the cases of fully supervised and unsupervised learning. In Section 7 we conclude this
paper.

2. The Semi-Supervised Learning Framework

Recall the standard framework of learning from examples. There is a probability distribution P
on X ×R according to which examples are generated for function learning. Labeled examples are
(x,y) pairs generated according to P. Unlabeled examples are simply x ∈ X drawn according to the
marginal distribution PX of P.

One might hope that knowledge of the marginal PX can be exploited for better function learning
(e.g., in classification or regression tasks). Of course, if there is no identifiable relation between PX
and the conditional P (y|x), the knowledge of PX is unlikely to be of much use.

Therefore, we will make a specific assumption about the connection between the marginal and
the conditional distributions. We will assume that if two points x1,x2 ∈ X are close in the intrinsic
geometry of PX , then the conditional distributions P (y|x1) and P (y|x2) are similar. In other words,
the conditional probability distribution P (y|x) varies smoothly along the geodesics in the intrinsic
geometry of PX .

We use these geometric intuitions to extend an established framework for function learning.
A number of popular algorithms such as SVM, Ridge regression, splines, Radial Basis Functions
may be broadly interpreted as regularization algorithms with different empirical cost functions and
complexity measures in an appropriately chosen Reproducing Kernel Hilbert Space (RKHS).

For a Mercer kernel K : X ×X → R, there is an associated RKHS HK of functions X → R with
the corresponding norm ‖ ‖K . Given a set of labeled examples (xi,yi), i = 1, . . . , l the standard
framework estimates an unknown function by minimizing

f ∗ = argmin
f∈HK

1
l

l

∑
i=1
V (xi,yi, f )+ γ‖ f‖2K , (1)

where V is some loss function, such as squared loss (yi− f (xi))2 for RLS or the hinge loss func-
tion max [0,1− yi f (xi)] for SVM. Penalizing the RKHS norm imposes smoothness conditions on
possible solutions. The classical Representer Theorem states that the solution to this minimization
problem exists in HK and can be written as

f ∗(x) =
l

∑
i=1

αiK(xi,x).

Therefore, the problem is reduced to optimizing over the finite dimensional space of coefficients
αi, which is the algorithmic basis for SVM, regularized least squares and other regression and
classification schemes.

We first consider the case when the marginal distribution is already known.

2.1 Marginal PX is Known

Our goal is to extend this framework by incorporating additional information about the geometric
structure of the marginal PX . We would like to ensure that the solution is smooth with respect to
both the ambient space and the marginal distribution PX . To achieve that, we introduce an additional
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regularizer:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1
V (xi,yi, f )+ γA‖ f‖2K + γI‖ f‖2I , (2)

where ‖ f‖2I is an appropriate penalty term that should reflect the intrinsic structure of PX . Intuitively,
‖ f‖2I is a smoothness penalty corresponding to the probability distribution. For example, if the
probability distribution is supported on a low-dimensional manifold, ‖ f‖2I may penalize f along
that manifold. γA controls the complexity of the function in the ambient space while γI controls
the complexity of the function in the intrinsic geometry of PX . It turns out that one can derive an
explicit functional form for the solution f ∗ as shown in the following theorem.

Theorem 1 Assume that the penalty term ‖ f‖I is sufficiently smooth with respect to the RKHS norm
‖ f‖K (see Section 3.2 for the exact statement). Then the solution f ∗ to the optimization problem in
Equation 2 above exists and admits the following representation

f ∗(x) =
l

∑
i=1

αiK(xi,x)+
Z

M
α(z)K(x,z)dPX(z) (3)

where M = supp{PX} is the support of the marginal PX .

We postpone the proof and the formulation of smoothness conditions on the norm ‖ ‖I until the next
section.

The Representer Theorem above allows us to express the solution f ∗ directly in terms of the
labeled data, the (ambient) kernel K, and the marginal PX . If PX is unknown, we see that the solution
may be expressed in terms of an empirical estimate of PX . Depending on the nature of this estimate,
different approximations to the solution may be developed. In the next section, we consider a
particular approximation scheme that leads to a simple algorithmic framework for learning from
labeled and unlabeled data.

2.2 Marginal PX Unknown
In most applications the marginal PX is not known. Therefore we must attempt to get empirical
estimates of PX and ‖ ‖I . Note that in order to get such empirical estimates it is sufficient to have
unlabeled examples.

A case of particular recent interest (for example, see Roweis and Saul, 2000; Tenenbaum et al.,
2000; Belkin and Niyogi, 2003a; Donoho and Grimes, 2003; Coifman et al., 2005, for a discussion
on dimensionality reduction) is when the support of PX is a compact submanifold M ⊂ Rn. In
that case, one natural choice for ‖ f‖I is

R
x∈M ‖∇M f‖2 dPX(x), where ∇M is the gradient (see, for

example Do Carmo, 1992, for an introduction to differential geometry) of f along the manifold M
and the integral is taken over the marginal distribution.

The optimization problem becomes

f ∗ = argmin
f∈HK

1
l

l

∑
i=1
V (xi,yi, f )+ γA‖ f‖2K + γI

Z

x∈M
‖∇M f‖2 dPX(x).

The term
R
x∈M ‖∇M f‖2 dPX(x) may be approximated on the basis of labeled and unlabeled data

using the graph Laplacian associated to the data. While an extended discussion of these issues goes
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beyond the scope of this paper, it can be shown that under certain conditions choosing exponential
weights for the adjacency graph leads to convergence of the graph Laplacian to the Laplace-Beltrami
operator ΔM (or its weighted version) on the manifold. See the Remarks below and Belkin (2003);
Lafon (2004); Belkin and Niyogi (2005); Coifman et al. (2005); Hein et al. (2005) for details.

Thus, given a set of l labeled examples {(xi,yi)}li=1 and a set of u unlabeled examples {x j}
j=l+u
j=l+1,

we consider the following optimization problem:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1
V (xi,yi, f )+ γA‖ f‖2K +

γI
(u+ l)2

l+u

∑
i, j=1

( f (xi)− f (x j))2Wi j,

= argmin
f∈HK

1
l

l

∑
i=1
V (xi,yi, f )+ γA‖ f‖2K +

γI
(u+ l)2

fTLf. (4)

where Wi j are edge weights in the data adjacency graph, f = [ f (x1), . . . , f (xl+u)]T , and L is the
graph Laplacian given by L= D−W . Here, the diagonal matrix D is given by Dii = ∑l+u

j=1Wi j. The
normalizing coefficient 1

(u+l)2 is the natural scale factor for the empirical estimate of the Laplace
operator. We note than on a sparse adjacency graph it may be replaced by ∑l+u

i, j=1Wi j.
The following version of the Representer Theorem shows that the minimizer has an expansion

in terms of both labeled and unlabeled examples and is a key to our algorithms.

Theorem 2 The minimizer of optimization problem 4 admits an expansion

f ∗(x) =
l+u

∑
i=1

αiK(xi,x) (5)

in terms of the labeled and unlabeled examples.

The proof is a variation of the standard orthogonality argument and is presented in Section 3.4.
Remark 1: Several natural choices of ‖ ‖I exist. Some examples are:

1. Iterated Laplacians (ΔM )k. Differential operators (ΔM )k and their linear combinations pro-
vide a natural family of smoothness penalties.
Recall that the Laplace-Beltrami operator ΔM can be defined as the divergence of the gradient
vector field ΔM f = div(∇M f ) and is characterized by the equality

Z

x∈M
f (x)ΔM f (x)dµ=

Z

x∈M
‖∇M f (x)‖2 dµ.

where µ is the standard measure (uniform distribution) on the Riemannian manifold. If µ
is taken to be non-uniform, then the corresponding notion is the weighted Laplace-Beltrami
operator (e.g., Grigor’yan, 2006).

