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The Estimation of Prediction Error:
Covariance Penalties and Cross-Validation

Bradley EFRON

Having constructed a data-based estimation rule, perhaps a logistic regression or a classification tree, the statistician would like to know
its performance as a predictor of future cases. There are two main theories concerning prediction error: (1) penalty methods such as C,,
Akaike’s information criterion, and Stein’s unbiased risk estimate that depend on the covariance between data points and their corresponding
predictions: and (2) cross-validation and related nonparametric bootstrap techniques. This article concems the connection between the two
theories. A Rao—Blackwell type of relation is derived in which nonparametric methods such as cross-validation are seen to be randomized
versions of their covariance penalty counterparts. The model-based penalty methods offer substantially better accuracy, assuming that the

model is believable.
KEY WORDS:

C,; Degrees of freedom; Nonparametric estimates; Parametric bootstrap: Rao-Blackwellization; SURE.

1. INTRODUCTION

Prediction problems arise in the following way: A model
m(-), for example, an ordinary linear regression, is fit to some
data y producing an estimate it = m(y); we wonder how well
will predict a future dataset independently generated from the
same mechanism that produced y. Two quite separate statisti-
cal theories are used to answer this question, cross-validation
and what we will call covariance penalties, the latter including
Mallow’s C,, Akaike’s information criterion (AIC), and Stein’s
unbiased risk estimate (SURE). This article concerns the rela-
tionship between the two theories.

Figure 1 illustrates a simple prediction problem. Data (x;. yi)
have been observed for 157 healthy volunteers, with x; age
and y; a measure of total kidney function. The original goal was
to study the decline in function over time, an important factor
in kidney transplantation. The response variable y is a compos-
ite of several standard kidney function indices. A robust locally
linear smoother “lowess(x,y.f = 1/3)” (f controlling the lo-
cal window width) produces fi, the indicated regression curve,
with sum of squared residuals

157
err = Z(y; —)*=495.1.

i=1

(1.)

However err, the apparent error, is an optimistic assessment
of how well the curve in Figure 1 would predict future y values
because lowess has fit the curve to this particular dataset. How
well can we expect I to perform on future data?

In this case the two theories give almost identical esti-
mates of “Err,” the true predictive error of e Err = 538.8 for
cross-validation and 538.3 for the covariance penalty method,
9% larger than (1.1). Sections 2—4 describe these calculations.

Cross-validation and the related bootstrap techniques of
Efron (1983) are completely nonparametric. Covariance penal-
ties, on the other hand, are model based, in this case relying
on an estimated version of the standard additive homescadastic
model y; = u; + ¢;. Nonparametric methods are often prefer-
able, but we will show that cross-validation pays a substantial
price in terms of decreased estimating efficiency.

Bradley Efron is Professor, Department of Statistics, Stanford University,
Stanford, CA 94305 (E-mail: brad@stat.stanford.edu). Author is grateful to
Dr. Bryan D. Myers for bringing the kidney function estimation problem and
data to author’s attention, and for several helpful discussions.

The model used to estimate a covariance penalty can also be
employed to improve cross-validation, by averaging the cross-
validation estimate of Err over a collection of the model’s pos-
sible datasets. This is the subject of Section 4, where it is shown
that the averaged cross-validation estimate nearly equals the co-
variance penalty estimate of Err. Roughly speaking, covariance
penalties are a Rao—Blackwellized version of cross-validation
(and also of the nonparametric bootstrap; Sec. 6) and as such
enjoy increased efficiency for estimating prediction error.

Covariance penalties originated in the work of Mallows
(1973), Akaike (1973), and Stein (1981). The formula was ex-
tended to generalized linear models in Efron (1986). Sections
2 and 3 broaden the penalty formula to include all models, and
also develop it in a conditional setting that facilitates compar-
isons with cross-validation and the nonparametric bootstrap.
Versions of the covariance penalty appear in Breiman (1992),
Ye (1998), and Tibshirani and Knight (1999), with Ye’s article
being particularly relevant here.

2. C, AND SURE

Covariance penalty methods first arose in the context where
prediction error, say Q(¥;, iLi), is measured by squared error

Q(vin i) = (yi — )>.

Mallows (1973) considered prediction error for the ho-
moscedastic model

2.1

y~ (1,00, 2.2)

the notation indicating that the components of y are uncorre-

lated, y; having mean u; and variance o2
) "

Suppose that we are using a linear estimation rule

=My, (2.3)
where M is an # x n matrix not depending on y. Define
er;=(vi—)> and  Em=E() -#)’. (24

the expectation “Ep” being over y? ~ (i, o) independent of y,
with 7i; held fixed. Mallows showed that

E?r,- =err; + 202M,',- (2.5)
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Figure 1. Kidney Data: An Omnibus Measure of Kidney Function
Plotted versus Age for n = 157 Healthy Volunteers. Fitted curve is
lowess(x, y,f = 1/3); sum of squared residuals 495.1. How well can
we expect this curve to predict future (x, y) pairs?

is an unbiased estimator for the expectation of Err;, leading to
the C, formula for estimating Err = 37, Err;,

n
Err = err + 207 trace(M), err = Z err;. (2.6)
i=1

In practice, we usually need to replace &% with an estimate 52
as in the examples that follow; see section 7 of Efron (1986).

Dropping the linearity assumption, let £ = m(y) be any rule
at all for estimating g from y. Taking expectations in the iden-
tity

(vi — 1) + (i — )?

= (vi— @) + 200 — ) (i — ), (2.7)
and using E(y; — u,-)z = Eo(y? — u;)z, gives a convenient ex-
pression for the expectation of Err;, (2.4),

E{Err;} = Eferr; + 2 cov(jL;, yi)}- (2.8)

Because cov(ii;, y;) equals a2M,; for a linear rule, (2.8) is seen
to be a generalization of (2.5). In words, we must add a covari-
ance penalfy to the apparent error err; in order to unbiasedly
estimate Err;.

Formula (2.8) is not directly applicable since cov(ii;, y;) is
not an observable statistic. Stein (1981) overcame this impedi-
ment in the Gaussian case

y~N(u, %) (2.9
by showing that

cov; = o 2E{371;/0vi} (2.10)

Journal of the American Statistical Association, September 2004

[assuming (2.9) and a differentiability condition on the mapping
& = m(y)]. Because di1;/9y; is observable, this leads to Stein’s
unbiased risk estimate (SURE) for total prediction error,

n

oy oL
Err=err—|—2ozzﬁ
i=1

. 2.11
By; (2.11)

In the linear case it is now common, as in Hastie and Tibshi-
rani (1990), to define trace(M) as the degrees of freedom (df ) of
the rule £ = My. If we are in the usual regression or analysis of
variance (ANOVA) situation, where M is a projection matrix,
then trace(M) = p, the dimension of the projected space, agree-
ing with the usual df definition. As in Ye (1998), we can extend
this definition to

n (T i)
df = Z CoOVIlL;, Yi

2
g-

(2.12)
i=1
for a general rule @t = m(y).

Traditional applications of linear models try to keep df < n.
Because Z?:l M;; = df, this can be interpreted as M;; = O(1/n)
in reasonable experimental designs. Similarly, the informal or-
der of magnitude calculations that follow assume

cov(i;, yi) = O(1/n). (2.13)

This might better be stated as “O(df/n),” the crucial ingredient
for the asymptotics being a small value of df/n.

The bootstrap, or more exactly the parametric bootstrap,
suggests a direct way of estimating the covariance penalty
cov(ii;, vi). Let f be an assumed density for y. In the Gaussian
case we might take = N(i, 32I) with i = m(y) and G2 ob-
tained from the residuals of some “big” model presumed to have
negligible bias. We then generate a large number “B” of simu-
lated observations and estimates from T,

Ty - " =my"),

(2.14)

and estimate cov; = cov(ii;, ¥;) from the observed bootstrap co-
variance, say

B *xb
— - k] . Xe y{
vi=) @ -)/IB-D. y =) (219
bh=1 b
leading to the Err estimate

n
Er\r:err—e—ZZ&W,». (2.16)
i=1
Both Breiman (1992) and Ye (1998) proposed variations
on (2.14) intended to improve the efficiency of the bootstrap
estimation procedure; see Remark A.

Figure 2 displays SURE and parametric bootstrap estimates
of the coordinatewise degrees of freedom df; for the kidney
data. The two sets of estimates d7%;/dy; and ¢ov;/&~ are plotted
versus age;, vividly demonstrating the decreased stability of the
lowess fitting process near the extremes of the age scale. The
resampling algorithm (2.14) employed

y' =1 +€", (2.17)
with the components of €* a random sample of size n from
the empirical distribution of the observed residuals €; = y; — [i;
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df estimate

age

Figure 2. Coordinatewise Degrees of Freedom for Lowess Fit of Fig-
ure 1, Plotted versus Age. Open circles, SURE estimate df = o5 /0yi;
solid line, parametric bootstrap estimates ¢ov;/52, (2.14)—(2.15),
B = 1,000. Total df estimates 6.85 (SURE) and 6.67 (parametric boot-
strap). The coordinatewise bootstrap estimates are noticeably less
noisy.

(having 2 = 3.17). Almost identical results were obtained tak-
ing ?}“ ~ N(0,3?). The lowess estimator was chosen here be-
cause it is nonlinear and unsmooth, making the df calculations
more challenging.

The two methods gave similar estimates for the total degrees
of freedom df = )_ df; : 6.85 using SURE and 6.67 = .30 with
the bootstrap, the + value indicating simulation error, estimated

as
]lm

Z(C*b C*
32
n ﬁ*b()’*b

B(B—-1)
Ko kb
*b i i —,V,') e C
= et 2 =
SIS

(2.18)

However, the componentwise bootstrap estimates are notice-
ably less noisy, having standard deviation 2.5 times smaller than
the SURE values over the range 20 < age < 75.

Remark A. It is not necessary that the bootstrap model T

in (2.14) be based on & = m(y). The solid curve in Figure 2
was recomputed starting from the bigger model (more degrees
of freedom) T= N(jt, o2I), with & the fit from lowess(x,y,
f = 1/6), but still using f = 1/3 for m(y*) at the final step
of (2.14). This gave almost the same results as in Figure 2.
The ultimate “bigger model” is
T=N(y,5D. (2.19)

This choice, which is the one made in Ye (1998), Shen, Huang,
and Ye (2002), Shen and Ye (2002), and Breiman (1992), has
the advantage of not requiring model assumptions. It pays for

R
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this luxury with increased estimation error: the df; plot looks
more like the open circles than the solid line in Figure 2. The au-
thor prefers checking the df; estimates against moderately big-
ger models, such as lowess(x. y, 1/6), rather than going all the
way 1o (2.19); see Remark C.

In fact, the exact choice of f is often quite unimportant. No-
tice that df; = cov(i;, v;) /02 is the linear regression coefficient
of 1t; on y;. If the regression function E{fi;]y;} is roughly lin-
edr in y;, then its slope can be estimated by a wide variety of
devices. Algorithm 1 of Ye (1998) takes y* in (2.14) from a
shrunken version of (2.19),

y* ~N(y. o), (2.20)

with ¢ a constant between .6 and 1, and estimates df; by the
linear regression coefficient of /t; on y. Breiman'’s “little boot-
strap” (1992) employs a related technique, the “little” referring
tousing ¢ < 1 in (2.20), and winds up recommending ¢ between
.6 and .8 (though ¢ = 1 gave slightly superior accuracy in his
simulation experiments). Shen and Ye (2002) used an equiva-
lent form of covariance estimation, with ¢ = .5.

Remark B. The parametric bootstrap algorithm (2.14)—(2.15)
can also be used to assess the difference between fits obtained
from two models, say Model A and Model B. We will think of A
as the smaller of the two, that is, the one with fewer degrees of
freedom, though this is not essential. The estimated difference
of prediction error is

1]
AErr = Aerr+2) " GOV(ATL. ¥)). (2.21)
=1
A denoting “Model A minus Model B.”

Calculation (2.21) was carried out for the kidney data with
lowess(x,y,f = 2/3) for Model A and lowess(x,y.f = 1/3)
for Model B; Aerr =498.5 —495.1 = 3.4. With Tin (2.14) esti-
mated from Model A, 1,000 parametric bootstraps (each requir-
ing both model fits) gave —18.4 for the second term in (2.21),
SO

AEr=3.4—184=—15.0,

favoring the smaller Model A.

The 1,000 pairs of bootstrap fits £(A)* and f(B)* con-
tain useful information, beyond evaluating the second term of
(2.21). Figure 3 displays the thousand values of

AErr = Aerr* — 18.4. (2.22)

This can be considered as a null hypothesis distribution for
testing “Model B is no improvement over Model A In this
case the observed AErr falls in the lower part of the distrib-
ution, but for a larger observed value, say AErr = 20.0, we
might use the histogram to assign the approximate p value
#{AEn* > AErr}/1,000.

This calculation ignores the fact that the penalty —18.4
in (2.22) is itself variable. For linear models the penalty is a con-
stant, obviating concern. In general, the penalty term is an or-
der of magnitude smaller than Aerr, and ne not likely to contribute
much to the bootstrap variability of AErr". This was checked
here using a second level of bootstrapping, which made very
little difference to Figure 3.
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Figure 3. 1,000 Bootstrap Replications of AEr for the Difference
Between lowess(x,y,2/3) and lowess(x,y, 1/3), Kidney Data. The
point estimate AErr= —15.0 is in the lower part of the histogram.

