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ABSTRACT

In Wahba et al. it was shown how the randomized trace method could be used to adaptively tune numerical
weather prediction models via generalized cross validation (GCV) and related methods. In this paper a ‘‘toy’’
four-dimensional data assimilation model is developed (actually one space and one time variable), consisting
of an equivalent barotropic vorticity equation on a latitude circle, and used to demonstrate how this technique
may be used to simultaneously tune weighting, smoothing, and physical parameters. Analyses both with the
model as a strong constraint (corresponding to the usual 4D-Var approach) and as a weak constraint (corre-
sponding theoretically to a fixed-interval Kalman smoother) are carried out. The conclusions are limited to the
particular toy problem considered, but it can be seen how more elaborate experiments could be carried out, as
well as how the method might be applied in practice. The authors have considered five adjustable parameters,
two related to a distributed coefficient in the equivalent barotropic vorticity equation (‘‘physical’’ parameters),
one governing the relative weight given to observations versus forecast, one governing the relative weight given
to observations versus goodness of fit to the model (in the weak constraint case), and one governing the damping
of high-frequency oscillations in the analysis at the final time point (‘‘smoothing’’ parameter). The weighting
parameters and the smoothing parameter can, if desired, be interpreted as ratios of parameters in prior covariances.
Analyses are made with a low-resolution model of the dynamics of the equivalent barotropic vorticity equation
given noisy forecast (initial conditions) and noisy wind observations, and compared with nature evolved from
exact initial conditions using a high-resolution forward integration. The authors found that these five (carefully
chosen) parameters are simultaneously tunable on line, that is, simultaneously with the analysis, and 1) that the
analysis is equally and strongly sensitive to both the choice of the observed versus forecast weighting parameter
and the choice of the smoothing parameter; 2) that the analysis with the model as a weak constraint, based on
the tuned estimate of the parameter governing how close the analysis satisfies the model, is somewhat better
than the analysis using the model as a strong constraint, although estimation of this tuning parameter varies
much more than the other parameters with replications of the experiment; and 3) good estimates of the physical
parameters are obtained; however, these estimates are closer to those that make the model integrated forward
with perfect initial conditions best fit nature, and these are not exactly the ‘‘true’’ parameters.

1. Introduction

We consider the adaptive tuning of a ‘‘toy’’ four-
dimensional variational data assimilation problem,
which contains terms that are toy versions of terms in-
cluded in operational numerical weather prediction
problems and reanalysis problems. The purpose of this
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paper is to demonstrate the feasibility and effectiveness
of quasi-on-line simultaneous adaptive tuning of mul-
tiple weighting, smoothing, and physical parameters in
such a variational problem, via the use of randomized
trace versions of generalized cross validation (GCV) and
unbiased risk (UBR) methods for the tuning. The toy
variational problem we study is of the form of the ‘‘stan-
dard’’ variational numerical weather prediction problem
(Lorenc 1986; Parrish and Derber 1992; Wahba 1982a)
as extended to time as well as space with the model as
a weak constraint, and we also examine the variational
problem with the model as a strong constraint as a toy
version of 4D-Var as discussed in, for example, Rabier
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et al. (1993) and Zou et al. (1993). Under some as-
sumptions the solution of the 4D-Var problem with the
model as a weak or a strong constraint can be shown
to be equivalent to a Kalman smoother with model error
or without model error; see Thépaut et al. (1993) and
Cohn et al. (1994). We include terms that govern the fit
of the analysis to the data and to the forecast, and a
‘‘smoothness’’ (read ‘‘balance’’) penalty term. In the
weak constraint case we also include a penalty term that
governs the closeness of the analysis to the model. The
strong constraint case here forces the analysis to fit some
model trajectory and can be considered as a limiting
case of the model as a weak constraint. In practice these
terms include numerous weighting and smoothing pa-
rameters, as well as coefficients in the model parame-
terizations, calibration coefficients, scale lengths, spa-
tially varying terms in covariances, and so forth.
In the usual 3D-Var or OI analysis, the weight given