2. Heat semigroup e−tΔM is a family of smoothing operators corresponding to the process of
diffusion (Brownian motion) on the manifold. One can take ‖ f‖2I =

R
M f etΔM ( f )dPX . We

note that for small values of t the corresponding Green’s function (the heat kernel of M ),
which is close to a Gaussian in the geodesic coordinates, can also be approximated by a sharp
Gaussian in the ambient space.
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3. Squared norm of the Hessian (cf. Donoho and Grimes, 2003). While the Hessian H( f ) (the
matrix of second derivatives of f ) generally depends on the coordinate system, it can be shown
that the Frobenius norm (the sum of squared eigenvalues) of H is the same in any geodesic
coordinate system and hence is invariantly defined for a Riemannian manifold M . Using
the Frobenius norm of H as a regularizer presents an intriguing generalization of thin-plate
splines. We also note that ΔM ( f ) = tr(H( f )).

Remark 2: Why not just use the intrinsic regularizer? Using ambient and intrinsic regularizers
jointly is important for the following reasons:

1. We do not usually have access to M or the true underlying marginal distribution, just to data
points sampled from it. Therefore regularization with respect only to the sampled manifold is
ill-posed. By including an ambient term, the problem becomes well-posed.

2. There may be situations when regularization with respect to the ambient space yields a better
solution, for example, when the manifold assumption does not hold (or holds to a lesser
degree). Being able to trade off these two regularizers may be important in practice.

Remark 3: While we use the graph Laplacian for simplicity, the normalized Laplacian

L̃= D−1/2LD−1/2

can be used interchangeably in all our formulas. Using L̃ instead of L provides certain theoretical
guarantees (see von Luxburg et al., 2004) and seems to perform as well or better in many practical
tasks. In fact, we use L̃ in all our empirical studies in Section 5. The relation of L̃ to the weighted
Laplace-Beltrami operator was discussed in Lafon (2004).
Remark 4: Note that a global kernel K restricted toM (denoted by KM ) is also a kernel defined on
M with an associated RKHS HM of functions M → R. While this might suggest

‖ f‖I = ‖ fM ‖KM

( fM is f restricted toM ) as a reasonable choice for ‖ f‖I , it turns out, that for the minimizer f ∗ of the
corresponding optimization problem we get ‖ f ∗‖I = ‖ f ∗‖K , yielding the same solution as standard
regularization, although with a different parameter γ. This observation follows from the restriction
properties of RKHS discussed in the next section and is formally stated as Proposition 6. Therefore
it is impossible to have an out-of-sample extension without two different measures of smoothness.
On the other hand, a different ambient kernel restricted to M can potentially serve as the intrinsic
regularization term. For example, a sharp Gaussian kernel can be used as an approximation to the
heat kernel on M . Thus one (sharper) kernel may be used in conjunction with unlabeled data to
estimate the heat kernel on M and a wider kernel for inference.

3. Theoretical Underpinnings and Results

In this section we briefly review the theory of reproducing kernel Hilbert spaces and their connection
to integral operators. We proceed to establish the Representer theorems from the previous section.
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3.1 General Theory of RKHS

We start by recalling some basic properties of reproducing kernel Hilbert spaces (see the original
work of Aronszajn, 1950; Cucker and Smale, 2002, for a nice discussion in the context of learning
theory) and their connections to integral operators. We say that a Hilbert space H of functions
X → R has the reproducing property, if ∀x ∈ X the evaluation functional f → f (x) is continuous.
For the purposes of this discussion we will assume that X is compact. By the Riesz representation
theorem it follows that for a given x ∈ X , there is a function hx ∈ H , s.t.

∀ f ∈ H 〈hx, f 〉H = f (x).

We can therefore define the corresponding kernel function

K(x,y) = 〈hx,hy〉H .

It follows that hx(y) = 〈hx,hy〉H = K(x,y) and thus 〈K(x, ·), f 〉 = f (x). It is clear that K(x, ·) ∈ H .
It is easy to see that K(x,y) is a positive semi-definite kernel as defined below:

Definition: We say that K(x,y), satisfying K(x,y) = K(y,x), is a positive semi-definite kernel if
given an arbitrary finite set of points x1, . . . ,xn, the corresponding n×nmatrix K with Ki j =K(xi,x j)
is positive semi-definite.

Importantly, the converse is also true. Any positive semi-definite kernel K(x,y) gives rise
to an RKHS HK , which can be constructed by considering the space of finite linear combina-
tions of kernels ∑αiK(xi, ·) and taking completion with respect to the inner product given by
〈K(x, ·),K(y, ·)〉HK

= K(x,y). See Aronszajn (1950) for details.
We therefore see that reproducing kernel Hilbert spaces of functions on a space X are in one-to-

one correspondence with positive semidefinite kernels on X .
It can be shown that if the space HK is sufficiently rich, that is if for any distinct point x1, . . . ,xn

there is a function f , s.t. f (x1) = 1, f (xi) = 0, i > 1, then the corresponding matrix Ki j = K(xi,x j)
is strictly positive definite. For simplicity we will sometimes assume that our RKHS are rich (the
corresponding kernels are sometimes called universal).
Notation: In what follows, we will use kernel K to denote inner products and norms in the cor-
responding Hilbert space HK , that is, we will write 〈 , 〉K , ‖ ‖K , instead of the more cumbersome
〈 , 〉HK

, ‖ ‖HK .
We proceed to endow X with a measure µ (supported on all of X). The corresponding L 2

µ Hilbert
space inner product is given by

〈 f ,g〉µ =
Z

X
f (x)g(x)dµ.

We can now consider the integral operator LK corresponding to the kernel K:

(LK f )(x) =
Z

X
f (y)K(x,y)dµ.

It is well-known that if X is a compact space, LK is a compact operator and is self-adjoint with
respect toL2

µ . By the spectral theorem, its eigenfunctions e1(x),e2(x), . . ., (scaled to norm 1) form an
orthonormal basis of L2

µ . The spectrum of the operator is discrete and the corresponding eigenvalues
λ1,λ2, . . . are of finite multiplicity, limi→∞λi = 0.

We see that
〈K(x, ·),ei(·)〉µ = λiei(x).
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and therefore K(x,y) =∑iλiei(x)ei(y). Writing a function f in that basis, we have f = ∑aiei(x) and
〈K(x, ·), f (·)〉µ = ∑iλiaiei(x).

It is not hard to show that the eigenfunctions ei are in HK (e.g., see the argument below). Thus
we see that

e j(x) = 〈K(x, ·),e j(·)〉K =∑
i
λiei(x)〈ei,e j〉K .

Therefore 〈ei,e j〉K = 0, if i *= j, and 〈ei,ei〉K = 1
λi
. On the other hand 〈ei,e j〉µ = 0, if i *= j, and

〈ei,ei〉µ = 1.
This observation establishes a simple relationship between the Hilbert norms in HK and L2

µ . We
also see that f = ∑aiei(x) ∈ HK if and only if ∑ a2i

λi
< ∞.

Consider now the operator L1/2K . It can be defined as the only positive definite self-adjoint
operator, s.t. LK = L1/2K ◦L1/2K . Assuming that the series K̃(x,y) = ∑i

√
λiei(x)ei(y) converges, we

can write
(L1/2K f )(x) =

Z

X
f (y)K̃(x,y)dµ.

It is easy to check that L1/2K is an isomorphism between H and L2
µ , that is

∀ f ,g ∈ HK 〈 f ,g〉µ = 〈L1/2K f ,L1/2K g〉K .

Therefore HK is the image of L
1/2
K acting on L2

µ.

Lemma 3 A function f (x) = ∑i aiei(x) can be represented as f = LKg for some g if and only if

∞

∑
i=1

a2i
λ2i

< ∞. (6)

Proof Suppose f = LKg. Write g(x) = ∑i biei(x). We know that g ∈ L2µ if and only if ∑i b2i < ∞.
Since LK(∑i biei) = ∑i biλiei = ∑i aiei, we obtain ai = biλi. Therefore ∑∞

i=1
a2i
λ2i

< ∞.
Conversely, if the condition in the inequality 6 is satisfied, f = Lkg, where g= ∑ ai

λi
ei.