Remark C. The parametric bootstrap estimate (2.14)—(2.15),
unlike SURE, does not depend on f = m(y) being differen-
tiable or even continuous. A simulation experiment was run
taking the true model for the diabetes data to be y ~ N(u, (er),
with 02 = 3.17 and p the lowess(x, y, f = 1/6) fit, a noticeably
rougher curve than that of Figure 1. A discontinuous adaptive
estimation rule it = m(y) was used: Polynomial regressions of y
on x for powers of x from 0 to 7 were fit, with the one having
the minimum C, value selected to be .

Because this is a simulation experiment, we can estimate the
true expected difference between Err and err, (2.8): 1,000 sim-
ulations of y gave

E{Err — err} = 33.1 £ 2.02. (2.23)

The parametric bootstrap estimate (2.14)—(2.16) worked well
here, 1,000 replications of y ~ N(fi,o?I), with @ from
lowess(x,y, f = 1/3), yielding

Err —err = 31.4 £ 2.85. (2.24)

In contrast, bootstrapping from y* ~ N(y. o2I) as in (2.19) gave
14.6 4+ 1.82, badly underestimating the true difference 33.1.
Starting with the true u equal to the seventh-degree polynomial
fit gave nearly the same results as (2.23).

3. GENERAL COVARIANCE PENALTIES

The covariance penalty theory of Section 2 can be general-
ized beyond squared error to a wide class of error measures.
The g class of error measures (Efron 1986), begins with any
concave function g(-) of a real-valued argument. Q(y, i), the
assessed error for outcome y given prediction 7z, is then defined

to be
Q. 1) =q(@) + ¢ (y— ) —q(y)  [a(h) =dg/dpl;]

3.1
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Figure 4. Tangency Construction (3.1) for General Error Measure
Q(y, 1), q(- ) Is an Arbitrary Concave Function. The illustrated case has
qlu)=pu(1—w)and Qly, fi)= (v — i ).

Q(y, ) is the tangency function to ¢(-), as illustrated in
Figure 4; (3.1) is a familiar construct in convex analysis
(Rockafellar 1970). The choice g(1t) = u(1 — p) gives squared
error, Q(y. 1) = (y — ).

Our examples will include the Bernoulli case y ~ Be(u),
where we have » independent observations y;,

~_| 1. probability u;
"= 10, probability 1 —

Two common error functions used for Bernoulli observations
are counting error

forp; e (0,11, (3.2)

g(u) = min(p, 1 — )
0 ify, u on same side of 1/2
= Oy, )= . . . (3.3)
1 if y, u on different sides of 1/2

(see Remark F) and binomial deviance

g(u) = —2[plog(u) + (1 — ) log(l — w)]
ify=1
ify=0.
By a linear transformation we can always make

q(0) = ¢(1) =0,

which is convenient for Bernoulli calculations.

We assume that some unknown probability mechanism f has
given the observed data y, from which we estimate the expec-
tation vector 4 = E¢{y} according to the rule f = m(y),

~2logu

—2log(l — ) (34)

= Qv )= {

3.5)

f—>y— pg=my). (3.6)

Total error will be assessed by summing the component errors,

Oy, B) =) Q(vi, ). 3.7)

i=1
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The following definitions lead to a general version of the Cp
formula (2.8). Letting

=Q(yi. 1) and Err; = Eo{Q(. ij)} (3.8)

as in (2.4), with 71; fixed in the expectation and y from an in-
dependent copy of y, define the

err;

Optimism:  O; = O;(f,y) = Err; — err; (3.9)
and
Expected optimism:  €2; = Q(f) = E¢{O;(f, y)}. (3.10)
Finally, let
hi=—g(@)/2. 3.11)
For g(u) = u(l — w), the squared error case, A = — 1/2;
for counting error (3.3), ,x, = —1or | as [&; is less or greater
than 1/2; for binomial deviance (3.4),
i =log(fii/ (1 — @), (3.12)

the logit parameter. [If Q( (Y, 1) is the deviance function for any
exponential family, then 4 is the corresponding natural parame-
ter; see sec. 6 of Efron 1986.]

Optimism Theorem 1. For error measure Q(y, 1), (3.1), we
have

E{Er;} = E{err; + ©;}, (3.13)
where

Qi = 2covi(a. vi), (3.14)
the expectations and covariance being with respect to f, (3.6).

Proof. Err; = err; + O; by definition, immediately giving
(3.13). From (3.1) we calculate

Erri = q(1) + () (i — 1) — Elg(y¥),

SN by 3.15
err; = q( ;) + g(ui)(yi — 1) — g(yi) 3.15)

and so, from (3.9)—(3.11),
Oi = 20i(yi — ) + q(3) — Elg(y0)}).  (3.16)

Because E{q(y?)] =FE{q(y)}, y? being a copy of y;, taking ex-
pectations in (3.16) verifies (3.14).

The optimism theorem generalizes Stein’s result for squared
error, (2.8), to the g class of error measures. It was developed by
Efron (1986) in a generalized linear model (GLM) context but
as verified here it applies to any probability mechanism f — .
Even independence is not required among the components of y,
though it is convenient to assume independence in the condi-
tional covariance computations that follow.

Parametric bootstrap computations can be used to estimate
the penalty Q; = 2cov(3:,', ¥i) as in (2.14), the only change be-
ing the substitution ofx,’-‘ = —q(iz})/2 for [if in (2.15):

B
covi=) a0
i=I

Method (3.17) was suggested in remark J of Efron (1986). Shen
et al. (2002), working with deviance in exponential families,
employed a “shrunken” version of (3.17), as in (2.20).

-y /(B—1). (3.17)

623

Section 4 relates covariance penalties to cross-validation. In
doing so it helps to work with a conditional version of cov;. Let
¥(i) indicate the data vector with y; deleted,

Yiy=(y.y2, ..., Vim1: Yitls -2 ¥n), (3.18)
and define the conditional covariance
coviy = E{hi - (i — |y} = Eapl - v — o}, (3.19)
E(y indicating E{-|y(,}; likewise Q) = 2cov(y. In situation
(2.)~(2.3) cov(;y = cov; = 0*My;, but, in general, we only have
Ef{cov(;} = cov;. The conditional version of (3.13),
E{Err} = Ey [err; + Qi} (3.20)

is a more refined statement of the optimism theorem. The
SURE formula (2.10) also applies conditionally, cov i =
o~ E(,){Bu,/av,} assuming normality (2.9).

Figure 5 illustrates conditional and unconditional covariance
calculations for subject i = 93 of the kidney study (the open cir-
cle in Fig. 1). Here we have used squared error and the Gaussian
model y* ~ N(f&. 521), 5 = 3.17, with & = lowess(x, y. 1 /3).
The conditional and unconditional covariances are nearly the
same, cov(,) = .221 versus ¢ov; = .218, but the dependence of
I on y¥ is much clearer conditioning on y ;.

The condmonal approach is computationally expensive: We
would need to repeat the conditional resampling procedure of
Figure 5 separately for each of the n cases, whereas a single set
of unconditional resamples suffices for all #n. Here we will use
the conditional covariances (3.19) mainly for theoretical pur-
poses. The less expensive unconditional approach performed
well in all of our examples.
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Figure 5. Conditional and Unconditional Covariance Calculations for
Subject i = 93, Kidney Study. Open circles: 200 pairs (v*, is), un-
conditional resamples y* ~ N(u &21); Eov; = .218; Dots: 100 condi-
tional resamples, yt ~ N([1;,52), y; fixed; covyy = .221. Vertical line
at ﬁga = 1.36.
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There is, however, one situation where the conditional co-
variances are easily computed: the Bernoulli case y ~ Be(u).
In this situation it is easy to see that

(v 0)). 321

the notation indicating the two possible values of ’):,- with y;
fixed and y; either | or 0. This leads to estimates

cov(iy = (1 — lli)[/’/:i(}’(iy 1)

vy = il — @[ iy 1) = 2i(ya. 0)]. (3.2

Calculating €ov; fori = 1,2, ..., n, requires only n recompu-
tations of m(-), one for each i, the same number as for cross-
validation. For reasons discussed next, (3.22) will be termed
the Steinian.

There is no general equivalent to the Gaussian SURE for-
mula (2.10), that is, an unbiased estimator for cov(;. How-
ever, a useful approximation can be derived as follows. Let
H(y7) :’):i()’(i).}fj‘) indicate ’):* as a function of }: , with y;
fixed, and denote #; = 8tl(v*)/8\ | 2> in Figure 5, ¢ is the slope
of the solid curve as it crosses the vertical line. Suppose y; has
bootstrap mean and variance ({Z;, V). Taylor series yield a sim-
ple approximation for €ov(;),

COV(! E(!){ (\ )}
= Ep{ (o + 1 - (f — Bl — i
= Vi, (3.23)

only y¥ being random here. The Steinian (3.22) is a dxscreuzed
version of (3.23), applied to the Bernoulli case, which has Vi=
il — ;).

If Q(y, [) is the deviance function for a one-parameter expo-
nential family, then A; is the natural parameter and dx; /diti =
1/ V,. Therefore

o~ Ok

&)T/(,‘) = Vi——av*

i

_op
d\

/‘71 ()li:

I V 8\

(3.24)

i ﬂ/ /1;

This is a centralized version of the SURE estimate, where now
A/ dv; is evaluated at [1; instead of y;. {In the exponential
family representation of the Gaussian case (2.9), Q(v, 1) =
(v— ﬁ)2/62, so the factor o2 in (2.10) has been absorbed into Q
in (3.24).]

Remark D. The centralized version of SURE in (3.24) gives
the correct total degrees of freedom for maximum likelihood
estimation in a p-parameter generalized linear model or, more

generally, in a p-parameter curved exponential family (Efron
1975):

AL

it (3.25)
i=l1 a}’,'

:p'

y=i.

The usual uncentralized version of SURE does not satisfy
(3.25) in curved families.

Using deviance error and maximum likelthood estimation
in a curved exponential family makes err; = —2logfﬁi(y,-) +
constant. Combining (3.14), (3.24), and (3.25) gives

Er= — 2[2 logfs, (vi) —p+ constant]. (3.26)
i
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Choosing among competing models by minimizing Err
is equivalent to maximizing the penalized likelihood
Zlogfm(_v,-) — p, which s Akaike's information criterion
(AIC). These results generalize those for GLM’s in section 6
of Efron (1986) and will not be verified here.

Remark E. It is easy to show that the true prediction error
Err;, (3.8), satisfies

Erri = Q(ui, 1) + D(i) [P = E{Q(vio u)}]- (3.27)

For squared error this reduces to the familiar result EQ( Vi
,u,)‘ (L — u,)z + o2, In the Bernoulli case (3.2), D(u,) =
q(p;) and the basic result (3.16) can be simplified to

Bernoulli case:  O; = 2A;(yi — i), (3.28)

using (3.5).

Remark F. The ¢ class includes an asymmetric version of
counting error (3.3) that allows the decision boundary to be at
a point 7y in (0, 1) other than 1/2. Letting 7o = 1 — 7; and

= (mo/m)172,

1
q(u)=min{pu,;(l —u)}

if v, Il same side of
ify=1land i <m

— Q(y, ) = (3.29)

ifv=0and £ > 7.

DI~ ©

Now Q(1.0)/0Q(0, 1) = mo/my. This is the appropriate loss
structure for a simple hypothesis-testing situation in which we
want to compensate for unequal prior sampling probabilities.

4. THE RELATIONSHIP WITH CROSS—VALIDATION

Cross-validation is the most widely used error prediction
technique. This section relates cross-validation to covariance
penalties, more exactly to conditional parametric bootstrap co-
variance penalties. A Rao-Blackwell type of relationship will
be developed: If we average cross-validation estimates across
the bootstrap datasets used to calculate the conditional covari-
ances, then we get, to a good approximation, the covariance
penalty. The implication is that covariance penalties are more
accurate than cross-validation, assuming of course that we trust
the parametric bootstrap model. A similar conclusion is reached
in Shen et al. (2002).

The cross-validation estimate of prediction error for coordi-
nate i is

Err; = Q(yi, 1), 4.1)
where [i; is the ith coordinate of the estimate of g based on the
deleted dataset ¥y = (¥1.Y2, ... Yie 1. Vit1: - - - . Vi), say

Hi=m(y@), (4.2)

(see Remark H). Equivalently, cross-validation estimates the
optimism O; = Err; — err; by

0; = Err; —err; = Q(yi, 1) — Qvi, i) (4.3)
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Lemma. Letting &; = —g(i;)/2 and A; = —g([:)/2 as
in(3.11),
O =20k — A (yi — i) — Oy, 7i0) — 2Ch — A) (FLi — o).
(4.4)
This is verified directly from definition (3.1).

The lemma helps connect cross-validation with the condi-
tional covariance penalties of (3.19)~(3.20). Cross-validation
itself is conditional in the sense that y(; is fixed in the calcu-
lation of O,, so it is reasonable to suspect some sort of con-
nection. Suppose that we estimate cov(;, by bootqtrap sampling
as in (3.17) but now with y; fixed and only ¥} random, say
with denmy f, The form of (4.4) makes it especmlly conve-
nient for y* to have conditional expectation zi; (rather than the
obvious choice ;) which we denote by

Eobi) =B vilvol =7

In a Bernoulli situation we would take v ~ Be(ﬂ,)
Denote the bootstrap versions of i, and Aj as ;L =m(y). y7)
and A = —q(ul )/2.