to the data is governed by an assumed observation error
covariance matrix, which may include errors of repre-
sentativeness and errors in any forward model involved,
as well as instrumental errors. The components of this
matrix are frequently obtained from known instrument
characteristics and other system knowledge. The weight
given to the forecast is governed by a forecast error
covariance, which is in practice generally obtained from
historical information about the system (see, e.g., Hol-
lingsworth and Lonnberg 1986; Bartello and Mitchell
1992; Parrish and Derber 1992). Kalman filter (KF) the-
ory tells how in theory the forecast error covariance is
propagated along with the forecast, but in practice prop-
agating a complete KF forecast error covariance is not
practical. Recently several authors have proposed sim-
plified versions of the forecast error covariance pre-
scribed by KF theory and then have derived or estimated
a small number of coefficients in this covariance; see,
for example, Cohn (1993) and Todling and Cohn (1994)
and references therein. Model error covariances are in
theory part of the KF equations but are not easy to
specify realistically. Recent work in the development of
model error covariances includes Daley (1992) and
Mitchell and Daley (1997a,b). In particular Mitchell and
Daley note that correlation of the model error and the
signal can be important, a problem that specifically ex-
ists but is ignored in the present work. Other discussions
of model errors include Boer (1984), Dalcher and Kal-
nay (1987), Tribbia and Baumhefner (1988), and Dee
(1995). In addition, model errors may well be correlated
from time to time, in violation of the usual KF as-
sumptions.
In the present work, and its predecessor Wahba et al.

(1995, hereafter WJGG), it is our thesis that, under cer-
tain conditions, it may be both feasible and beneficial
to attempt adaptive on-line (or quasi-on-line) tuning or
fine-tuning of a relatively small number of those param-
eters, to which the analyses are especially sensitive. By
quasi-on-line we mean, as part of the variational prob-
lem for obtaining the analysis. This work is parallel to

the pioneering work of Dee (1995), who uses maximum
likelihood methods for this purpose. In addition, the
analysis can be sensitive to inadequate specification of
physical parameters in the model, and if this is the case,
there is also the potential for quasi-on-line tuning of
some of them. See Wergen (1992), O’Sullivan (1991),
Wahba (1990a), and Kravaris and Seinfeld (1985). This
has led us to examine the possibility of simultaneously
tuning or fine-tuning physical parameters on line.
In this paper we selected an equivalent barotropic

vorticity equation for the streamfunction on a latitude
circle and evolved ‘‘nature’’ on a fine time and space
grid via a leapfrog scheme for integrating the vorticity
equation, while we defined the model dynamics on a
coarse subgrid via a first-order finite-difference scheme.
The barotropic vorticity equation we use has two phys-
ical parameters, and we set these to be unknowns to be
tuned in the model dynamics. We simulated a forecast
for the streamfunction, by adding (correlated) random
errors to the nature streamfunction at the start, and wind
observations by adding (white) random error to the na-
ture wind at selected points in time and space. We at-
tempted to scale the experiment to realistic values of
the various error variances. Given the simulated forecast
and observations, we then tune and solve a variational
problem in time and space, using the model dynamics
both as a weak and then a strong constraint. We compute
the GCV and UBR functions that are minimized to tune
the model, via the randomized trace technique described
in detail in WJGG. As discussed in WJGG, the ran-
domized trace method may be implemented on any size
problem that has a working code for solving the vari-
ational problem, at the cost of solving the variational
problem several times. Thus it is potentially feasible
with operational-sized variational problems, including
mildly nonquadratic ones solved in a limited number of
iterations.
The parameters we chose to tune were selected care-

fully in that we had reason to believe a priori that the
estimates of the state vector and then the predicted ob-
servations were sensitive to them. This is certainly a
minimum requirement for the parameters to be tuned
this way. Using the fact that we know nature in this
experiment, we can quantify the sensitivity fairly pre-
cisely. We find that for these five sensitive parameters
the methods can tune the variational problem very well.
Let � be the vector of parameters to be tuned and R(�)
be the predictive mean square error, that is, the mean
square difference between nature and the analysis in
observation space, when � is used, and let be the�̂
estimate of the optimal � via GCV or UBR. We find
that the inefficiency, which is defined as )/1/2 ˆR (�
min�R1/2(�) (see Craven and Wahba 1979) is mostly in
the range of 1.05–1.2. (Note that R can be computed
only in simulation studies where nature is known.) In
the case of the model as a weak constraint, we have
formulated the weak model constraint in the simplest
possible terms, namely as penalty on the ordinary sum
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of squares differences, even though the model error is
surely correlated in space and time. That correlation
would in theory dictate a more sophisticated penalty. In
this experiment the analysis is less sensitive to the pa-
rameter that controls the relative fit of the analysis to
the model than to the other comparable parameters, at
least in the region of parameter space near the optimum
parameters. Nevertheless some tuning appears to be ben-
eficial. The relative lack of sensitivity to this parameter
may be related to the fact that the form of the lack of
fit to model penalty is appropriate to model errors in-
dependent in time and space, while model errors surely
are not. At the scale of our toy problem, we found that
the model as a (tuned) weak constraint is slightly better
than as a strong constraint. The parameter controlling
the relative weight given to forecast versus observations
can be interpreted as a variance ratio, and the tuned
value was a reasonable estimate of the ratio of the var-
iances used in the simulation of forecast error and ob-
servation error. A smoothness penalty (read ‘‘balance’’)
at the last time step was definitely tunable and beneficial.
In fact the sensitivity to this parameter was roughly
similar to that of the parameter controlling the relative
fit to observations versus forecast. We do not know to
what extent numerical results in our toy model scale up
to more realistic settings, but we think that the exper-
imental design demonstrates an approach that has the
potential for answering the scale-up question and also
suggests directions for how the methods might be im-
plemented in practice. Theoretical results concerning
sensitivity will appear separately.
In section 2 we review 4D-Var and KF theory that is