3.2 Proof of Theorems

Now let us recall the Equation 2:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1
V (xi,yi, f )+ γA‖ f‖2K + γI‖ f‖2I .

We have an RKHS HK and the probability distribution µwhich is supported on M ⊂ X . We denote
by S the linear space, which is the closure with respect to the RKHS norm of HK , of the linear span
of kernels centered at points of M :

S = span{K(x, ·) |x ∈ M }.
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Notation. By the subscript M we will denote the restriction to M . For example, by SM we denote
functions in S restricted to the manifold M . It can be shown (Aronszajn, 1950, p. 350) that the
space (HK)M of functions fromHK restricted toM is an RKHS with the kernel KM , in other words
(HK)M = HKM .

Lemma 4 The following properties of S hold:

1. S with the inner product induced by HK is a Hilbert space.

2. SM = (HK)M .

3. The orthogonal complement S⊥ to S in HK consists of all functions vanishing on M .

Proof
1. From the definition of S it is clear by that S is a complete subspace of HK .
2. We give a convergence argument similar to the one found in Aronszajn (1950). Since

(HK)M = HKM any function fM in it can be written as fM = limn→∞ fM ,n, where
fM ,n = ∑iαinKM (xin, ·) is a sum of kernel functions.
Consider the corresponding sum fn = ∑iαinK(xin, ·). From the definition of the norm we see

that ‖ fn− fk‖K = ‖ fM ,n− fM ,k‖KM and therefore fn is a Cauchy sequence. Thus f = limn→∞ fn
exists and its restriction to M must equal fM . This shows that (HK)M ⊂ SM . The other direction
follows by a similar argument.

3. Let g∈ S⊥. By the reproducing property for any x∈M , g(x) = 〈K(x, ·),g(·)〉K = 0 and there-
fore any function in S⊥ vanishes on M . On the other hand, if g vanishes on M it is perpendicular
to each K(x, ·),x ∈ M and is therefore perpendicular to the closure of their span S .

Lemma 5 Assume that the intrinsic norm is such that for any f ,g∈ HK , ( f −g)|M ≡ 0 implies that
‖ f‖I = ‖g‖I . Then assuming that the solution f ∗ of the optimization problem in Equation 2 exists,
f ∗ ∈ S .

Proof Any f ∈ HK can be written as f = fS + f⊥S , where fS is the projection of f to S and f⊥S is its
orthogonal complement.

For any x ∈ M we have K(x, ·) ∈ S . By the previous Lemma f ⊥S vanishes on M . We have
f (xi) = fS (xi) ∀i and by assumption ‖ fS‖I = ‖ f‖I .
On the other hand, ‖ f‖2K = ‖ fS‖2K + ‖ f⊥S ‖2K and therefore ‖ f‖K ≥ ‖ fS‖K . It follows that the

minimizer f ∗ is in S .

As a direct corollary of these consideration, we obtain the following

Proposition 6 If ‖ f‖I = ‖ f‖KM then the minimizer of Equation 2 is identical to that of the usual
regularization problem (Equation 1) although with a different regularization parameter (λA+λI).

We can now restrict our attention to the study of S . While it is clear that the right-hand side of
Equation 3 lies in S , not every element in S can be written in that form. For example, K(x, ·), where
x is not one of the data points xi cannot generally be written as

l

∑
i=1

αiK(xi,x)+
Z

M
α(y)K(x,y)dµ.
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We will now assume that for f ∈ S

‖ f‖2I = 〈 f ,Df 〉L2µ .

We usually assume that D is an appropriate smoothness penalty, such as an inverse integral operator
or a differential operator, for example, Df = ΔM f . The Representer theorem, however, holds under
quite mild conditions on D:

Theorem 7 Let ‖ f‖2I = 〈 f ,Df 〉L2µ where D is a bounded operator D : S → L2
PX . Then the solution

f ∗ of the optimization problem in Equation 2 exists and can be written as

f ∗(x) =
l

∑
i=1

αiK(xi,x)+
Z

M
α(y)K(x,y)dPX(y). (7)

Proof
For simplicity we will assume that the loss function V is differentiable. This condition can

ultimately be eliminated by approximating a non-differentiable function appropriately and passing
to the limit.

Put

H( f ) =
1
l

l

∑
i=1
V (xi,yi, f (xi))+ γA‖ f‖2K + γI‖ f‖2I .

We first show that the solution to Equation 2, f ∗, exists and by Lemma 5 belongs to S . It follows
easily from Cor. 10 and standard results about compact embeddings of Sobolev spaces (e.g., Adams,
1975) that a ball Br ⊂ HK , Br = { f ∈ S ,s.t. ‖ f‖K ≤ r} is compact in L∞

X . Therefore for any such
ball the minimizer in that ball f ∗r must exist and belong to Br. On the other hand, by substituting
the zero function

H( f ∗r ) ≤ H(0) =
1
l

l

∑
i=1
V (xi,yi,0).

If the loss is actually zero, then zero function is a solution, otherwise

γA‖ f ∗r ‖2K <
l

∑
i=1
V (xi,yi,0),

and hence f ∗r ∈ Br, where

r =

√
∑l
i=1V (xi,yi,0)

γA
.

Therefore we cannot decrease H( f ∗) by increasing r beyond a certain point, which shows that
f ∗ = f ∗r with r as above, which completes the proof of existence. If V is convex, such solution will
also be unique.

We proceed to derive the Equation 7. As before, let e1,e2, . . . be the basis associated to the
integral operator (LK f )(x) =

R
M f (y)K(x,y)dPX(y). Write f ∗ = ∑i aiei(x). By substituting f ∗ into

H( f ) we obtain:

H( f ∗) =
1
l

l

∑
j=1
V (x j,y j,∑

i
aiei(xi))+ γA‖ f ∗‖2K + γI‖ f ∗‖2I .
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Assume that V is differentiable with respect to each ak. We have ‖∑i aiei(x)‖2K = ∑i
a2i
λi
. Differenti-

ating with respect to the coefficients ai yields the following set of equations:

0=
∂H( f ∗)
∂ak

=
1
l

l

∑
j=1

ek(x j)∂3V (x j,y j,∑
i
aiei)+2γA

ak
λk

+ γI〈Df ,ek〉+ γI〈 f ,Dek〉,

where ∂3V denotes the derivative with respect to the third argument of V .
〈Df ,ek〉+ 〈 f ,Dek〉 = 〈(D+D∗) f ,ek〉 and hence

ak = − λk
2γAl

l

∑
j=1

ek(x j)∂3V (x j,y j, f ∗)−
γI
2γA

λk〈Df ∗ +D∗ f ∗,ek〉.

Since f ∗(x) = ∑k akek(x) and recalling that K(x,y) = ∑iλiei(x)ei(y)

f ∗(x) = − 1
2γAl∑k

l

∑
j=1

λkek(x)ek(x j)∂3V (x j,y j, f ∗)−
γI
2γA∑k

λk〈Df ∗ +D∗ f ∗,ek〉ek,

= − 1
2γAl

l

∑
j=1

K(x,x j)∂3V (x j,y j, f ∗)−
γI
2γA∑k

λk〈Df ∗ +D∗ f ∗,ek〉ek.

We see that the first summand is a sum of the kernel functions centered at data points. It re-
mains to show that the second summand has an integral representation, that is, can be written asR

M α(y)K(x,y)dPX(y), which is equivalent to being in the image of LK . To verify this we apply
Lemma 3. We need that

∑
k

λ2k〈Df ∗ +D∗ f ∗,ek〉2

λ2k
=∑

k
〈Df ∗ +D∗ f ∗,ek〉2 < ∞.

Since D, its adjoint operator D∗ and hence their sum are bounded the inequality above is satisfied
for any function in S .

3.3 Manifold Setting2

We now show that for the case when M is a manifold and D is a differential operator, such as
the Laplace-Beltrami operator ΔM , the boundedness condition of Theorem 7 is satisfied. While we
consider the case when the manifold has no boundary, the same argument goes through for manifold
with boundary, with, for example, Dirichlet’s boundary conditions (vanishing at the boundary).
Thus the setting of Theorem 7 is very general, applying, among other things, to arbitrary differential
operators on compact domains in Euclidean space.