(4.5)

Theorem 1. With y* ~; satisfying (4.5), and y; fixed,

Ep{07) =266 — EplQin D). (4.6)

GOV,;) being the conditional covariance estimate E (A - (v} —
i)}

Proof. Applying the lemma with p; — is Vi v,
*— k cand [i; — 77 gives

O =20 — R (v — ) — QUi 1)) 4.7

625

Notice that i1; and 3:[ stay fixed in (4.7) because they depend
only on y(;) and that this same fact eliminates the last term
in (4.4). Taking conditional expectations E(,-) in (4.7) completes
the proof.

In (4.6), 2¢0V(;) equals Q). the estimate of the condi-
tional covariance penalty €2(;), (3.20). Typically ﬁm is of order
O, (1/n), as in (2.13), while the remainder term E(,-) {o;, [If)}
is only O,,(l/nz). See Remark H. The implication is that

E(,){O } = Q(,,—Z Sovgyy. (4.8)

In other words, averaging the cross-validation estimate 0*
over f,, the dl%trlbuthI‘l of yI used to _calculate the covari-
ance penalty Q(,) gives approximately Q(,) itself. If we think
of f, as summarizing all available information for the unknown
distribution of y;, that is, as a sufficient statistic, then ﬁ(i) isa
Rao—-Blackwellized improvement on O:.

This same phenomenon occurs beyond the conditional frame-
work of the theorem. Figure 6 concerns cross-validation of the
lowess(x, y, 1/3) curve in Figure 1. Using the same uncondi-
tional resampling model (2.17) as in Figure 2, B = 200 boot-
strap replications of the cross-validation estimate (4.3) were
generated,

01 =0(7". 11") — 007" 71).

i=1,2,...,n,andb=1,2,....,B. (49)

The small points in Figure 6 indicate individual values 5;"7/
262, The triangles show averages over the 200 replications,
or /262, There is striking agreement with the covariance

0.3 0.4 0.5
|

df estimate

0.1

0.0

age

Figure 6. Small Dots Indicate 200 Bootstrap Replications of Cross-Validation Optimism Estimates (4.9); Triangles, Their Averages, Closely Match
the Covariance Penalty Curve From Figure 2. (Vertical distance plotted in df units.)
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penalty curve ¢ov;/5* from Figure 2, confirming ’E{Z);*} =
as in (4.8). Nearly the same results were obtained bootstrapping
from g rather than z.

Approximation (4.8) can be made more explicit in the case
of squared error loss applied to linear rules £ = My that are
“self-stable,” that is, where the cross-validation estimate (4.2)
satisfies

mi=>y My, M= M
— (1 — M)
J#
Self-stable rules include all the usual regression and ANOVA
estimate as well as spline methods; see Remark [. Suppose we
are resampling from y; ~ f; with mean and variance

4.10)

yE~ (i, a?), (@.11)

where j1; might differ from 7z; or i1;. The covariance penalty Q;
is then estimated by Q,- =25°Mj;.

Using (4.10), it is straightforward to calculate the conditional
expectation of the cross-validation estimate Oy,

E;{OF|ya ) =Qu- (1 - ,,/21[1+( U“’)]. (4.12)

If 1; = /i then (4.12) becomes E(,){O*} = Qi1 -
act version of (4.8). The choice f1; = f; results in

~\2
_”’) } (4.13)
[¢)

In both cases the conditional expectation of OF is ﬁ,-[l +
O, (1/n)], where the Op(1/n) term terlds to be slightly negative.

The unconditional expectation of O; with respect to the true
distribution y ~ (s, o°T) looks like (4.12),

M;;/2], an ex-

o~

E {0y} =il

- M,»,~/21[1 ¥ (M,-,-y"

E{O:} = 1 —Mii/2][1+ZM,2j+A?], (4.14)
J#i

Q; equaling the covariance penalty 20>M;; and

2
- [(m - ZM,juj)/o] . 4.15)
A
For M a projection matrix, M2 = M, the term }_ /VIS =M;/(1—
M,i); E{O;} exceeds ;. but only by a factor of | + O(1/n) if
A} = 0. Notice that

Z Mtjﬂj Hi= {
J#

— Wi}, (4.16)

so that Aiz will be large if the cross-validation estimator f; is
badly biased.

Finally, suppose y ~ N(&, o°I) and it = My is a self-stable
projection estimator. Then the coefficient of variation of O; is

2
CVIDi) = 2+44(1 M”)Azi i
(14201 = M) A7)?

the last approximation being quite accurate unless zi; is badly
biased. This says that O; must always be a highly variable
estimate of its expectation (4.14), or, approximately, of 2; =
202M;;. However, it is still possible for the sum 0=13; Ol to
estimate ¥;$2; = 20 2df with reasonable accuracy.

4.17)
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As an example I = My was fit to the kidney data, where
M represented a natural spline with 8 degrees of freedom (in-
cluding the intercept). One hundred simulated data vectors y* ~
N(;L,,a I) were independently generated o2 = 3.17, each giv-
ing a cross-validated df estimate df * = O* /262, These had em-
pirical mean and standard deviation

df* ~8.34 4+ 1.64. (4.18)

Of course, there is no reason to use cross-validation here be-
cause the covariance penalty estimate df always equals the
correct df value 8. This is an extreme example of the Rao-
Blackwell type of result in Theorem 1, showing the cross-

validation estimate df as a randomized version of df.

Remark G. Theorem 1 applies directly to grouped cross-
validation, in which the observations are removed in groups
rather than singly. Suppose group i consists of observations
(yir,yize---.yig), and likewise p; = (i, ... pip), i =
(ZZ,, .o Hi); Y@ equals y with group i removed, and
,ul = m(y(,)),l i2,...is. Theorem | then holds as stated with

=2 Ol, Cov(;) = »_;€0V(;). and so forth. Another way
to say thls is that by add1t1v1ty the theory of Sections 2—4 can
be extended to vector observations y;.

Remark H. The full dataset for a prediction problem, the
“training set,” is of the form

V=, v2,...,vy) withv; = (x;, v), (4.19)

x; being a p vector of observed covariates, such as age for the
kidney data, and y; a response. Covariance penalties operate
in a regression theory framework where the x; are considered
fixed ancillaries whether or not they are random, which is why
notation such as jt = m(y) can suppress X. Cross-validation,
however, changes x as well as y. In this framework it is more
precise to write the prediction rule as

m(x,v) forxe X, (4.20)

indicating that the training set v determines arule m(-, v), which
then can be evaluated at any x in the predictor space X'; (4.2) is
better expressed as fi; = m(x;. V().

In the cross-validation framework we can suppose that v
has been produced by random sampling (“iid”) from some
(p + 1)-dimensional distribution F,

iid
F—>v1 V2, ., Vy.

(4.21)

Standard influence function arguments, as in chapter 2 of Ham-
pel, Ronchetti, Rousseeuw, and Stahel (1986), give the first-
order approximation
~ o~ . IF; — IF;
Ri — i =m(x;, v) — m(xi, V() = L (4.22)
where IF; = IF(vj; m(x;, v), F) is the influence function for [1;
evaluated at v;, and IF(;, = >z 1E/(n—1)

The point here is that t; — ii; is Op(1/n) in situations
where the influence function exists boundedly; see Li (1987)
for a more careful discussion. In situation (4.10), &; — i; =
Mii(y; — i) so that M; = O(1/n) as in (2.13) implies ; —

fii = 0,(1/n). Similarly 2 — i; = O,(1/n) in (4.6). If the
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function g(u) of Figure 4 is locally quadratic near fi;, then
O, i) in (4.6) will be O,,(l/nz) as claimed in (4.8).

Order of magnitude asymptotics are only a rough guide to
practice and are not crucial to the methods discussed here. In
any given situation bootstrap calculations such as (3.17) will
give valid estimates whether or not (2.13) is meaningful.

Remark 1. A prediction rule is “self-stable” if adding a new
point (x;, y;) that falls exactly on the prediction surface does not
change the prediction at x;; in notation (4.20) if

m(xi, vy U (xi, ) = L. (4.23)

This implies j1; = Zj#,-M,;,yj- + M;ji; for a linear rule, which
is (4.10). Any “least-Q” rule, which chooses @ by minimizing
> Q(yi, ;) over some candidate collection of possible g’s,
must be self-stable, and this class can be extended by adding
penalty terms as with smoothing splines. Maximum likelihood
estimation in ordinary or curved GLM’s belongs to the least-Q

class.

5. A SIMULATION

Here is a small simulation study intended to illustrate covari-
ance penalty/cross-validation relationships in a Bernoulli data
setting. Figure 7 shows the underlying model used to generate
the simulations. There are 30 bivariate vectors x; and their as-
sociated probabilities jt;,

G ), i=1,2,...,30, (5.1)

from which we generated 200 30-dimensional Bernoulli re-
sponse vectors

’7 |
22
3]
T 60
31 45 7%
. 49 84
3w ® & ‘
3
R
M 56
.- N s
1 57
13 * 74 .78 92
.58
15
23
I — i I | i
-2 1 0 1 2 3

x[1]

Figure 7. Underlying Mode! Used for Simulation Study: n = 30 Bivari-
ate Vectors x; and Associated Probabilities (i, (5.1).
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as in (3.2). [The underlying model (5.1) was itself randomly
generated by 30 independent replications of

1 1
Y; ’”BG(E) and X,"\/Nz((Y,' — E.O),I),

with u; the Bayesian posterior Prob{Y; = 1|x;}.]
Our prediction rule i = m(y) was based on the coefficients
for Fisher’s linear discriminant boundary &@ + 8'x = 0:

= 1/[1 4 e @],

Equation (2.13) of Efron (1983) describes the (@, E) computa-
tions. Rule (5.4) is not the logistic regression estimate of ji; and
in fact will be somewhat more efficient given mechanism (5.3)
(Efron 1975).

Binomial deviance error (3.4) was used to assess prediction
accuracy. Three estimates of the total expected optimism Q =
Y0 Qi (3.10), were computed for each of the 200 y vectors:
the cross-validation estimate O = Y 0;, (4.3); the parametric
bootstrap estimate 2 Y ¢ov;, (3.17) with y* ~ Be(); and the
Steinian 2> €ov(;. (3.22).

The results appear in Figure 8 as histograms of the 200 df es-
timates (i.e., estimates of optimism/2). The Steinian and para-
metric bootstrap gave similar results, correlation .72, with the
bootstrap estimates slightly but consistently larger. Strikingly,

(5.3)

5.4)

(a)

Steinian {solid) and Cross-Val (open}

(b)

40

20
L

10
1

Parametric Boot (solid) and Cross-Val (open)

Figure 8. Degree-of-Freedom Estimates (optimism/2); 200 Simula-
tions (5.2) and (5.4). The two covariance penally estimates, Steinian (a)
and parametric bootstrap (b), have about one-third the standard devia-
tion of cross-validation. Error measured by binomial deviance (3.4); true
2/2=157.
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the cross-validation estimates were much more variable, having
about three terms larger standard deviation than either covari-
ance penalty. All three methods were reasonably well centered
near the true value $2/2 = 1.57.

Figure 8 exemplifies the Rao—Blackwell relationship (4.8),
which guarantees that cross-validation will be more variable
than covariance penalties. The comparison would have been
more extreme if we had estimated p by logistic regression
rather than (5.4), in which case the covariance penalties would
be nearly constant while cross-validation would still vary.

In our simulation study we can calculate the true total opti-
mism (3.28) for each y,

n
0=2) % (vi— ). (5.5)
i=1
Figure 9 plots the Steinian estimates versus O/2 for the
200 simulations. The results illustrate an unfortunate phe-
nomenon noted in Efron (1983): Optimism estimates tend to
be small when they should be large and vice versa. Cross-
validation or the parametric bootstrap exhibited the same in-
verse relationships. The best we can hope for is to estimate the
expected optimism £2.
If we are trying to estimate Err = &1 4+ O with Err =&+ Q,
then

Emr—FEr=Q -0, (5.6)

so inverse relationships such that those in Figure 9 make Err
less accurate. Table 1 shows estimates of E {(Er\r — Err)?} from
the simulation experiment.

None of the methods did very much better than simply es-
timating Err by the apparent error, that is, taking € = 0, and
cross-validation was actually worse. It is easy to read too much

o _| .
L4 .
e
'\.'
kc
0
J
. Q....
. .'."'\o
i
deh. .
o
% %es o
R Hp—
5 o . }o' [ hd .
"
E -7 3 0
8 ws
o e
LR Y -
R
. 3
% . .
.
M
o _| R
- H .
N
.
.
T T T T T T
5 0 5 10 15 20

True Optimism/2

Figure 9. Steinian Estimate versus True Optimism/2, (5.5), for the
200 Simulations. Similar inverse relationships hold for parametric boot-
strap or cross-validation.
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Table 1. Average (EFr —AErr)z for the 200 Simulations; “Apparent”
Takes Err =err (i.e., §2 = 0). Outsample Averages Discussed
in Remark L. All Three Methods Outperformed €rr When
Prediction Rule Was Ordinary Logistic Regression

Steinian  ParBoot  CrossVal — Apparent
E(Err — Em)? 53.9 52.9 63.3 57.8
Outsample 59.4 58.2 68.9 64.1
Logistic regression 36.2 34.6 33.2 53.8

into these numbers. The two points at the extreme right of Fig-
ure 9 contribute heavily to the comparison, as do other details
of the computation; see Remarks J and L. Perhaps the main
point is that the efficiency of covariance penalties helps more
in estimating €2 than in estimating Err. Estimating  can be
important in its own right because it provides df values for the
comparison, formal or informal, of different models, as empha-
sized in Ye (1998). Also, the values of df; as a function of x;,
as in Figure 2, are a useful diagnostic for the geometry of the
fitting process.