Let M be a C∞ manifold without boundary with an infinitely differentiable embedding in some
ambient space X , D a differential operator with C∞ coefficients and let µ, be the measure corre-
sponding to some C∞ nowhere vanishing volume form on M . We assume that the kernel K(x,y) is
also infinitely differentiable.3 As before for an operator A, A∗ denotes the adjoint operator.

2. We thank Peter Constantin and Todd Dupont for help with this section.
3. While we have assumed that all objects are infinitely differentiable, it is not hard to specify the precise differentiability
conditions. Roughly speaking, a degree k differential operator D is bounded as an operator HK → L2µ, if the kernel
K(x,y) has 2k derivatives.
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Theorem 8 Under the conditions above D is a bounded operator S → L 2
µ .

Proof First note that it is enough to show that D is bounded on HKM , since D only depends on the
restriction fM . As before, let LKM ( f )(x) =

R
M f (y)KM (x,y) dµ is the integral operator associated

to KM. Note that D∗ is also a differential operator of the same degree as D. The integral operator
LKM is bounded (compact) from L2µ to any Sobolev space Hsob. Therefore the operator LKM D is also
bounded. We therefore see that DLKM D

∗ is bounded L2µ→ L2µ. Therefore there is a constant C, s.t.
〈DLKM D

∗ f , f 〉L2µ ≤C‖ f‖L2µ.

The square root T = L1/2KM
of the self-adjoint positive definite operator LKM is a self-adjoint

positive definite operator as well. Thus (DT )∗ = TD∗. By definition of the operator norm, for any
ε> 0 there exists f ∈ L2µ,‖ f‖L2µ ≤ 1+ ε, such that

‖DT‖2L2µ = ‖TD∗‖2L2µ ≤ 〈TD∗ f ,TD∗ f 〉L2µ =

= 〈DLD∗ f , f 〉L2µ ≤ ‖DLD∗‖L2µ‖ f‖
2
L2µ
≤C(1+ ε)2.

Therefore the operator DT : L2µ→ L2µ is bounded (and also ‖DT‖L2µ ≤C, since ε is arbitrary).
Now recall that T provides an isometry between L2µ and HKM . That means that for any g ∈ HKM

there is f ∈ L2µ, such that T f = g and ‖ f‖L2µ = ‖g‖KM . Thus ‖Dg‖L2µ = ‖DT f‖L2µ ≤C‖g‖KM , which
shows that T :HKM → L2µ is bounded and concludes the proof.

Since S is a subspace of HK the main result follows immediately:

Corollary 9 D is a bounded operator S → L2µ and the conditions of Theorem 7 hold.

Before finishing the theoretical discussion we obtain a useful

Corollary 10 The operator T = L1/2K on L2µ is a bounded (and in fact compact) operator L2µ→Hsob,
where Hsob is an arbitrary Sobolev space.

Proof Follows from the fact that DT is bounded operator L2µ → L2µ for an arbitrary differential op-
erator D and standard results on compact embeddings of Sobolev spaces (see, for example, Adams,
1975).

3.4 The Representer Theorem for the Empirical Case

In the case when M is unknown and sampled via labeled and unlabeled examples, the Laplace-
Beltrami operator on M may be approximated by the Laplacian of the data adjacency graph (see
Belkin, 2003; Bousquet et al., 2004, for some discussion). A regularizer based on the graph Lapla-
cian leads to the optimization problem posed in Equation 4. We now provide a proof of Theorem 2
which states that the solution to this problem admits a representation in terms of an expansion
over labeled and unlabeled points. The proof is based on a simple orthogonality argument (e.g.,
Scholkopf and Smola, 2002).
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Proof (Theorem 2) Any function f ∈ HK can be uniquely decomposed into a component f|| in the
linear subspace spanned by the kernel functions {K(xi, ·)}l+ui=1 , and a component f⊥ orthogonal to it.
Thus,

f = f|| + f⊥ =
l+u

∑
i=1

αiK(xi, ·)+ f⊥.

By the reproducing property, as the following arguments show, the evaluation of f on any data
point x j, 1≤ j ≤ l+u is independent of the orthogonal component f⊥:

f (x j) = 〈 f ,K(x j, ·)〉 = 〈
l+u

∑
i=1

αiK(xi, ·),K(x j, ·)〉+ 〈 f⊥,K(x j, ·)〉.

Since the second term vanishes, and 〈K(xi, ·),K(x j, ·)〉 = K(xi,x j), it follows that
f (x j) = ∑l+u

i=1 αiK(xi,x j). Thus, the empirical terms involving the loss function and the intrinsic
norm in the optimization problem in Equation 4 depend only on the value of the coefficients {αi}l+ui=1
and the gram matrix of the kernel function.

Indeed, since the orthogonal component only increases the norm of f in HK :

‖ f‖2K = ‖
l+u

∑
i=1

αiK(xi, ·)‖2K +‖ f⊥‖2K ≥ ‖
l+u

∑
i=1

αiK(xi, ·)‖2K.

It follows that the minimizer of problem 4 must have f⊥ = 0, and therefore admits a representation
f ∗(·) = ∑l+u

i=1 αiK(xi, ·).

The simple form of the minimizer, given by this theorem, allows us to translate our extrinsic and
intrinsic regularization framework into optimization problems over the finite dimensional space of
coefficients {αi}l+ui=1 , and invoke the machinery of kernel based algorithms. In the next section, we
derive these algorithms, and explore their connections to other related work.

4. Algorithms

We now discuss standard regularization algorithms (RLS and SVM) and present their extensions
(LapRLS and LapSVM respectively). These are obtained by solving the optimization problems
posed in Equation 4) for different choices of cost function V and regularization parameters γA,γI .
To fix notation, we assume we have l labeled examples {(xi,yi)}li=1 and u unlabeled examples
{x j} j=l+uj=l+1. We use K interchangeably to denote the kernel function or the Gram matrix.

4.1 Regularized Least Squares

The regularized least squares algorithm is a fully supervised method where we solve:

min
f∈HK

1
l

l

∑
i=1

(yi− f (xi))2+ γ‖ f‖2K .

The classical Representer Theorem can be used to show that the solution is of the following
form:

f !(x) =
l

∑
i=1

α!
i K(x,xi).
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Substituting this form in the problem above, we arrive at following convex differentiable objec-
tive function of the l-dimensional variable α= [α1 . . .αl]T :

α∗ = argmin
1
l
(Y −Kα)T (Y −Kα)+ γαTKα,

where K is the l× l gram matrix Ki j = K(xi,x j) and Y is the label vector Y = [y1 . . .yl]T .
The derivative of the objective function vanishes at the minimizer:

1
l
(Y −Kα∗)T (−K)+ γKα∗ = 0,

which leads to the following solution:

α∗ = (K+ γlI)−1Y.

4.2 Laplacian Regularized Least Squares (LapRLS)

The Laplacian regularized least squares algorithm solves the optimization problem in Equation 4)
with the squared loss function:

min
f∈HK

1
l

l

∑
i=1

(yi− f (xi))2+ γA‖ f‖2K +
γI

(u+ l)2
fTLf.

As before, the Representer Theorem can be used to show that the solution is an expansion of
kernel functions over both the labeled and the unlabeled data:

f !(x) =
l+u

∑
i=1

α!
i K(x,xi).

Substituting this form in the equation above, as before, we arrive at a convex differentiable
objective function of the l+u-dimensional variable α= [α1 . . .αl+u]T :

α∗ = argmin
α∈Rl+u

1
l
(Y − JKα)T (Y − JKα)+ γAα

TKα+
γI

(u+ l)2
αTKLKα,

where K is the (l+ u)× (l+ u) Gram matrix over labeled and unlabeled points; Y is an (l+ u)
dimensional label vector given by: Y = [y1, . . . ,yl,0, . . . ,0] and J is an (l+ u)× (l+ u) diagonal
matrix given by J = diag(1, . . . ,1,0, . . . ,0) with the first l diagonal entries as 1 and the rest 0.

The derivative of the objective function vanishes at the minimizer:

1
l
(Y − JKα)T (−JK)+(γAK+

γIl
(u+ l)2

KLK)α= 0,

which leads to the following solution:

α∗ = (JK+ γAlI+
γI l

(u+ l)2
LK)−1Y. (8)

Note that when γI = 0, Equation 8) gives zero coefficients over unlabeled data, and the coeffi-
cients over the labeled data are exactly those for standard RLS.
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4.3 Support Vector Machine Classification

Here we outline the SVM approach to binary classification problems. For SVMs, the following
problem is solved:

min
f∈HK

1
l

l

∑
i=1

(1− yi f (xi))+ + γ‖ f‖2K ,

where the hinge loss is defined as: (1− y f (x))+ =max(0,1− y f (x)) and the labels yi ∈ {−1,+1}.
Again, the solution is given by:

f !(x) =
l

∑
i=1

α!
i K(x,xi). (9)

Following SVM expositions, the above problem can be equivalently written as:

min
f∈HK ,ξi∈R

1
l

l

∑
i=1

ξi+ γ‖ f‖2K

subject to: yi f (xi) ≥ 1−ξi i= 1, . . . , l
ξi ≥ 0 i= 1, . . . , l.

Using the Lagrange multipliers technique, and benefiting from strong duality, the above problem
has a simpler quadratic dual program in the Lagrange multipliers β= [β1, . . . ,βl]T ∈ Rl :

β! = max
β∈Rl

l

∑
i=1

βi−
1
2
βTQβ

subject to:
l

∑
i=1

yiβi = 0

0≤ βi ≤
1
l
i= 1, . . . , l.

where the equality constraint arises due to an unregularized bias term that is often added to the sum
in Equation 9, and the following notation is used:

Y = diag(y1,y2, ...,yl),

Q = Y
(
K
2γ

)
Y,

α! =
Yβ!

2γ
.

Here again, K is the gram matrix over labeled points. SVM practitioners may be familiar with a
slightly different parameterization involving theC parameter: C= 1

2γl is the weight on the hinge loss
term (instead of using a weight γ on the norm term in the optimization problem). The C parameter
appears as the upper bound (instead of 1l ) on the values of β in the quadratic program. For additional
details on the derivation and alternative formulations of SVMs, see Scholkopf and Smola (2002);
Rifkin (2002).
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4.4 Laplacian Support Vector Machines

By including the intrinsic smoothness penalty term, we can extend SVMs by solving the following
problem:

min
f∈HK

1
l

l

∑
i=1

(1− yi f (xi))+ + γA‖ f‖2K +
γI

(u+ l)2
fTLf.

By the representer theorem,as before, the solution to the problem above is given by:

f !(x) =
l+u

∑
i=1

α!
i K(x,xi).

Often in SVM formulations, an unregularized bias term b is added to the above form. Again,
the primal problem can be easily seen to be the following:

min
α∈Rl+u,ξ∈Rl

1
l

l

∑
i=1

ξi+ γAα
TKα+

γI
(u+ l)2

αTKLKα

subject to: yi(
l+u

∑
j=1

α jK(xi,x j)+b) ≥ 1−ξi, i= 1, . . . , l

ξi ≥ 0 i= 1, . . . , l.

Introducing the Lagrangian, with βi,ζi as Lagrange multipliers:

L(α,ξ,b,β,ζ) =
1
l

l

∑
i=1

ξi+
1
2
αT (2γAK+2

γA
(l+u)2

KLK)α

−
l

∑
i=1

βi(yi(
l+u

∑
j=1

α jK(xi,x j)+b)−1+ξi)−
l

∑
i=1

ζiξi.

Passing to the dual requires the following steps:

∂L
∂b

= 0 =⇒
l

∑
i=1

βiyi = 0,

∂L
∂ξi

= 0 =⇒ 1
l
−βi−ζi = 0,

=⇒ 0≤ βi ≤
1
l
(ξi,ζi are non-negative) .

Using above identities, we formulate a reduced Lagrangian:

LR(α,β) =
1
2
αT (2γAK+2

γI
(u+ l)2

KLK)α−
l

∑
i=1

βi(yi
l+u

∑
j=1

α jK(xi,x j)−1),

=
1
2
αT (2γAK+2

γI
(u+ l)2

KLK)α−αTKJTYβ+
l

∑
i=1

βi,
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where J = [I 0] is an l× (l+u)matrix with I as the l× l identity matrix (assuming the first l points
are labeled) and Y = diag(y1,y2, ...,yl).

Taking derivative of the reduced Lagrangian with respect to α:

∂LR

∂α
= (2γAK+2

γI
(u+ l)2

KLK)α−KJTYβ.

This implies:

α= (2γAI+2
γI

(u+ l)2
LK)−1JTYβ!. (10)

Note that the relationship between α and β is no longer as simple as the SVM algorithm. In
particular, the (l+u) expansion coefficients are obtained by solving a linear system involving the l
dual variables that will appear in the SVM dual problem.

Substituting back in the reduced Lagrangian we get:

β∗ = max
β∈Rl

l

∑
i=1

βi−
1
2
βTQβ (11)

subject to:
l

∑
i=1

βiyi = 0

0≤ βi ≤
1
l
i= 1, . . . , l (12)

where

Q= YJK(2γAI+2
γI

(l+u)2
LK)−1JTY.

Laplacian SVMs can be implemented by using a standard SVM solver with the quadratic form
induced by the above matrix, and using the solution to obtain the expansion coefficients by solving
the linear system in Equation 10.

Note that when γI = 0, the SVM QP and Equations 11 and 10, give zero expansion coefficients
over the unlabeled data. The expansion coefficients over the labeled data and the Q matrix are as in
standard SVM, in this case.

The manifold regularization algorithms are summarized in the Table 1.
Efficiency Issues: It is worth noting that our algorithms compute the inverse of a dense Grammatrix
which leads to O((l+ u)3) complexity. This may be impractical for large data sets. In the case of
linear kernels, instead of using Equation 5, we can directly write f !(x) = wT x and solve for the
weight vector w using a primal optimization method. This is much more efficient when the data is
low-dimensional. For highly sparse data sets, for example, in text categorization problems, effective
conjugate gradient schemes can be used in a large scale implementation, as outlined in Sindhwani
et al. (2006). For the non-linear case, one may obtain approximate solutions (e.g., using greedy,
matching pursuit techniques) where the optimization problem is solved over the span of a small set
of basis functions instead of using the full representation in Equation 5. We note these directions
for future work. In section 5, we evaluate the empirical performance of our algorithms with exact
computations as outlined in Table 1 with non-linear kernels. For other recent work addressing
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Manifold Regularization algorithms
Input: l labeled examples {(xi,yi)}li=1, u unlabeled examples {x j}

l+u
j=l+1

Output: Estimated function f : Rn → R

Step 1 ! Construct data adjacency graph with (l + u) nodes using, for
example, k nearest neighbors or a graph kernel. Choose edge
weights Wi j, for example, binary weights or heat kernel weights
Wi j = e−‖xi−x j‖2/4t .

Step 2 ! Choose a kernel function K(x,y). Compute the Gram matrix
Ki j = K(xi,x j).

Step 3 ! Compute graph Laplacian matrix: L = D−W where D is a di-
agonal matrix given by Dii = ∑l+u

j=1Wi j.
Step 4 ! Choose γA and γI .
Step 5 ! Compute α∗ using Equation 8 for squared loss (Laplacian RLS)

or using Equations 11 and 10 together with the SVMQP solver for
soft margin loss (Laplacian SVM).

Step 6 ! Output function f ∗(x) = ∑l+u
i=1 α

∗
i K(xi,x).

Table 1: A summary of the algorithms

scalability issues in semi-supervised learning, see, example, Tsang and Kwok. (2005); Bengio et al.
(2004).