The bottom line of Table 1 reports E(Err — Em)? for the
prediction rule “ordinary logistic regression,” rather than (5.4).
Now all three methods handily beat the apparent error. The av-
erage prediction Err was much bigger for logistic regression,
6.15 versus 2.93 for (5.4), but Err was easier to estimate for
logistic regression.

Remark J. Four of the cross-validation estimates, corre-
sponding to the rightmost points in Figure 9, were negative
(ranging from —9 to —28). These were truncated at 0 in Fig-
ure § and Table 1. The parametric bootstrap estimates were
based on only B = 100 replications per case, leaving substantial
simulation error. Standard components-of-variance calculations
for the 200 cases were used in Figure 8 and Table 1, to approx-
imate the ideal situation B = oo.

Remark K. The asymptotics in Li (1985) imply that in his
setting it is possible to estimate the optimism itself rather than
its expectation. However, the form of (5.5) strongly suggests
that O is unestimable in the Bernoulli case, since it directly in-
volves the unobservable componentwise differences y; — p;.

Remark L. Err =Y Err;, (3.8), is the total prediction error at
the n observed covariate points x;. “Outsample error,”

Erroue=n 'EO{Q()’Os m(XO.V))}. (5.7)

where the training set v is fixed while 10 = (x°, %) is an inde-
pendent random test point drawn from F, (4.9), is the natural
setting for cross-validation. (The factor » is included for com-
parison with Err.) See section 7 of Efron (1986). The second
line of Table 1 shows that replacing Err with Errgy did not af-
fect our comparisons. Formula (4.14) suggests that this might
be less true if our estimation rule had been badly biased.

Table 2 shows the comparative ranks of |I§r\r — Err| for the
four methods of Table 1 applied to rule (5.4). For example, the
Steinian was best in 14 of the 200 simulations, and worst only
once. The corresponding ranks are also shown for |Err — Errgy,
with very similar results: Cross-validation performed poorly,
apparent error tended to be either best or worst, the Steinian was
usually second or third, while the parametric bootstrap spread
rather evenly across the four ranks.
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Table 2. Left: Comparative Ranks of JErr — Eyrl for the 200 Simulations
(5.1)—(5.4). Right: Same for IErr — Erroy,!

Stein ParBoot CrVal App Stein ParBoot CrVal App

1 14 48 33 105 17 50 32 101

2 106 58 31 5 104 58 35 3

3 79 56 55 10 78 54 55 13

4 1 38 81 80 1 38 78 83

Mean 2.34 242 292 233 2.31 2.40 290 2.39
rank

6. THE NONPARAMETRIC BOOTSTRAP

Nonparametric bootstrap methods for estimating prediction
error depend on simple random resamples v* = (v}, v3, ..., vy)
from the training set v, (4.17), rather than parametric resam-
ples as in (2.14). Efron (1983) examined the relationship be-
tween the nonparametric bootstrap and cross-validation. This
section develops a Rao-Blackwell type of connection between
the nonparametric and parametric bootstrap methods, similar to
Section 4’s cross-validation results.

Suppose we have constructed B nonparametric bootstrap
samples v*, each of which gives a bootstrap estimate u*,
with 7 = m(x;, v*) in the notation of (4.18). Let Nf’ indi-
cate the number of times v; occurs in bootstrap sample v,
b=1,2,..., B; define the indicator

b I ifNP=h
I(h) =

6.1)
0 ifN?#h, 1

h=0,1...., n; and let Q,-(h) be the average error when Nf =h,

0ithy =Y 1o 7). 1.
b b

(6.2)

We expect Q,-(OJ, the average error when v; not involved in the
bootstrap prediction of y;, to be larger than Q;(1), which will be
larger than Q,-(Z), and so on.

A useful class of nonparametric bootstrap optimism esti-
mates takes the form

0i(0) — O(h)

Si(h) = ;

Oi=_ Bh)Si(h),

h=1

(6.3)

the “8” standing for “slope.” Letting P, (h) be the binomial re-
sampling probability

(6.4)

. n\ (n— l)nfh
pn(h) =Prob{Bi(n, 1/m)=h}={ | |} ———.

section 8 of Efron (1983) considers two particular choices of
B(h):

“p®ooV» - By = h(h — L)pa(h) and

(6.5)

“@O - B(hy = hpp(h).
Here we will concentrate on (6.3) with B(h) = hp,(h), which
is convenient but not crucial to the discussion. Then B(h) is a

probability distribution, | B(h) = 1, with expectation

n—1

iB(h)-hzlJr .
i

(6.6)

n

629

The estimate 51 = Z'f B(hJS‘,-(h) is seen to be a weighted av-
erage of the downward slopes S,(h). Most of the weight is on
the first few values of 4 because B(h) rapidly approaches the
shifted Poisson(1) density e~ /(h — 1)! as n — oc.

We first consider a conditional version of the nonparametric
bootstrap. Define v(; (k) to be the augmented training set

viy(h) = vinUlh COpiCS of (x;, ¥},
(6.7)

giving corresponding estimates i;(h) = m(x;, v(;(h)) and
X,‘(h) = —g(ii(h))/2. For v(;1(0) = v, the training set with
vi = (x7, v;) removed. 75;(0) = ;, (4.2). and 2;(0) = ;. The
conditional version of definition (6.3) is

1
Oy = ZB(h)S,’(h),-
h=1

Sithy = [Q(xi, i) — Qi Hi(h)) | /h. (6.8)

This is defined to be the conditional nonparametric bootstrap
estimate of the conditional optimism £2(;, (3.20). Notice that
setting B(h) = (1,0,0,...,0) would make 5(,~) equal 5,-, the
cross-validation estimate (4.3).

As before we can average 5(1)(y) over conditional para-
metric resamples ¥* = (yi.vi), (4.5), with y;) and x =
(x1,x2,...,%x,) fixed. That is, we can parametrically average
the nonparametric bootstrap. The proof of Theorem | applies
here, giving a similar result:

Theorem 2. Assuming (4.5), the conditional parametric
bootstrap expectation of OF;) = O (y( ). ¥7) is
n
Ea{07,} =2 Bnesvy () /h
h=1

— Y BWEW{Q(f:. i ()} /h. (6.9)

h=1

where

&V () = Eqy{ M ()* (v — i) (6.10)

The second term on the right side of (6.9) is Op(l/,12) as
in (4.8), giving
it —
= A . covy(h)
E<i){0fn}=2/4:8(h)*r. 6.11)
h=

Point v; has h times more weight in the augmented training set
viy(h) than in v = v;(1); so, as in (4.20), influence function
calculations suggest

Hithy — i =h-(@f — ;) and  Covi(h) = h-Covy),

(6.12)
@ = (1), so that (6.11) becomes
Ep{07,)} = 269 = Qo). (6.13)

Averaging the conditional nonparametric bootstrap estimates
over parametric resamples (y;), ;) results in a close approx-
imation to the conditional covariance penalty £2;).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



630

Expression (6.9) can be exactly evaluated for linear projec-
tion estimates i = My (using squared error loss)

M=xX"X"'x X = (x1.x2, ..., %) (6.14)

Then the projection matrix corresponding to v;(h) has ith di-
agonal element

/lM,','

M,"/’Z = .
i) 1+ (h— DMy

M = My (1) ZX;(X]X)_l).’,'v

(6.15)

and if y¥ ~ (ji;, 5°) with y;, fixed, then €ov(;y = 6 2M;;(h). Us-
ing (6.6) and the self-stable relationship z; — it; = M ( y; — [L;)s
(6.9) can be evaluated as

EilOr) = Q- 11 — 4Mj). (6.16)

In this case (6.13) errs by a factor of only [1 + O(1/n)].

Result (6.12) implies an approximate Rao—Blackwell rela-
tionship between nonparametric and parametric bootstrap opti-
mism estimates when both are carried out conditionally on v(;.
As with cross-validation, this relationship seems to extend to
the more familiar unconditional bootstrap estimator. Figure 10
concerns the kidney data and squared error loss, where this
time the fitting rule & = m(y) is “loess(tot ~ age, span =.5).”
Loess, unlike lowess, is a linear rule i = My, although it is not
self-stable. The solid curve traces the coordinatewise covari-
ance penalty df; estimates M;; as a function of age;.

The small points in Figure 10 represent individual uncon-
ditional nonparametric bootstrap df; estimates O} /252, (6.3),
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evaluated for 50 parametric bootstrap data vectors y* obtained
as in (2.17), Remark M provides the details. Their means across
the 50 replications, the triangles, follow the M;; curve. As with
cross-validation, if we attempt to improve nonparametric boot-
strap optimism estimates by averaging across the y* vectors
giving the covariance penalty Q,-, we wind up close to Qi it-
self.

As in Figure 8 we can expect nonparametric bootstrap df esti-
mates to be much more variable than covariance penalties. Var-
ious versions of the nonparametric bootstrap, particularly the
“.632 rule,” outperformed cross-validation in Efron (1983) and
Efron and Tibshirani (1997) and may be preferred when non-
parametric error predictions are required. However, covariance
penalty methods offer increased accuracy whenever their un-
derlying models are believable.

A general verification of the results of Figure 10, linking
the unconditional versions of the nonparametric and parametric
bootstrap df estimates, is conjectural at this point. Remark N
outlines a plausibility argument.

Remark M. Figure 10 involved two resampling levels: Para-
metric bootstrap samples y** = fi 4+ €*? were drawn as in (2.17)
for a = 1,2,...,50, with &£ and the residuals € = y; — [i;
determined by loess(span = .5); then B = 200 nonparametric
bootstrap samples were drawn from each set v = (v’l‘“, v?“.
.., vy, with, say, NI“I’ repetitions of vj’."“ = (_le',}j;-ka) in the
abth nonparametric resample, b = 1, 2, .... B. For each “a,” the
n x B matrices of counts Nf’b and estimates ﬁf”b gave Qi(h)y*a,

df estimates
0.3 05 0.6
|

0.2

0.1

0.0

age

Figure 10. Small Dots Indicate 50 Parametric Bootstrap Replications of Unconditional Nonparametric Optimism Estimates (6.3); Triangles,
Their Averages, Closely Follow the Covariance Penalty Estimates (solid curve). Vertical distance plotted in df units. Here the estimation rule is

loess(span = .5). See Remark M for details.
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Si(h)**, and 07, as in (6.2)~(6.3). The points 07%/252 (with
2 = Z'e}z/n) are the small dots in Figure 10, while the tri-
angles are their averages over a = 1,2, ..., 50. Standard ¢ tests
accepted the null hypotheses that the averages were centered on
the solid curve.

Remark N. Theorem 2 applies to parametric averaging of
the conditional nonparametric bootstrap. For the usual uncondi-
tional nonparametric bootstrap, the bootstrap weights N; on the
points v; = (x;, ¥;) in v(; vary so that the last term in (4.4) is no
longer negated by assumption (4.5). Instead it adds a remainder
term to (6.9):

=2 BWEG{(AF) = T)Gi - En/h. (617
h=1
Herff\ﬁ}k = m(x;, v(;)), where v{; puts weight Nj on v; for j # i,
and AT = —g(})/2.

To justify approximation (6.13), we need to show that (6.17)
is 0p(1/n). This can be demonstrated explicitly for linear pro-
jections (6.14). The result seems plausible in general since
AE(h) ~AF is Op(1/n) while [i* — [i;, the nonparametric boot-
strap deviation of 7 from zi;, would usually be O,(1//n).

7. SUMMARY

Figure 11 classifies prediction error estimates on two crite-
ria: Parametric (model-based) versus nonparametric, and con-
ditional versus unconditional. The classification can also be
described by which parts of the training set {(x;,y;), j =
1.2,...,n} are varied in the error rate computations: The
Steinian only varies y; in estimating the ith error rate, keep-
ing all the covariates x; and also y; for j 5 i fixed; at the other
extreme the nonparametric bootstrap simultaneously varies the
entire training set.

Here are some comparisons and comments concerning the
four methods.

e The parametric methods require modeling assumptions
in order to carry out the covariance penalty calculations.

CONDITIONAL UNCONDITIONAL
(local) (global)
PARAMETRIC » ) covariates
(model-based Steinian Parametric fixed
covariance penalties Bootstrap
NONPARAMETRIC _— . covariates
(model-free) Cross-Validation Nonparametric random
Bootstrap
only ith case all cases
random random

Figure 11. Two-Way Classification of Prediction Error Estimates Dis-
cussed in This Article. The conditional methods are local in the sense
that only the ith case data are varied in estimating the ith error rate.
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When these assumptions are justified, the Rao—Blackwell
type of results of Sections 4 and 6 imply that the paramet-
ric techniques will be more efficient than their nonpara-
metric counterparts, particularly for estimating degrees of
freedom.

o The modeling assumptions need not rely on the estimation
rule i = m(y) under investigation. We can use “bigger”
models as in Remark A, that is, ones less likely to be bi-
ased.

e Modeling assumptions are less important for rules ff =
m(y) that are close to linear. In genuinely linear situations
such as those needed for the C, and AIC criteria, the co-
variance corrections are constants that do not depend on
the model at all. The centralized version of SURE, (3.25),
extends this property to maximum likelihood estimation in
curved families.

e Local methods extrapolate error estimates from small
changes in the training set. Global methods make much
larger changes in the training set, of a size commensurate
with actual random sampling, which is an advantage in
dealing with “rough” rules m(y) such as nearest neighbors
or classification trees; see Efron and Tibshirani (1997).

e Stein’s SURE criterion (2.11) is local, because it depends
on partial derivatives, and parametric (2.9) without being
model based. It performed more like cross-validation than
the parametric bootstrap in the situation of Figure 2.

e The computational burden in our examples was less for
global methods. Equation (2.18), with 41" replacing 71}
for general error measures, helps determine the number
of replications B required for the parametric bootstrap.
Grouping, the usual labor-saving tactic in applying cross-
validation, can also be applied to covariance penalty meth-
ods as in Remark G, though now it is not clear that this is
computationally helpful.

e As shown in Remark B, the bootstrap method’s computa-
tions can also be used for hypothesis tests comparing the
efficacy of different models.