4.5 Related Work and Connections to Other Algorithms

In this section we survey various approaches to semi-supervised and transductive learning and high-
light connections of manifold regularization to other algorithms.
Transductive SVM (TSVM) (Vapnik, 1998; Joachims, 1999): TSVMs are based on the follow-

ing optimization principle:

f ∗ = argmin
f∈HKyl+1,...yl+u

C
l

∑
i=1

(1− yi f (xi))+ +C∗
l+u

∑
i=l+1

(1− yi f (xi))+ +‖ f‖2K ,

which proposes a joint optimization of the SVM objective function over binary-valued labels on the
unlabeled data and functions in the RKHS. Here,C,C∗ are parameters that control the relative hinge-
loss over labeled and unlabeled sets. The joint optimization is implemented in Joachims (1999) by
first using an inductive SVM to label the unlabeled data and then iteratively solving SVM quadratic
programs, at each step switching labels to improve the objective function. However this procedure
is susceptible to local minima and requires an unknown, possibly large number of label switches
before converging. Note that even though TSVM were inspired by transductive inference, they do
provide an out-of-sample extension.
Semi-Supervised SVMs (S3VM) (Bennett and Demiriz, 1999; Fung and Mangasarian, 2001):

S3VM incorporate unlabeled data by including the minimum hinge-loss for the two choices of
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labels for each unlabeled example. This is formulated as a mixed-integer program for linear SVMs
in Bennett and Demiriz (1999) and is found to be intractable for large amounts of unlabeled data.
Fung and Mangasarian (2001) reformulate this approach as a concave minimization problem which
is solved by a successive linear approximation algorithm. The presentation of these algorithms is
restricted to the linear case.
Measure-Based Regularization (Bousquet et al., 2004): The conceptual framework of this

work is closest to our approach. The authors consider a gradient based regularizer that penalizes
variations of the function more in high density regions and less in low density regions leading to the
following optimization principle:

f ∗ = argmin
f∈F

l

∑
i=1
V ( f (xi),yi)+ γ

Z

X
〈∇ f (x),∇ f (x)〉p(x)dx,

where p is the density of the marginal distribution PX . The authors observe that it is not straightfor-
ward to find a kernel for arbitrary densities p, whose associated RKHS norm is

Z
〈∇ f (x),∇ f (x)〉p(x)dx.

Thus, in the absence of a representer theorem, the authors propose to perform minimization of the
regularized loss on a fixed set of basis functions chosen apriori, that is, F = {∑q

i=1αiφi}. For the
hinge loss, this paper derives an SVM quadratic program in the coefficients {αi}qi=1 whose Qmatrix
is calculated by computing q2 integrals over gradients of the basis functions. However the algorithm
does not demonstrate performance improvements in real world experiments. It is also worth noting
that while Bousquet et al. (2004) use the gradient ∇ f (x) in the ambient space, we use the gradient
over a submanifold ∇M f for penalizing the function. In a situation where the data truly lies on
or near a submanifold M , the difference between these two penalizers can be significant since
smoothness in the normal direction to the data manifold is irrelevant to classification or regression.
Graph-Based Approaches See, for example, Blum and Chawla (2001); Chapelle et al. (2003);

Szummer and Jaakkola (2002); Zhou et al. (2004); Zhu et al. (2003, 2005); Kemp et al. (2004);
Joachims (2003); Belkin and Niyogi (2003b): A variety of graph-based methods have been pro-
posed for transductive inference. However, these methods do not provide an out-of-sample exten-
sion. In Zhu et al. (2003), nearest neighbor labeling for test examples is proposed once unlabeled
examples have been labeled by transductive learning. In Chapelle et al. (2003), test points are
approximately represented as a linear combination of training and unlabeled points in the feature
space induced by the kernel. For graph regularization and label propagation see (Smola and Kondor,
2003; Belkin et al., 2004; Zhu et al., 2003). Smola and Kondor (2003) discusses the construction of
a canonical family of graph regularizers based on the graph Laplacian. Zhu et al. (2005) presents a
non-parametric construction of graph regularizers.

Manifold regularization provides natural out-of-sample extensions to several graph-based ap-
proaches. These connections are summarized in Table 2.

We also note the recent work (Delalleau et al., 2005) on out-of-sample extensions for semi-
supervised learning where an induction formula is derived by assuming that the addition of a test
point to the graph does not change the transductive solution over the unlabeled data.
Cotraining (Blum and Mitchell, 1998): The cotraining algorithm was developed to integrate

abundance of unlabeled data with availability of multiple sources of information in domains like
web-page classification. Weak learners are trained on labeled examples and their predictions on
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subsets of unlabeled examples are used to mutually expand the training set. Note that this set-
ting may not be applicable in several cases of practical interest where one does not have access to
multiple information sources.
Bayesian Techniques See, for example, Nigam et al. (2000); Seeger (2001); Corduneanu and

Jaakkola (2003). An early application of semi-supervised learning to Text classification appeared
in Nigam et al. (2000) where a combination of EM algorithm and Naive-Bayes classification is pro-
posed to incorporate unlabeled data. Seeger (2001) provides a detailed overview of Bayesian frame-
works for semi-supervised learning. The recent work in Corduneanu and Jaakkola (2003) formu-
lates a new information-theoretic principle to develop a regularizer for conditional log-likelihood.

Parameters Corresponding algorithms (square loss or hinge loss)
γA ≥ 0 γI ≥ 0 Manifold Regularization
γA ≥ 0 γI = 0 Standard Regularization (RLS or SVM)
γA → 0 γI > 0 Out-of-sample extension for Graph Regularization

(RLS or SVM)
γA → 0 γI → 0 Out-of-sample extension for Label Propagation
γI 1 γA (RLS or SVM)
γA → 0 γI = 0 Hard margin SVM or Interpolated RLS

Table 2: Connections of manifold regularization to other algorithms

5. Experiments

We performed experiments on a synthetic data set and three real world classification problems aris-
ing in visual and speech recognition, and text categorization. Comparisons are made with inductive
methods (SVM, RLS). We also compare Laplacian SVM with transductive SVM. All software and
data sets used for these experiments will be made available at:
http://www.cs.uchicago.edu/∼vikass/manifoldregularization.html.

For further experimental benchmark studies and comparisons with numerous other methods, we
refer the reader to Chapelle et al. (2006); Sindhwani et al. (2006, 2005).

5.1 Synthetic Data: Two Moons Data Set

The two moons data set is shown in Figure 2. The data set contains 200 examples with only 1 la-
beled example for each class. Also shown are the decision surfaces of Laplacian SVM for increasing
values of the intrinsic regularization parameter γI . When γI = 0, Laplacian SVM disregards unla-
beled data and returns the SVM decision boundary which is fixed by the location of the two labeled
points. As γI is increased, the intrinsic regularizer incorporates unlabeled data and causes the deci-
sion surface to appropriately adjust according to the geometry of the two classes. In Figure 3, the
best decision surfaces across a wide range of parameter settings are also shown for SVM, transduc-
tive SVM and Laplacian SVM. Figure 3 demonstrates how TSVM fails to find the optimal solution,
probably since it gets stuck in a local minimum. The Laplacian SVM decision boundary seems to
be intuitively most satisfying.
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Figure 2: Laplacian SVM with RBF kernels for various values of γI . Labeled points are shown in
color, other points are unlabeled.
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Figure 3: Two Moons data set: Best decision surfaces using RBF kernels for SVM, TSVM and
Laplacian SVM. Labeled points are shown in color, other points are unlabeled.

5.2 Handwritten Digit Recognition

In this set of experiments we applied Laplacian SVM and Laplacian RLS algorithms to 45 binary
classification problems that arise in pairwise classification of handwritten digits. The first 400 im-
ages for each digit in the USPS training set (preprocessed using PCA to 100 dimensions) were taken
to form the training set. The remaining images formed the test set. 2 images for each class were
randomly labeled (l=2) and the rest were left unlabeled (u=398). Following Scholkopf et al. (1995),
we chose to train classifiers with polynomial kernels of degree 3, and set the weight on the regular-
ization term for inductive methods as γl = 0.05(C = 10). For manifold regularization, we chose to
split the same weight in the ratio 1 : 9 so that γAl = 0.005, γI l

(u+l)2 = 0.045. The observations reported
in this section hold consistently across a wide choice of parameters.

In Figure 4, we compare the error rates of manifold regularization algorithms, inductive clas-
sifiers and TSVM, at the break-even points in the precision-recall curves for the 45 binary classi-
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fication problems. These results are averaged over 10 random choices of labeled examples. The
following comments can be made: (a) manifold regularization results in significant improvements
over inductive classification, for both RLS and SVM, and either compares well or significantly out-
performs TSVM across the 45 classification problems. Note that TSVM solves multiple quadratic
programs in the size of the labeled and unlabeled sets whereas LapSVM solves a single QP (Equa-
tion 11) in the size of the labeled set, followed by a linear system (Equation 10). This resulted in
substantially faster training times for LapSVM in this experiment. (b) Scatter plots of performance
on test and unlabeled data sets, in the bottom row of Figure 4, confirm that the out-of-sample ex-
tension is good for both LapRLS and LapSVM. (c) Also shown, in the rightmost scatter plot in the
bottom row of Figure 4, are standard deviation of error rates obtained by LapSVM and TSVM. We
found LapSVM to be significantly more stable than the inductive methods and TSVM, with respect
to choice of the labeled data. In Figure 5, we demonstrate the benefit of unlabeled data as a function
of the number of labeled examples.
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Figure 4: USPS Experiment: (Top row) Error rates at precision-recall break-even points for 45
binary classification problems. (Bottom row) Scatter plots of error rates on test and unla-
beled data for Laplacian RLS, Laplacian SVM; and standard deviations in test errors of
Laplacian SVM and TSVM.

Method SVM TSVM LapSVM RLS LapRLS
Error 23.6 26.5 12.7 23.6 12.7

Table 3: USPS Experiment: one-versus-rest multiclass error rates

We also performed one-vs-rest multiclass experiments on the USPS test set with l = 50 and
u = 1957 with 10 random splits as provided by Chapelle and Zien (2005). The mean error rates
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Figure 5: USPS Experiment: mean error rate at precision-recall break-even points as a function of
number of labeled points (T: test set, U: unlabeled set)

in predicting labels of unlabeled data are reported in Table 3. In this experiment, TSVM actually
performs worse than the SVM baseline probably since local minima problems become severe in a
multi-class setting. For several other experimental observations and comparisons on this data set,
see Sindhwani et al. (2005).

5.3 Spoken Letter Recognition

This experiment was performed on the Isolet database of letters of the English alphabet spoken in
isolation (available from the UCI machine learning repository). The data set contains utterances of
150 subjects who spoke the name of each letter of the English alphabet twice. The speakers are
grouped into 5 sets of 30 speakers each, referred to as isolet1 through isolet5. For the purposes of
this experiment, we chose to train on the first 30 speakers (isolet1) forming a training set of 1560
examples, and test on isolet5 containing 1559 examples (1 utterance is missing in the database due
to poor recording). We considered the task of classifying the first 13 letters of the English alphabet
from the last 13. We considered 30 binary classification problems corresponding to 30 splits of the
training data where all 52 utterances of one speaker were labeled and all the rest were left unlabeled.
The test set is composed of entirely new speakers, forming the separate group isolet5.

We chose to train with RBF kernels of width σ = 10 (this was the best value among several
settings with respect to 5-fold cross-validation error rates for the fully supervised problem using
standard SVM). For SVM and RLS we set γl = 0.05 (C= 10) (this was the best value among several
settings with respect to mean error rates over the 30 splits). For Laplacian RLS and Laplacian SVM
we set γAl = γI l

(u+l)2 = 0.005.
In Figure 6, we compare these algorithms. The following comments can be made: (a) LapSVM

and LapRLS make significant performance improvements over inductive methods and TSVM, for
predictions on unlabeled speakers that come from the same group as the labeled speaker, over all
choices of the labeled speaker. (b) On Isolet5 which comprises of a separate group of speakers,
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Figure 6: Isolet Experiment - Error Rates at precision-recall break-even points of 30 binary classi-
fication problems

performance improvements are smaller but consistent over the choice of the labeled speaker. This
can be expected since there appears to be a systematic bias that affects all algorithms, in favor
of same-group speakers. To test this hypothesis, we performed another experiment in which the
training and test utterances are both drawn from Isolet1. Here, the second utterance of each letter
for each of the 30 speakers in Isolet1 was taken away to form the test set containing 780 examples.
The training set consisted of the first utterances for each letter. As before, we considered 30 binary
classification problems arising when all utterances of one speaker are labeled and other training
speakers are left unlabeled. The scatter plots in Figure 7 confirm our hypothesis, and show high
correlation between in-sample and out-of-sample performance of our algorithms in this experiment.
It is encouraging to note performance improvements with unlabeled data in Experiment 1 where the
test data comes from a slightly different distribution. This robustness is often desirable in real-world
applications.

In Table 4 we report mean error rates over the 30 splits from one-vs-rest 26-class experiments
on this data set. The parameters were held fixed as in the 2-class setting. The failure of TSVM
in producing reasonable results on this data set has also been observed in Joachims (2003). With
LapSVM and LapRLS we obtain around 3 to 4% improvement over their supervised counterparts.
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Figure 7: Isolet Experiment - Error Rates at precision-recall break-even points on test set versus
unlabeled set. In Experiment 1, the training data comes from Isolet 1 and the test data
comes from Isolet5; in Experiment 2, both training and test sets come from Isolet1.

Method SVM TSVM LapSVM RLS LapRLS
Error (unlabeled) 28.6 46.6 24.5 28.3 24.1
Error (test) 36.9 43.3 33.7 36.3 33.3

Table 4: Isolet: one-versus-rest multiclass error rates

5.4 Text Categorization

We performed Text Categorization experiments on the WebKB data set which consists of 1051 web
pages collected from Computer Science department web-sites of various universities. The task is
to classify these web pages into two categories: course or non-course. We considered learning
classifiers using only textual content of the web pages, ignoring link information. A bag-of-word
vector space representation for documents is built using the the top 3000 words (skipping HTML
headers) having highest mutual information with the class variable, followed by TFIDF mapping.4
Feature vectors are normalized to unit length. 9 documents were found to contain none of these
words and were removed from the data set.

4. TFIDF stands for Term Frequency Inverse Document Frequency. It is a common document preprocessing procedure,
which combines the number of occurrences of a given term with the number of documents containing it.
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For the first experiment, we ran LapRLS and LapSVM in a transductive setting, with 12 ran-
domly labeled examples (3 course and 9 non-course) and the rest unlabeled. In Table 5, we report
the precision and error rates at the precision-recall break-even point averaged over 100 realizations
of the data, and include results reported in Joachims (2003) for spectral graph transduction, and
the cotraining algorithm (Blum and Mitchell, 1998) for comparison. We used 15 nearest neigh-
bor graphs, weighted by cosine distances and used iterated Laplacians of degree 3. For inductive
methods, γAl was set to 0.01 for RLS and 1.00 for SVM. For LapRLS and LapSVM, γA was set
as in inductive methods, with γI l

(l+u)2 = 100γAl. These parameters were chosen based on a simple
grid search for best performance over the first 5 realizations of the data. Linear kernels and cosine
distances were used since these have found wide-spread applications in text classification problems,
for example, in Dumais et al. (1998).

Method PRBEP Error
k-NN 73.2 13.3
SGT 86.2 6.2

Naive-Bayes — 12.9
Cotraining — 6.20
SVM 76.39 (5.6) 10.41 (2.5)
TSVM 88.15 (1.0) 5.22 (0.5)
LapSVM 87.73 (2.3) 5.41 (1.0)
RLS 73.49 (6.2) 11.68 (2.7)

LapRLS 86.37 (3.1) 5.99 (1.4)

Table 5: Precision and Error Rates at the Precision-Recall Break-even Points of supervised and
transductive algorithms.