Accurate estimation of prediction error tends to be difficult in
practice, particularly when applied to the choice between com-
peting rules & = m(y). In the author’s opinion it will often be
worth chancing plausible modeling assumptions for the covari-
ance penalty estimates, rather than relying entirely on nonpara-
metric methods.

[Received December 2002. Revised October 2003.]
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Comment

[ would like to begin by thanking Professor Efron for writing
a paper that sheds new light on cross-validation and related
methods along with his proposals for stable model selec-
tion procedures. Stability can be an issue for ordinary cross-
validation, especially for not-so-smooth procedures such as
stepwise regression and other such sequential procedures. If
we use the language of learning and test sets, ordinary cross-
validation uses a learning set of size n — | and a test set of
size 1. If one can average over a test set of infinite size, then
one gets a stable estimator. Professor Efron demonstrates this
leads to a Rao—Blackwellization of ordinary cross-validation.

The parametric bootstrap proposed here does require know-
ing the conditional distribution of an observation given the rest,
which in turn requires a knowledge of the unknown parameters.
Professor Efron argues that for a near-linear case, this poses no
problem. A question naturally arises: What happens to those
cases where the methods are considerably more complicated
such as stepwise methods?

Another issue that is not entirely clear is the choice between
the conditional and unconditional bootstrap methods. The con-
ditional bootstrap seems to be better, but it can be quite expen-
sive computationally. Can the unconditional bootstrap be used
as a general method always?

It seems important to point out that ordinary cross-validation
is not as inadequate as the present paper seems to suggest.
If model selection is the goal, then estimation of the overall
prediction error is what one can concentrate on. Even if the
componentwise errors are not necessarily small, ordinary cross-
validation may still provide reasonable estimates especially if
the sample size # is at least moderate and the estimation proce-
dure is reasonably smooth.

In this connection. I would like to point out that methods such
as repeated v-fold (or multifold) cross-validation or repeated (or
bootstrapped) learning-testing can improve on ordinary cross-
validation because the test set sizes are not necessarily small
(see, e.g., the CART book by Breiman, Friedman, Olshen, and
Stone 1984; Burman 1989; Zhang 1993). In addition, such
methods can reduce computational costs substantially. In a re-
peated v-fold cross-validation, the data are repeatedly randomly

Prabir Burman is Professor, Department of Statistics, University of Califor-
nia, Davis, CA 95616 (E-mail: burman@wald.ucdavis.edu).

split into v groups of roughly equal sizes. For each repeat, there
are v learning sets and the corresponding test sets. Each learn-
ing set is of size n(1 — 1/v) approximately and each test set is
of size n/v. In a repeated learning—testing method, the data are
randomly split into a learning set of size #n(1 — p) and a test set
of size np, where O < p < 1. If one takes a small v, say v =3,
in a v-fold cross-validation or a value of p = 1/3 in a repeated
learning-testing method, then each test set is of size n/3. How-
ever, a correction term is needed in order to account for the fact
that each learning set is of a size that is considerably smaller
than n (Burman 1989).

I ran a simulation for the classification case with the model:
Y is Bernoulli(w (X)), where m(X) =1 — sin2(27rX) and X i1s
Uniform(0, 1). A majority voting scheme was used among the
k nearest neighbor neighbors. True misclassification errors (in
percent) and their standard errors (in parentheses) are given in
Table 1 along with ordinary cross-validation, corrected three-
fold cross-validation with 10 repeats, and corrected repeated-
testing (RLT) methods with p = .33 and 30 repeats. The sample
size is n = 100 and the number of replications is 25,000. It can
be seen that the corrected v-fold cross-validation or repeated
learning~testing methods can provide some improvement over
ordinary cross-validation.

I would like to end my comments with thanks to Profes-
sor Efron for providing significant and valuable insights into
the subject of model selection and for developing new methods
that are improvements over a popular method such as ordinary
cross-validation.

Table 1. Classification Error Rates (in percent)

TCH k=7 k=39 k=11

True 22.82(4_14) 24-55(4.87) 27.26(5_43)
cv 22.95(7_01) 24.82(713) 27.65(7.55)
Threefold CV 22.74(5_51) 2456(556) 27'04(5.82)
RLT 22.70(5.70) 24.555 g5) 27.11(5.95)
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Comment

We welcome this authoritative review of the field. We would
like to point to some areas that seem to need further study. First,
consider the model selection problem. It is well known that the
“C, estimate” of prediction error in the subset regression prob-
lem [Efron’s (2.6)] does not allow for the fact that the subset
is data dependent and may badly underestimate the true predic-
tion error. Efron does not refer to this difficulty explicitly, but
the general “covariance penalty” formula (2.8) allows the pre-
diction formula m(v) to be completely general, which allows
for model selection. Thus we have the problem of estimating
the covariance in (2.8), namely cov(t,, y;), where v; is gener-
ated by the (unknown) true model and [; is the fitted value
using our subset selection rule.

The parametric bootstrap proposed in (2.14)—(2.16) will not
do this. Here one generates bootstrap samples with means at the
fitted (subset) model. This method will be biased against allow-
ing any other regressors into the fit. The algorithms of (2.19)
and (2.20) do not work well, either, because they generate y’s
with variances that are too large, which makes it harder for re-
gressors to be selected. Of course, all these difficulties arise
from the discontinuous nature of the prediction rule and can
be avoided by refusing to use a subset least squares predictor;
any continuous rule such as ridge or “lasso” will be much easier
to deal with.

In the work reported in Denby, Landwehr, and Mallows
(DLM) (2001), we came across an extreme example of the phe-
nomenon noted before (2.20), that the exact choice of model
may be unimportant for estimating the prediction error. A sim-
plified version of our situation is as follows. We had data
{Xij, Y, i=1,....1, j=1,....J, k=1,...,K}, where the
X’s are replicate observations (j = 1, ..., J) on certain devices
(i=1,...,1I) using one kind of equipment and the Y’s are repli-
cate observations (k = 1,..., K) on the same devices using
different equipment. Our study of the data led us to propose
the prediction formula [for a ¥ observation on a new device
(i = 0), based on observations Xo,, (m =1, ..., M) on that de-
vice] as

So=7Y.—X. +Xo. (h

We needed to estimate the precision of these estimates. We did
this in two ways. First, we used a model we had fitted to the
data, according to which Xj; = p +a;+ej;and Yy = v+ bi+fj,

Lorraine Denby is Research Scientist, Data Analysis Research Department,
Avaya Labs, Basking Ridge, NJ 07920 (E-mail: /d@ research.avayalabs.com).
James M. Landwehr is Director, Data Analysis Research Department, Avaya
Labs, Basking Ridge, NJ 07920 (E-mail: jmi@research.avayalabs.com).
Collin L. Mallows is Consultant, Data Analysis Research Department. Avaya
Labs. Basking Ridge, NJ 07920 (E-mail: colinm@ research.avayalabs.comy).

where the e’s and f’s are independent of the a’s and &’s. Using
estimates of various variances, we arrived at the “model-based”
(MB) formula

— I+1
Erryp = (%—)BMS

1 1 1
+ 1| - — = | XWMS I — = 1YWMS,
(L J) '%( K)

where BMS is the between-devices sum of squares
BMS =) (Vi —Xi. — Y. +X.)%.

and XWMS and YWMS are within-devices sums of squares.

Second, we knew that this model did not fit the data perfectly.
We had identified several systematic (but small) deviations.
[Also, the prediction formula (1) is not optimal for this model.]
We performed a cross-validation (CV) computation, dropping
out each device in turn and predicting a ¥ measurement on that
device from the rest. In DLM (2001) we were delighted to find
that the CV estimate was very close to the “model-based” es-
timate, because this seemed to validate the model. However,
subsequently, as reported in DLM (2002), some algebra led us
to realize that the CV calculation had given the estimate

o~ I/

1 | 1
— — — | XWMS 1 — — JYWMS,
+<L J) +( K)

which is necessarily very close to Erryg for any data whatso-
ever. Thus the model could be completely wrong, and still these
two estimates of Err would agree.

The underlying reason for this close agreement is that the
prediction formula that is being used is a reasonable choice for
this model. The result of the algebraic analysis is that E-r\rMB,
which uses both the prediction formula and the model, is nec-
essarily close to Errcy, which uses the prediction formula but
no model.

We pose two questions. How general is it that ETrMB and
ﬁfrcv must be close? We suspect that the answer involves how
sensible the prediction formula is for the model. More impor-
tantly for statistical practice, we wonder how generally it can
happen that a model-based estimate of prediction error is as
good as (or even better than) a cross-validation estimate, even
when the model is wrong. This is the question Efron addresses
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in the last sentence of his article. Having fitted a model, which
may be inaccurate, but which suggests a prediction formula,
we can estimate the predictive mean squared error by naively
assuming the model (perhaps using simulation, which would
qualify as a “parametric bootstrap” method, except that here
we may be simulating from a model we know to be incorrect).
When is this better than cross-validation?

In DLM (2002) we reported our findings for the second ques-
tion in several simple situations, including linear regression us-
ing an inadequate model and linear regression with variance
effects that are ignored. We also studied the effect of having
high-leverage observations. Our studies suggest that (at least in
the cases we studied)

1. A model-based calculation is often better than CV, even
when the model is wrong.

2. Variance effects are unimportant.

3. Naive CV behaves badly when there are high-leverage ob-
servations.

Even though a model-based calculation of prediction error
might be more accurate than CV in many situations, it is also the

Journal of the American Statistical Association, September 2004

case that producing the MB estimate is more cumbersome and
difficult than producing the CV estimate. Thus another prob-
lem area that could impact statistical practice involves defining
modifications to simple CV that could improve accuracy in es-
timating predictive error. In DLM (2002) we proposed some
modifications based on our analysis of the regression problem
and did some numerical investigations under several scenarios.
We did not find substantial, consistent improvements relative to
standard CV. We view this as an open problem.

A third area that needs study is the variability of estimates of
predictive error. A correction for small bias will not be helpful
if it seriously degrades the precision of the estimate,

We welcome Efron’s comments.
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Comment

Xiaotong SHEN, Hsin-Cheng HUANG, and Jianming YE

In many scientific and engineering problems, a central issue
is deciding among competing explanations of data, possibly of
different types or from different sources, in the presence of di-
verse error that is difficult, if not impossible, to control. At the
core of progress in science and engineering is model selection
and combination. The key to model selection and combination
is model assessment particularly in comparing models at differ-
ent levels of complexity and stability through estimation. The
author is to be congratulated for making important and fun-
damental contributions to model assessment from a prediction
standpoint.

Over the past decades, scientists and engineers have used
various statistical tools for model assessment but have lacked
a clear understanding of the key issues involved. Within sta-
tistics, there are a number of theories that govern estima-
tion/prediction, and yet there are subtle differences among them
in application. The main results in this article alert statisti-
cians to the importance of reducing estimation variability while
controlling bias in model assessment. As a consequence, co-
variance penalties provide more accurate model assessment in
general, yielding more precise guidance of model selection and
combination.

Xiaotong Shen is Professor, School of Statistics, University of Min-
nesota, 224 Church Street S.E., Minneapolis, MN 55455 (E-mail: xshen@
stat.umn.edu). His research was supported in part by National Science Foun-
dation grant [15-0328802 and Agreement No. 0112050. Hsin-Cheng Huang is
Associate Research Fellow, Institute of Statistical Science, Academia Sinica,
Taipei 115, Taiwan (E-mail: hchuang @ stat.sinica.edu.tw). Jiamingy Ye is As-
sociate Professor, Stan Ross Department of Accountancy, Baruch College.
City University of New York, New York, NY 10010 (E-mail: jimmy_ve@
baruch.cuny.edu). He gratefully acknowledges the financial support of the Zick-
lin School of Business, Baruch College.

In this discussion, we shall stress the fundamental impor-
tance of covariance penalties in model assessment. Not only
does the covariance penalty cov; account for the complexity
of a model, it also provides an assessment of any modeling
process, possibly involving many models at different levels of
complexity. This is in contrast to any other complexity penalty
that focuses solely on a single model. Further, we shall com-
ment on and compare two methodologies for estimating cov;,
namely, parametric bootstrap (PB) and data perturbation (DP).

1. COVARIANCE PENALTIES AND OTHER
INFORMATION CRITERIA

1.1 Information Criteria

In the literature, a large number of information criteria have
been proposed and investigated as a means of model assess-
ment. In a statistical framework, data are sampled from a true
yet unknown distribution, and can be modeled in terms of
likelihood f(Data, #) and a parameter vector 8, which may
be regarded as an approximation to the truth. Essentially
all information criteria can be summarized in the form of
*10gf(Data,é) + A(6), where A(F) is a nonnegative model
complexity penalty and is a function of #. Placing it in the
slightly more general framework of this article, we obtain

O(Data, 8) + A(6). (1

This reflects a compromise between two important yet conflict-
ing aspects of modeling: goodness of fit and model complexity.
Goodness of fit, described by Q(Data, 8), refers to how well
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a model fits into observed data, while model complexity mea-
sures the level of complexity of the model generating the fit. In
the context of model selection, the model minimizing (1) is of-
ten used as the best model that is expected to generalize well to
predict unseen outcome.