Since the exact data sets on which these algorithms were run, somewhat differ in preprocess-
ing, preparation and experimental protocol, these results are only meant to suggest that manifold
regularization algorithms perform similar to state-of-the-art methods for transductive inference in
text classification problems. The following comments can be made: (a) transductive categorization
with LapSVM and LapRLS leads to significant improvements over inductive categorization with
SVM and RLS. (b) Joachims (2003) reports 91.4% precision-recall break-even point, and 4.6% er-
ror rate for TSVM. Results for TSVM reported in the table were obtained when we ran the TSVM
implementation using SVM-Light software on this particular data set. The average training time for
TSVMwas found to be more than 10 times slower than for LapSVM. (c) The cotraining results were
obtained on unseen test data sets utilizing additional hyperlink information, which was excluded in
our experiments. This additional information is known to improve performance, as demonstrated
in Joachims (2003) and Blum and Mitchell (1998).

In the next experiment, we randomly split the WebKB data into a test set of 263 examples and a
training set of 779 examples. We noted the performance of inductive and semi-supervised classifiers
on unlabeled and test sets as a function of the number of labeled examples in the training set. The
performance measure is the precision-recall break-even point (PRBEP), averaged over 100 random
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Figure 8: WebKb Text Classification Experiment: The top panel presents performance in terms of
precision-recall break-even points (PRBEP) of RLS,SVM,Laplacian RLS and Laplacian
SVM as a function of number of labeled examples, on test (marked as T) set and unlabeled
set (marked as U and of size 779-number of labeled examples). The bottom panel presents
performance curves of Laplacian SVM for different number of unlabeled points.

data splits. Results are presented in the top panel of Figure 8. The benefit of unlabeled data can be
seen by comparing the performance curves of inductive and semi-supervised classifiers.

We also performed experiments with different sizes of the training set, keeping a randomly cho-
sen test set of 263 examples. The bottom panel in Figure 8 presents the quality of transduction and
semi-supervised learning with Laplacian SVM (Laplacian RLS performed similarly) as a function
of the number of labeled examples for different amounts of unlabeled data. We find that transduc-
tion improves with increasing unlabeled data. We expect this to be true for test set performance
as well, but do not observe this consistently possibly since we use a fixed set of parameters that
become suboptimal as unlabeled data is increased. The optimal choice of the regularization param-
eters depends on the amount of labeled and unlabeled data, and should be adjusted by the model
selection protocol accordingly.

6. Unsupervised and Fully Supervised Cases

While the previous discussion concentrated on the semi-supervised case, our framework covers both
unsupervised and fully supervised cases as well. We briefly discuss each in turn.
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6.1 Unsupervised Learning: Clustering and Data Representation

In the unsupervised case one is given a collection of unlabeled data points x1, . . . ,xu. Our basic
algorithmic framework embodied in the optimization problem in Equation 2 has three terms: (i)
fit to labeled data, (ii) extrinsic regularization and (iii) intrinsic regularization. Since no labeled
data is available, the first term does not arise anymore. Therefore we are left with the following
optimization problem:

min
f∈HK

γA‖ f‖2K + γI‖ f‖2I

Of course, only the ratio γ = γA
γI
matters. As before ‖ f‖2I can be approximated using the unlabeled

data. Choosing ‖ f‖2I =
R

M 〈∇M f ,∇M f 〉 and approximating it by the empirical Laplacian, we are
left with the following optimization problem:

f ∗ = argmin
∑i f (xi)=0; ∑i f (xi)2=1

f∈HK

γ‖ f‖2K +∑
i∼ j

( f (xi)− f (x j))2. (13)

Note that to avoid degenerate solutions we need to impose some additional conditions (cf. Belkin
and Niyogi, 2003a). It turns out that a version of Representer theorem still holds showing that the
solution to Equation 13 admits a representation of the form

f ∗ =
u

∑
i=1

αiK(xi, ·).

By substituting back in Equation 13, we come up with the following optimization problem:

α= argmin
1T Kα=0

αTK2α=1

γ‖ f‖2K +∑
i∼ j

( f (xi)− f (x j))2,

where 1 is the vector of all ones and α= (α1, . . . ,αu) and K is the corresponding Gram matrix.
Letting P be the projection onto the subspace of Ru orthogonal to K1, one obtains the solution

for the constrained quadratic problem, which is given by the generalized eigenvalue problem

P(γK+ KLK)Pv= λPK2Pv. (14)

The final solution is given by α = Pv, where v is the eigenvector corresponding to the smallest
eigenvalue.
Remark 1: The framework for clustering sketched above provides a method for regularized spec-
tral clustering, where γ controls the smoothness of the resulting function in the ambient space. We
also obtain a natural out-of-sample extension for clustering points not in the original data set. Fig-
ures 9,10 show results of this method on two two-dimensional clustering problems. Unlike recent
work (Bengio et al., 2004; Brand, 2003) on out-of-sample extensions, our method is based on a
Representer theorem for RKHS.
Remark 2: By taking multiple eigenvectors of the system in Equation 14 we obtain a natural
regularized out-of-sample extension of Laplacian Eigenmaps. This leads to new method for dimen-
sionality reduction and data representation. Further study of this approach is a direction of future
research. We note that a similar algorithm has been independently proposed in Vert and Yamanishi
(2005) in the context of supervised graph inference. A relevant discussion is also presented in Ham
et al. (2005) on the interpretation of several geometric dimensionality reduction techniques as kernel
methods.
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Figure 9: Two Moons data set: Regularized clustering
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Figure 10: Two Spirals data set: Regularized clustering

6.2 Fully Supervised Learning

The fully supervised case represents the other end of the spectrum of learning. Since standard
supervised algorithms (SVM and RLS) are special cases of manifold regularization, our framework
is also able to deal with a labeled data set containing no unlabeled examples. Additionally, manifold
regularization can augment supervised learning with intrinsic regularization, possibly in a class-
dependent manner, which suggests the following algorithm:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1
V (xi,yi, f )+ γA‖ f‖2K +

γ+I
(u+ l)2

fT+L+f+ +
γ−I

(u+ l)2
fT−L−f−.

Here we introduce two intrinsic regularization parameters γ+I , γ
−
I and regularize separately for the

two classes: f+, f− are the vectors of evaluations of the function f , and L+, L− are the graph
Laplacians, on positive and negative examples respectively. The solution to the above problem for
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RLS and SVM can be obtained by replacing γIL by the block-diagonal matrix
(
γ+I L+ 0
0 γ−I L−

)

in the manifold regularization formulas given in Section 4.
Detailed experimental study of this approach to supervised learning is left for future work.

7. Conclusions and Further Directions

We have a provided a novel framework for data-dependent geometric regularization. It is based
on a new Representer theorem that provides a basis for several algorithms for unsupervised, semi-
supervised and fully supervised learning. This framework brings together ideas from the theory of
regularization in reproducing kernel Hilbert spaces, manifold learning and spectral methods.

There are several directions of future research:
1. Convergence and generalization error: The crucial issue of dependence of generalization
error on the number of labeled and unlabeled examples is still very poorly understood. Some very
preliminary steps in that direction have been taken in Belkin et al. (2004).
2. Model selection: Model selection involves choosing appropriate values for the extrinsic and
intrinsic regularization parameters. We do not as yet have a good understanding of how to choose
these parameters. More systematic procedures need to be developed.
3. Efficient algorithms: The naive implementations of our algorithms have cubic complexity in
the number of labeled and unlabeled examples, which is restrictive for large scale real-world appli-
cations. Scalability issues need to be addressed.
4. Additional structure: In this paper we have shown how to incorporate the geometric structure
of the marginal distribution into the regularization framework. We believe that this framework will
extend to other structures that may constrain the learning task and bring about effective learnability.
One important example of such structure is invariance under certain classes of natural transforma-
tions, such as invariance under lighting conditions in vision. Some ideas are presented in Sindhwani
(2004).
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