Complexity of a Single Model. Traditionally, model com-
plexity is described as the characteristic of a model that enables
it to fit into a variety of patterns of data, primarily mea-
sured via its size and function form. Many information criteria
such as Akaike’s information criterion (AIC) and the Bayesian
choose A(f) to be the model size k& multiplied by a constant,
ignoring the model’s function form. Rissanen’s modified sto-
chastic complexity (Rissanen 1996) adds an adjustment fac-
tor such that A(8) = (k/2)log(n/(2m)) + logf‘/Det(l(G))dQ,
with Det(/(8)) being the determinant of the Fisher information
matrix /(8).

Complexity of a Modeling Process. In any modeling
process, a modeling procedure employed to yield 6 can influ-
ence goodness of fit as well as generalizability, in addition to
a model’s size and function form. A modeling procedure is
a mapping from the sample space to R”, defined by 6 evaluated
at n observations. Its complexity is apparently a more general
concept than model complexity, as it can describe any situa-
tion particularly that with multiple and data-dependent models.
However, it is more difficult to determine a good complexity
measure for a modeling process. For instance, in a curve estima-
tion, a free knot spline estimator with an estimated set of knots
placed anywhere in a region should have a higher level of com-
plexity than a dyadic spline estimator with a set of prespecified
knot locations. The difficulty is that both modeling processes
use data-dependent and data-independent models, defined by
the knots, respectively.

Covariance Penalty as a Measure of Complexity of a Model-
ing Procedure. Earlier A(0) represents complexity of a model
in (1). In the present context, we use A(é, 6) to describe that of
a modeling procedure 6. Within this framework, we are able to
derive cov;, capturing complexity as well as stability of a mod-
eling procedure.

Regardless of the interpretation, we now determine the op-
timal choice of A(8, 8) by considering a more general version
of (1):

Q(Data, 6) + A(6.6). )

Ye (1998) and Shen and Ye (2002) argued that X(6,0) in (2)
not only penalizes an increase in model size, but also can cap-
ture modeling uncertainty via 6. Efron (1986) and the present
article suggested that A(6, 6) is necessary to estimate Y_;_; Err;
unbiasedly. Efron (1986) derived Y i, cov; in the form of “ex-
pected optimism” via unbiasedness, while Ye (1998) obtained it
in terms of generalized degrees of freedom for the Gaussian dis-
tribution. Shen and Ye (2002) and Shen, Huang, and Ye (2003)
derived Y 7, cov; as the optimal penalty that minimizes an
equivalent form of E(E;r — Err)? over all A(H.8) in a context of
loss estimation for exponential-family models.

The covariance penalty cov; is general for any modeling
process, regardless of whether it is linear or nonlinear or candi-
date models are nested or not. Usually, it differs from the other

- |
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model complexity penalty, although in some special cases such
as linear regression, it may coincide with the penalty of AIC,
Mallow’s Cp,, or Stein’s unbiased risk estimator (SURE).

With an estimated covariance penalty COv; in place, we obtain

n
Q(Data, §) + " cov;.

i=1

(3)

permitting model assessment for any arbitrary modeling
process. This is in contrast to (1); for instance, (3) enables
us to evaluate model averaging estimators based on models of
different sizes, whereas (1) cannot. Most important, the afore-
mentioned optimality of cov; implies that it is expected to out-
perform any other penalty in (1) in terms of the accuracy of
prediction.

Model Stability. Model stability or sensitivity measures the
stability of model-based estimation relative to a change in yu
via the fitted values i. We now argue by example that cov; cap-
tures model stability, which is an important aspect of a model-
ing process.

Now consider a model selection process, with M being a
data-dependent model selected from a class of candidate mod-
els via a model selection criterion. A conventional treatment to
this selected model is to estimate the loss using the complexity
of M. By putting this in the framework of covariance penalties,
the complexity of M can be measured by generalized degrees
of freedom as S hS = 0, E(3/;(M)/8y,), conditioning
on M, where 8 1;(M)/dy; is the sensitivity of the fitted value {;
to v; holding M fixed. Similarly, the complexity of the selection
procedure as a whole is Y i, hY = 37 | E(3/1,/3p,), where
d(i;/0y; is the corresponding unconditional version without
holding M fixed. Their difference, due to the selection process,
describes stability of the selected model M when the data are
perturbed locally. We refer to this difference as model stability,
which is not captured by any complexity measure of M. Usu-
ally, the difference h — h{ = E(0(11; — ,&,i(lf/l))/ay,-) is nonneg-
ative. This is because j1; without holding M fixed typically has
higher sensitivity than that holding M fixed, to y;. Consequently,
the complexity measure of M alone yields an underestimated
prediction error Err. In summary, cov;, that is, 4} multiplied by
error variance, takes into account the complexity of not only the
selected model but also the whole selection process.

1.2 Cross-Validation

As pointed out by Efron (1983), cross-validation (CV) often
yields unacceptably high variance as an estimate of prediction
error. The Rao—-Blackwell decomposition in Theorem 1 implies
that the variance of CV is no less than that of Err defined by
cov;, provided of course that the higher-order term in (4.6) is
ignorable. Usually, CV and Err are approximately unbiased for
Err. This in turn translates into a more accurate estimate of Err
via cov; in view of this bias/variance property. On a related mat-
ter, the results in the article can be easily generalized to cover
“delete-m” cross-validation.
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2. ESTIMATION OF COVARIANCE PENALTY

PB and DP.  Estimation of cov, is highly nontrivial and may
require MC approximation of some type, because 1(8,6) cap-
tures modeling uncertainty that is usually difficult or impossible
to describe analytically. To our knowledge, there are two gen-
eral techniques available. The first is the DP method, developed
in Ye (1998), Shen and Ye (2002), and Shen et al. (2003). The
idea is to use the fitted values based on perturbed data to assess
model accuracy. The pioneer work on data perturbation may be
tracked to Breiman (1992) in linear regression. The second one
is the proposed PB method in the present article. Although they
substantially differ in their method of generating Y*, there is
an interesting connection between them. We shall explore this
aspect next.

The DP method usually reduces to some type of PB when
¢ =1, where 0 < ¢ < 1 is the coefficient controlling the degree
of shrinkage, as defined in (2.20). However, it is usually inde-
pendent of candidate models. Equivalently, it samples Y™ from
N(Y, ¢6%1I) in the simple Gaussian case while sampling Y* from
Bern(p) in the Bernoulli case. Here p, 0 < p < 1, is a prespec-
ified probability. On the other hand, the PB method based on a
“moderately big” model samples from N(jz, 52I) and Bern(p),
respectively, in the Gaussian and Bernoulli cases, with £t and p
being an estimated mean and probability via the “moderately
big” model.

Both methods differ substantially when ¢ < 1. Take the
Bernoulli case for instance. The DP method generates a con-
vex combination of Y* = (1 — ¢)Y + ¢¥ with ¥ sampled from
Bern( p), resulting in a multinomial distribution for ¥*. For esti-
mation, it is necessary to embed the Bernoulli distribution into
a more general class of multinomial distributions to perform
estimation. In 0-1 tree classification, when ¢ = .5, Y* assumes
three values {0, .5, 1} rather than {0, 1}, and classification is per-
formed via three-category trees.

Two Approaches: A “Moderately Big” Model versus “Model-
Free.” In the present article, a “moderately big” model is ad-
vocated for parametric bootstrapping. In principle, we agree
that a good estimate [t of u is expected to yield an accurate esti-
mated prediction error. However, one major concern is that the
bootstrap estimates generally depend on the model employed
for bootstrapping. As a consequence, it is likely to produce a
bootstrap estimate that favors large models in terms of the ac-
curacy of predication, when a large model is used for bootstrap
and vice versa for a small model. Further, in many problems,
there are many “moderately big” models available, resulting
in bias in any direction depending on the choice of the model
used for bootstrapping. In our view, a “model-free” approach
that does not involve candidate models is more appropriate for
making fair model comparisons via Err in model assessment.
The increased variability due to a “model-free” approach may
be reduced by suitably shrinking the coefficient ¢ toward the
origin, as in (2.20). We shall elaborate in what is to follow.

To illustrate the main points, we examine the mean p; and
variance o* of the generating distribution of ¥* in the Gaussian
case. For the “moderately big” model approach, ps = {i, with
i generated using a “moderately big” model. This is in con-
trast to the “model-free” approach in which s =Y. Now con-
sider the situation of variable selection in linear regression, in

Journal of the American Statistical Association, September 2004

which Err defined by the PB method is employed to compare
different candidate models. In this situation, /& is obtained via
a “moderately big” model, which can be any model involving
a reasonably large subset of candidate variables. Most impor-
tant, Err defined by ov; is likely to be biased for (or against)
certain types of models that are most (or least) associated with
the subset in use, regardless of which “moderately big” model is
used. As aresult, the accuracy of predication may vary dramati-
cally over the choice of “moderately big” models, making accu-
rate model comparisons difficult or impossible. In this context,
the model involving all candidate variables is usually used as
the “moderately big” model (cf. Freedman, Navidi, and Peters
1988).

Variance Reduction and Adjustment.  As far as USZ is con-
cerned, Var(Y*) = (1 +¢?) Var(Y) becomes larger when u, =Y
is used, where Y* is sampled from N(Y, ¢&>1). This is the price
to be paid for not requiring model assumptions. Fortunately,
by shrinking ¢ toward the origin, Var(Y*) decreases. One di-
rect benefit of using p, = Y is that an adjustment can be made
to further improve the accuracy of prediction. For instance, in a
context of DP, Ye (1998) and Shen et al. (2003) suggested using
cov;/c” as opposed to ¢ov;. In contrast, it is generally difficult
to make such an adjustment for the “moderately big” model ap-
proach because Var(Y*) usually depends on the unknown truth
through Var(f).

Example. The following simulation is designed to illustrate
our main points regarding the choice of p; and 033 in PB
and DP. Consider linear regression with Gaussian error, in
which response Y; depends on covariates x; = (x;.0, Xi 1. .-,
xi.50) as follows:

YiZﬂi+8[=,r;ﬁ+85. Si’VN(O.Ug). H
where 8 = (89, B1..... Bso)’ is the vector of regression para-
meters and U(;l =1 is assumed to be known for simplicity.

In this example, we compare the BP method with Y* ~
N(fifun, I) to the DP method with Y* ~ N(Y, c?o31) in terms
of the prediction accuracy, as measured by Err — Err evalu-
ated at 2 (M) with M selected via a modeling procedure AIC.
Here [ify is the least squares estimate based on all variables
{x0,...,xp) and the DP method uses the aforementioned ad-
justment with ¢ = .5.

A random sample n = 200 of {(¥;, x)}]_, is generated ac-
cording to (1), where x; follows N(0O, 7). In this simulation, five
situations, corresponding to five ditferent choices of g, indexed
by k=1,3,5,7,9, are examined, where Bg = 1. The coeffi-
cient vector B takes the form: §; = Bi—jp fori=11,..., 20,
Bi = Pi2p for i=21,..., 30, Bi = Bi—30 for i =31,...,40,
and B; = Bi_40 for i =41....,50. In other words, § consists of
Bo and five replications of (81, ..., Bio) . For each k, the choice
of (B1,..., Bio) comprises the first k values that are equal to a
constant B, and Os otherwise, and the values of By are chosen to
give B'X'XB/(B'X'XB+200) =75, where X = (x1,...,x,)" is
an 7 x 51 matrix. A similar example has been previously used in
George and Foster (2000) and Shen and Ye (2002) for studying
variable selection in (1).

The simulation is performed in R. For each case, the bias
and the mean squared error (MSE) of Err — Err for the two
approaches
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Table 1. Bias and MSE of Err — Err Evaluated at {1(M) With M Selected
via AIC and the Corresponding Standard Errors (in parentheses)
of the Two Approaches Based on 500 Replications

5k Methods Bias MSE

5 DP —4.065 gs6) 472.66(31.00)

15 DP *4.467(_911) 434.47(27_39)
PB ~17.575( go2) 706.2040.53)

25 DP —4.389 gs0) 4777829 57)
PB ~14.090( 942, 641.26(35 02,

a5 DP —1.644(1 53) 556.51(35.73)
PB —7.104(1 g54) 604.90(38 70)

45 DP ~1.620(1 o) 604.4637 55,
PB —.3491 085) 587.1936.16)

are computed by averaging over 100 replications and are re-
ported in Table 1.

Clearly, the PB method performs well and less well for large
k and small & values, respectively, because of the choice of

Chunming ZHANG
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the “moderately big” model. Evidently, the estimator [ifyy esti-
mates p well for small & values but poorly for large k values,
depending on the true model. In terms of the accuracy of predic-
tion, Err estimates Err poorly for small &k values, yielding bias
against candidate models of small size, and vice verse for large
k values. Generally, it is impossible to eliminate this problem
it any model-dependent [ is used for u; in sampling. By com-
parison, the “model-free”” DP method estimates Err consistently
well across all situations.

ADDITIONAL REFERENCES

Freedman, D. A., Navidi, W., and Peters, S. C. (1988), “On the Impact of Vari-
able Selection in Fitting Regression Equations.” in On Mode! Uncertainty and
Its Statistical Implicarions, ed. T. K. Dijkstra, New York: Springer-Verlag,
pp. 1-16.

George, E. 1., and Foster, D. P. (2000), ““Calibration and Empirical Bayes Vari-
able Selection,” Biometrika, 87, 731-747.

Rissancn, J. (1996), “Fisher Information and Stochastic Complexity,” JEEE
Transactions on Information Theory, 42, 40-47.

Comment

A fundamental issue in statistics is to quantify the degree
to which a model captures an underlying reality and predicts
future cases. With the growing flood of increasingly complex
data in real-world applications, it has become pressingly impor-
tant for statisticians to develop theory and methods that allow
dual use of data in making effective assessment of model fitting
and critical evaluation of model prediction. The central prob-
lem studied in Professor Efron’s article is that of estimating the
true prediction error. Efron’s article has substantially enhanced
our understanding of this important problem. I appreciate the
opportunity to comment further on this neat and stimulating
article.

Efron revisits a well-known model-free method for esti-
mating the prediction error based on cross-validation (CV).
This procedure, beginning with the delete-one-out fitted value
ii; for outcome y;, directly estimates the coordinatewise true
predictive error, Err;, by I:Z-r\r,vCV = Q(vi, [L;), with respect to
a Q-error measure, and as such adjusts the apparent error,
err; = Q(yi, 1), for the full data-based fitted value [i;, by an
amount O; = Q(v;, i) — Q(¥i. [t;). yielding an equivalent form
of CV,

E?rqv =err; + 5,‘.

!

i=1,....n. 0

In many applications, the original cross-validated methods have
known to suffer from large variations.

With the introduction of optimism theorem and
Rao-Blackwell type of results, Efron not only provides valu-
able theoretical tools, but also brings new insights into what
has been learned before about CV and opens up new vistas

Chunming Zhang is Assistant Professor, Department of Statislics, Uni-
versity of Wisconsin. Madison. WI 53706 (E-mail: cmzhang @stat.wisc.edu).
The research was supported in part by National Science Foundation grant
DMS-03-53941.

in exploration and learning. Among many other contributions,
Efron

1. Derives an optimism theorem to represent the expected
optimism, ; = E(Err; — err;), as the covariance penalty,
Q; = 2cov(ii, y;). with A; some well-defined mapping
of 2;. In this spirit, the covariance penalty (CP) method,
EFrfp, estimates Err;, via estimating the covariance penalty,
cov; = cov(/}:,-, v;i), by some data-driven rule, €ov;, leading

to an additive form,

EFr,-CP = errj + 2 Cov;,
The covariance penalty theory goes beyond the squared
error to a g class of error measures (. and thus generalizes
the work of Mallow’s C,,, Akaike’s information criterion,
and Stein’s unbiased risk estimate to a wide range of sta-
tistical models. He also develops model-based bootstrap
methods to estimate the covariance term.

2. Characterizes Rao—Blackwell type of results to demon-
strate that the covariance penalty method enjoys sub-
stantially increased efficiency than the conventional CV
method for estimating prediction error. These theoretical
results offer a very appealing and easily understandable
interpretation of two prediction error estimation schemes,
which, as can be seen from (1) and (2), operate in very
distinct ways.

3. Suggests methods to improve the original CV estimates
and the nonparametric bootstrap estimates for prediction
error.

© 2004 American Statistical Association
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1. CONDITIONAL MONOTONICITY: NONNEGATIVITY
OF COVARIANCE PENALTIES

As pointed out by Efron, one problem arising from the use of
the apparent error, err;, is that it tends to be biased downward
for the true predictive error, Err;. s err; always biased down-
ward? From the viewpoint of optimism theorem, this seems
particularly relevant to the question of whether or not the co-
variance penalty, cov;, is nonnegative. For the usual squared
error measure Q, applied to a linear fitting rule 7z; (such as
smoothing splines, regression splines, wavelet estimators, ker-
nel and local polynomial regression estimators), it is conceiv-
able that the resulting covariance, cov; = cov(ii;, ¥;), is indeed
positive. How can one better understand this implicit feature of
the covariance penalty under more general error measures ( in
accordance with possibly nonlinear fitting rules?

In what follows, I try to provide some simple arguments
for the conditional monotonicity of 3:,- to illustrate when the
desired inequality, cov(j:,-, vi) > 0, holds for the generalized
q class of error measures Q and when it does not. Let y(;) =
(V1soo oy Yiels Yitls -y vn). Note that f1; = ﬁi(y(',-), yi)and A; =
Xi(y(;),)>[) = —ﬂ’(ﬁ,')/Z (defined in Section 3 of Efron’s arti-
cle). Then cov(A;, y;) can be rewritten as

E(i - (i — ) = E[E[Xi(yiy 3) - i — Dy ] 3

To facilitate discussion, assume that the second derivative of
g(u) exists. When examining the conditional expectation in (3),
it is seen that, for fixed y ;.

iy y) (Y. ¥i) ORAY iy, v0)

dy; Ay, v ayi
b, 8/71'("([)- Yi)
= — — L ; ). Vi - - . 4
54 (Zi(yiy yi) i (4)

On the right side of (4), the choice of a concave function g, as
introduced in Efron’s article to define Q (and ensure Q > 0),
entails —q” (iL;(¥ i), yi)) > 0. Meanwhile, the other term in (4),
i (¥, yi)/dyi, measures the sensitivity of a fitted value to
perturbation in the corresponding observed value (Ye 1998).
These two considerations lead to the following conclusions:

1. If i(yy. ¥i)/dyi > 0, (4) indicates that aii(y(i)ﬁ,w)/
dy; > 0. The implication is that, given Y, Ai(¥(), i) is
a nondecreasing function of y; and that ’}:[(y(,-),y,') and
y; — i; are monotone in the same directions. An appeal-
ing to some expanded version of Chebyshev’s inequal-
ity (see, e.g., Gurland 1967, p. 25) yields E(x;(y(. vi) -
(vi — 1)y} = 0, which, applied to (3), in turn induces
cov(hi, yi) = 0. R

2. On the contrary, if 3%;(¥, ¥i)/dyi < 0, then cov(i;,
vi) < 0, revealing that err; tends to be an upward biased
estimator of Err;.

2. RAO-BLACKWELL THEOREM: VARIANCE
REDUCTION OF COVARIANCE PENALTY METHOD

A key quantity of interest in the conclusion of Theorem 1|
is the Rao-Blackwell type of relation established between
the covariance penalty method and the CV counterpart. Some
remarkable aspect of the proof rests on a careful construc-
tion of the bootstrap data (y),y;), in which y() is kept
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fixed and, given y(;., the probability mechanism of y; dic-
tates its conditional distribution f;, with the conditional mean
EE{)’?W(:‘)} = ii;. Based on the same data (y(;.y}), the asso-
ciated CV estimate, OF = Q(y. [i;) — Q(¥*, [i(yqy. ¥)), is
compared with the conditional version of the covariance penalty
estimate, 2T0v;, = ZCOVAE{()\,'(y(,’).}’?).)’?}Iy(;)}. Efron shows
that Ez{O] |y ()} =20V ;).

I find this result attractive because it integrates the classical
theory of point estimation with the prediction error estimation
techniques, and therefore enables one to further comprehend
the stochastic way that distinguishes the covariance penalty
method from the CV method. Meanwhile, I discuss some addi-
tional questions regarding how to compare these two methods.

1. From the preceding data construction, the reader can
clearly observe that O is introduced to mimic (or predict)
an observable random variable, namely, the term 51 in (1),
whereas 2CoV(;), similar to the term 2¢ov; in (2), aims
to estimate an unknown deterministic quantity, 2 cov;.
Henceforth, it may not strike the reader as particularly
surprising that the variance of 5f exceeds that of 2Cov;.

2. To better appreciate the value of the covariance penalty
method, it would be natural to quantify how much vari-
ance reduction is achieved by 2Cov(; relative to 57 In
addition to carrying out the simulation studies, some the-
oretical calculations in certain concrete examples will be
particularly interesting and enlightening.

3. A homoscedastic model, assumed for data points dis-
played in figure 1, facilitates the parametric bootstrap
computations. Had this type of deviation from model
assumptions existed, would the model-based covariance
penalty estimates have been affected?

4. More precisely speaking, the Rao—Blackwell type of re-
sult compares the relative performance of the CV and
covariance penalty methods in estimating the expected
optimism; this thoughtful result, when placed back into
(1)—(2), gives an indirect way of comparing the predic-
tion error estimation. In practical settings, a direct way of
assessing the two methods is to compare var(E?r,-CV) ver-
sus var(E;rfP). Generally, the original CV estimate, Er\rfv,
becomes less noisy as the sample size increases.

3. DEGREES OF FREEDOM: DIRECT ESTIMATION
OF COVARIANCE PENALTIES

Ideally, the covariance penalty would be known, or could eas-
ily be estimated by a data-oriented procedure. The parametric
bootstrap method suggested in Efron’s article provides a use-
ful device in general situations. This approach consists of
generating bootstrap resamples y**, b = 1,..., B, at the ith
individual data point, from a “bootstrap model” assumed
to be “believable,” and obtaining the replicated estimates
ﬁf” and ’)t;*”. While producing the bootstrapped estimates of
covariance at the entire collection of sample points is suitable
for samples of small or medium size, it can potentially be-
come a problem for large and huge sample sizes that one may
face nowadays in data-mining tasks. Typical examples include
processing functional data (Ramsay and Silverman 1997) and
longitudinal data (Diggle, Heagerty, Liang, and Zeger 2002), in
which each data element is associated with a high-dimensional
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curve, other than a univariate number. The computational bur-
den of the bootstrap procedure will continue to grow as de-
mand increases for a more complicated model-fitting technique.
Moreover, there is no unique way of building a “bootstrap
model.” On the other hand, care needs to be taken to reduce bi-
ases caused by an inadequate choice of the “bootstrap model.”
This is particularly important when the data structure is com-
plex: see further examples in Section 4.1.

For practical purposes, some alternative methods for esti-
mating covariance penalty within the different contexts of its
use deserve further exploration. Below I will focus on the sit-
uations in which some nonparametric modeling techniques are
employed. In these cases, the covariance penalty either is fully
known or can be approximated by its asymptotic expression in
large samples.

Case I. Consider y ~ (i, o°1,,). Recall that for a squared
error measure combined with any linear fitting rule, cov; =
on(z’, i) and Zf’zl coy; = oztr(M). Under a nonparametric
regression model, if the mean response is fitted by a linear non-
parametric smoother, such as the local polynomial regression
estimator (see, e.g., Fan and Gijbels 1996), then M (i, /) has a
closed-form expression and thus the exact values of the total
degrees of freedom, tr(Mp) and tr(MZM;,), can be directly
computed, in which M), is used to denote its dependence on
a bandwidth parameter h. The unknown parameter o can
be estimated by a nonparametric variance estimator, 5> =
Y (vi — B2/ (n — w(2My, — MI M)} (Buckley, Eagleson,
and Silverman 1988; Cleveland and Devlin 1988). Hence, the
total covariance penalties can be directly estimated whenever
the sample size keeps the computational cost affordable. Fur-
thermore, Zhang (2003a) showed that tr(M,) = d{(p + 1 —
a) + Cn/(n— 1)K(0)|Q|/h} and tr(M] My) =d{(p+ 1 — a) +
Cn/(n — X % K(0)|2|/h} inform the asymptotic total degrees
of freedom in a univariate nonparametric regression model and
a varying-coefficient regression model, where all of the con-
stants involved in the expressions are known. These empirical
formulas suggest a second way of directly estimating the total
covariance penalties, by

n

Y @V =5%d|(p+1—a)+Cn/(n— DHEOIRQU/A}. (5)

i=1

Case II. Consider response observations from the exponen-
tial family with a density (or probability) function, exp[{y:¢; —
b))}/ a(yr) + c(y;, ¥)]. For likelihood-based models, the
local-likelihood regression estimation, introduced by Tibshirani
and Hastie (1987), is a nonparametric analogue of the para-
metric generalized linear model regression estimation. For this
nonlinear fitting rule, numerically obtained via the Newton—
Raphson iterative algorithm, the covariance penalty does not
necessarily have an explicit form of expression. Nonetheless, b;,
the local polynomial likelihood estimate of the canonical para-
meter, satisfies 6; = 3 | My (i, Ng(iL) + (yj — g (1))}, for
a link function g and a smoother matrix M. As I learned from
Efron’s article, the choice g(u) = 2{b(0) — ub} gives =6
With this convenient result, it is readily seen that

cov; = cov(B;, yi) = Mu(i, i) var(y1)g (1)
= Mu(i, a()b” @g ().
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For the commonly used canonical link function g, 3", cov; =
a(Y)tr(Mpy). Again, Zhang (2003b) showed that tr(M,) =
di(p+1—a)+Cn/(n—1)K(0)|2|/#} in a generalized smooth
model and a generalized varying-coefficient model, implying
the direct estimation method for the total covariance penalties
by

n
Y @vi=ah{(p+1—a)+Cn/(n— DEKO)|QU/R}.  (6)
i=1
For a Gaussian family, the empirical formula (6) reduces to (5).
Among non-Gaussian outcomes, the Bernoulli-distributed bi-
nary responses and the Poisson-distributed count responses no
longer carry in (6) the estimate, a(fﬁ), for the nuisance parame-
ter. This makes the direct estimation further simplified.

4. NONPARAMETRIC MODEL SELECTION:
APPLICATION OF COVARIANCE PENALTY METHOD

An important research problem in applications of non-
parametric modeling techniques is the automatic selection of
smoothing parameters. Essentially, this issue can be formu-
lated as a nonparametric model selection problem: Choose the
amount of smoothing that produces a nonparametric model with
the minimum prediction error. Indeed, the arrival of Efron’s ar-
ticle provides the theoretical basis for evaluating a wide variety
of existing selection methods in the literature and broadens the
scope of the covariance penalty method to more application
fields in which nonparametric techniques have been under de-
veloped.

For illustration, I consider the bandwidth parameter # in the
context of local polynomlal model-fitting method. Hereafter,
in.i and )»;,, are used for 11; and )\,, respecuvely According
to (2), the optimal data-driven bandwidth selector HCP, based on
the covariance penalty method, minimizes with respectto 4 > 0
the total prediction error estimates,

n L]
EFYLP(/?)=ZQ(.V,'~?I11.1) +2ZC’0V(X/1.M’1‘). (7N

1. For Gaussian responses, with the squared loss function,
the bandwidth selector studied in Hurvich, Simonoff, and
Tsai (1998) is asymptotically equivalent to the above A

2. Currently, most of the existing methods for the optimal
smoothing deal with metrical responses and there is a
clear lack of methodology and scheme for smoothing
non-Gaussian responses. With the flexible choice of er-
ror measures Q, Efron’s article makes the optimal band-
width selector, 7, continue to be applicable to responses
in the exponential families. For Q chosen to be deviance
of the local polynomial likelihood estimates, it can also
be shown that the EGCV-minimizing bandwidth selector
(Zhang 2003b) is asymptotically equivalent to A", Fur-
ther research along the line of (7) will be fruitful.

3. The covariance penalty method has an added advantage:
A locally optimal bandwidth selector can easily be ob-
tained via minimizing the sum of neighboring coordinate-
wise prediction error estimates. The resulting selector is
spatially adaptive and outperforms the globally optimal
bandwidth selector, ¥, at locations of fitting points re-
quiring varying amount of smoothing.
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4.1 Correlated Data

Technological invention and information advancement have
revolutionized scientific research and technological develop-
ment. Many sophisticated datasets have recently been collected.
Data types range from the brain functional magnetic resonance
imaging data in biomedical study and neuroscience, traffic time
series data in transportation management, to financial time se-
ries data in econometrics and finance. All these data share a
common characteristic: The measurements are highly corre-
lated time series data. Compared with the traditional parametric
modeling techniques, statistical nonparametric modeling tech-
niques for complex observational data will lead to considerable
reduction of modeling bias and false positive rates.

However, compared with uncorrelated data, the likely pres-
ence of correlation effects poses more challenges to estimating
the covariance penalties, in addition to developing nonparamet-
ric model-fitting techniques. The bootstrap estimation method
needs to be used with care; similarly, the validity of the di-
rect estimation method based on the total degrees of freedom
may also call for reexamination. Regarding the nonparametric
model selection problem, most smoothing parameter selection
methods do not perform well to be adaptive to correlated errors
(see Hart 1994; Opsomer, Wang, and Yang 2001). For the pre-
ceding bandwidth selector #", based on the covariance penalty
method, the criterion function (7) may need to be modified to
take into full account data dependencies.

Bradley EFRON
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Rejoinder

Classical statistics as developed in the first half of the
20th century has two obvious deficiencies from the point of
view of practical applications: an overreliance on the normal
distribution and failure to account for model selection. The first
of these was dealt with in the century’s second half by non-
parametrics, generalized linear models, and computer-intensive
techniques such as the jackknife and bootstrap.

Model selection, the data-based choice among structural
models of different dimensions, remains mostly terra incognita
as far as statistical inference is concerned. This article aims at a
small corner of the model selection problem, the assessment of
predictive accuracy. Its main result is a Rao—Blackwell type of
relationship between cross-validation and what I called “covari-
ance penalties.” The latter are shown to have better estimation
properties at the expense of increased assumptions.

The assessment of predictive accuracy is a form of bias es-
timation: “err,” the apparent error (1.1), is downward biased
for the true predictive error. As usual the bias is of order only
O(1/n) compared to err. This makes for difficult and often un-
realistic asymptotics, the O(1/n) term disappearing too quickly
for easy extrapolation from large-sample behavior. The Rao—
Blackwell result (4.6) relies on just a simple algebraic iden-
tity, providing at least heuristic grounds for believing its small-
sample applicability.

The discussants’ comments brought home some defects in
the article’s presentation. My numerical examples, with the ex-

ception of remark B, failed to include model selection. Reason-
ably enough, Burman and also Denby, Landwehr, and Mallows
question the efficacy of parametric bootstrap covariance esti-
mates in a model selection situation. Numerical experimenta-
tion, admittedly of limited scope, is reassuring on this point.

Figure 12 concerns a cholesterol-lowering experiment de-
scribed in figure 4 of Efron and Tibshirani (1998): 201 men
in the experiment’s control arm have been measured for drug-
taking compliance and cholesterol decrease. Even though the
“drug” is placebo, there is evidence of a positive regression, per-
haps because the better compliers were also better dieters or ex-
ercisers. Polynomial predictors, of degrees 0 through 7, were fit
to the data by ordinary least squares, with the quadratic regres-
sion, the solid curve in the left panel, being the clear C, min-
imizer. The dashed curve is the ordinary least squares (OLS)
seventh-degree polynomial fit.

The right panel displays coordinatewise degree-of-freedom
estimates df; = cov;/&> for the rule & = m(y) that selects
among polynomial fits of degree 0 through 7 according to mini-
mum C, value. Parametric bootstrapping from f ~ N(f, e b)
was used as in (2.14)—(2.15), with &2 obtained from the
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Figure 12. The Left Panel Shows Cholesterol Decrease versus Compliance Percentage for 201 Men in the Control Arm of a Clinical Trial;
Quadratic Regression, Solid Curve, Minimized C, Among Polynomial Predictors; the Dashed Curve Is Seventh-Degree Polynomial Regression;
the Right Panel Shows Coordinatewise Parametric Bootstrap df; Estimates ¢ov; /52, Bootstrapping From Quadratic Regression (solid line) or From
Seventh-Degree Regression (dashed line); Here the Prediction Rule Uses Polynomial Regression With Degree Selected by Cp Minimization.

seventh-degree fit. Two different choices of i were tried, from
the quadratic fit and also from the seventh-degree polynomial,
yielding reassuringly similar results.

Table 3 shows the Cp-selected “best” polynomial degrees in
250 bootstrap replications. Taking & as the seventh-degree fit
increases the selected degrees, but not drastically so. The point
here is that model choice need not be crucial to parametric boot-
strap calculations, even under adaptive model selection.

Of course this is just one example, and a simple one at that.
Examples and simulations can easily become self-serving in the
model selection arena, perhaps because it covers such an enor-
mous range of situations.

The article was careless in its use of the terms “model-based”
and “parametric.” Almost any regression fit & depends heav-
ily on the assumed model, but the same is not necessarily true
for estimating its predictive error. The parametric part of the
parametric bootstrap is often less than crucial. This point is il-
lustrated by the conditional covariance calculation in figure 5.
Notice that the solid curve m(y(93), ¥53), with y(93) fixed, does
not depend on the model at all.

The Taylor series argument (3.23) gives a conditional
degrees-of-freedom estimate

df) = cov /G2 = 1, ii= *'———am(,y(’:}i) .

dyl' i
m(y) being the lowess function in figure 5. To first order,
df(;y depends on the model only through the abscissa i of the
vertical dashed line (as in Ye 1998). Inspection of figure 1 sug-
gests that any reasonable model will have 0 < it; < 2 for point
i = 93, corresponding to df ;) = #; between roughly .08 and .10.
Modeling assumptions are not very important in this case. Lin-
ear functions m(y) furnish the extreme example of this phenom-
enon, where the solid curve in figure 5 becomes a straight line,
and df ;, does not depend on the model at all.

The “DP method” of Shen, Huang, and Ye evaluates #; at
i; = y;, yielding df(;; about .06 in this case. DP tries to com-
pensate for the increased variability from using 7z; = y;, by re-
ducing the variance of y} as in (2.20). This would not help in

figure 5 but worked fine in their table 1. The best that can be
said now is that there is a trade-off between “model-free” and
estimating efticiency for predictive error, my own preferences
being stated in remark A.

Zhang’s nice monotonicity result is relevant to figure 5. The
solid curve actually has negative slope for yg; less than —2 or
greater than 5 (because lowess suppresses outliers). We might
have seen such a value for vy3, which would have been trouble-
some for the DP calculations.

We might expect the equivalent of the solid curve of figure 5
to be discontinuous for a rule m(y) that includes model selec-
tion, as in the cholesterol example. However, usually not is the
actual fact, because changing a single y; value seldom affects
the selected model. This is a weakness of conditional calcula-
tions, not a strength. The unconditional parametric bootstrap
method “shakes the data” more violently, and more realisti-
cally. It gives more honest assessments of prediction error when
model selection is a major factor, as in Table 3.

Cross-validation is, of course, a useful tool, as Burman em-
phasizes. Its appealing rationale, nonparametric character, and
easy implementation makes it a popular favorite. That does not
obviate concern for its limitations, especially its reduced esti-
mating efficiency. Cross-validation assessments of Err are of-
ten acceptable if for no other reason than err, the apparent error,
is the main component of any estimate of total predictive er-
ror. The simulation results in tables 1 and 2 are perhaps typical.
It pays to remember that cross-validation is not even the non-
parametric maximum likelihood estimator (MLE) of prediction

Table 3. Polynomial Degrees Selected in 250 Parametric Bootstrap
Replications of the C,-Minimizing Rule for the Two Choices of ji;
+ Values for the Total Degrees of Freedom From (2.18). Total
Covariance Penalty (2.16) Was Either 4.6% of 5.8% of err

m o 1 2 3 4 5 6 7 Total df
Quadratic fit 3 28 166 21 11 15 2 4 4454 .58
Seventh-degree fit 3 15 138 28 7 21 21 17 564+ .59
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error, that being a form of the nonparametric bootstrap (Efron
1983).

Cross-validation is less successful as an estimate of total op-
timism or degrees of freedom, this being the message of theo-
rem 1 and figure 8. Degrees of freedom is important in its own
right, a common currency that allows comparison of disparate
estimators. The fact that the lowess rule of figure 2 has about
7 degrees of freedom rather than say 3 or 20, provides helpful
intuition about its data-fitting properties. Optimism plays an es-
sential role in model selection (because apparent error always
decreases with increased model complexity) so it is reasonable
to hope for better selection properties from better optimism es-
timates. Cross-validation is at its worst in diagnostic plots such
as that of figure 2, where its estimates of individual df; values
have coefficients of variation near 2, as in (4.17).

My earlier criticism of conditional methods, that they may
not shake the data hard enough to reveal a rule’s model selection
behavior, applies to cross-validation. Grouped cross-validation
with group size & = 20 in Burman’s notation, was applied to
the Cp,-minimizing rule of Figure 12. All 10 of the reduced
datasets (each of size 181) still had a quadratic polynomial as
the C, minimizer. In this case cross-validation was really esti-
mating the predictive error of an ordinary nonadaptive quadratic
fit.

I appreciated the constructive nature of the commentaries,
two of which are substantial essays in their own right. Here are
a few more responses and remarks:

e The covariance penalty formulas (2.8) and (3.13) do not
depend on the components of y being independent. We
would, however, have to tal)(\e correlation structure into ac-
count when implementing £ — y* in the parametric boot-
strap algorithm (2.14), as Zhang points out in his fourth
section. Correlation makes my conditional calculations
more difficult. In figure 5, for example, the important ver-
tical line would have to be located at E(yil ¥} rather than
at fi; = Efy;).

e “Parametric bootstrap” (PB) sounds exotic, but familiar
Fisher information calculations for the variance of an MLE
are themselves parametric bootstraps; see section 5 of
Efron (1998). The PB algorithm (2.14)—(2.15) provides
the MLE of cov;. Outperforming PB, as does DP in Shen
et al.’s table 1, usually involves biased estimates, shrunken
toward a favorably chosen origin.

e Denby et al.’s warning about the difficulty of bias estima-
tion is borne out by the top line of table 1; the bottom
line is more encouraging. [ agree with their points (1), (2),
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(3), assuming (2) refers to results such as dAf(g-, = #; men-
tioned previously. My 1983 article directly concerned the
question they raise of improvements on cross-validation,
there in the context of fully nonparametric methods. Their
“model-based” estimate Er\rMB must not be a covariance
penalty rule because the latter would differ more from
cross-validation for the linear predictor (1). Notice that it
is okay for two error estimates to “agree even if the model
is wrong,” as long as they are both providing accurate es-
timates of Err.

e “Computational difficulty” tends to mean programming
difficulty in our era of cheap and fast computers. All four
corners of figure 11 are equally friendly in this regard
because each method merely recomputes the original pre-
diction rule for perturbed datasets “y*”; the y*’s are eas-
ier to generate for cross-validation while the parametric
bootstrap has the advantage of keeping the sample size the
same as in the original situation. Cross-validation uses less
computer time if blocking is employed, but the paramet-
ric bootstrap’s greater number of recomputations generates
increased information, as in figure 2 or remark B. The re-
lationship here is very much like that between jackknifing
and bootstrapping for the accuracy of a point estimate 6.

¢ In some situations covariance penalties can be calculated
theoretically, without recourse to Monte Carlo methods;
see Zhang’s formulas (5) and (6), and also the “LLARS” es-
timator of Efron, Hastie, Johnstone, and Tibshirani (2004).

e The relationship between optimism and expected opti-
mism, O; and ; in (3.9)-(3.10), still has a mysterious
aspect. The negative correlation phenomenon of figure 9
is endemic and disturbing. A fundamental question, can
O, itself be estimated, remains arguable; see remark K.

My thanks go to the discussants and the editor for focusing
attention on the prediction error problem. Model selection has
enjoyed a healthy burst of algorithmic growth without a cor-
responding boom in basic theory, but maybe that is due for a
change.
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