behind the variational problem that we use. In section
3 we describe the experimental design and the calcu-
lations. Section 4 describes the experimental results,
section 5 discusses some related issues, and section 6
gives a summary, conclusions, and some directions for
future research.

2. Tuning the 4D-Var problem

We briefly review the (usual) assumptions from Kal-
man filtering and 4D-Var, organized in a form corre-
sponding to our experiment. Let t � 1, . . . , T denote
discrete time and let �t, t � 1, . . . , T be a sequence
of state vectors representing (some part of) nature that
evolves according to

�t�1 � Mt� t � Nt � �t,
t � 1, . . . , T � 1, (2.1)

where Mt is the model evolution operator, Nt is a forcing
function, and the �t are assumed to be independent, zero
mean Gaussian random vectors with covariances Qt,2�m

t� 1, . . . , T.Here,�* is the forecast for t� 1, assumed
to satisfy

�* � �1 � �* (2.2)

with �* � N(0, Q*).
1 The usual linear Kalman filter2�f

theory (in the present notation) would evolve the fore-
cast error covariance as Q*� M0 � Q0, where2 a f 2� P M �f 0 0 m
M0 and Q0 are the model evolution operator and model2�m
error covariance for the time step preceding t � 1 and
is the analysis error covariance at the preceding timeaP0

step. However, in this work we will deal with Q*
2�f

directly, although other options based on an evolved
covariance are possible; see Cohn (1993) and Dee
(1995) and references cited therein. The observations yt
are assumed to satisfy

yt � Kt�t � �t, t ∈ �, (2.3)
where Kt is a map from state vector space to observation
space at time t ∈ � and � is the subset of {1, . . . , T}
where there are observations. The �t are assumed to be
independent in time, �t � N(0, St), t ∈ � � {1, . . . ,2�o
T}.
The joint density of {yt, t ∈ �, �*, �1, . . . , �T}

may then be written
p({y , t ∈ �}, � , � , . . . , � )t 1 T*

� p({y , t ∈ �}, � |� , . . . , � )t 1 T*
� p(� , . . . , � ). (2.4)1 T

Provided the model operator Mt is invertible, we may
write
p(� , . . . , � )1 T

� p(� )p(� |� )p(� |� ) · · · p(� |� )1 2 1 3 2 T T�1

� p(� )(� |� )p(� |� ) · · · p(� |� ).T T�1 T T�2 T�1 1 2

(2.5)
If we specify p(�T), the joint density on the left of

(2.4) is completely specified. We will allow an improper
Gaussian prior for �T, which will allow the imposition
of a penalty term on �T that is not necessarily of full
rank. Practically speaking this amounts to treating �T
as though it had the prior covariance b� with ��1 � J
where J is not of full rank, and this entails penalizing
only part of �T. See Wahba (1990b, section 1.5) for
further discussion of this point.
Letting � y�By, then the conditional expectation2�y�B

of �1, . . . , �T given {yt, t ∈ �, �*} is the minimizer,call it � ( , . . . , ), ofˆ ˆ ˆ� �� ��1 T

1
2�y � K � � �1� t t t St2� t∈�o

T�11
2� �� � M � � N � �1� t�1 t t t Qt2� t�1m

1 1
2 2� �� � � � � �� � . (2.6)�11 Q T J2 * *� bf

1 This notation means that �* is a Gaussian random vector with
zero mean and covariance matrix Q*.

2�f
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Note that �t for t � T has been singled out for special
treatment in the last term. In theory, we could have used
any t � 1, 2, . . . , T. See also Bennett and Miller (1991),
who discuss the necessity of a term like b�1 . Let-2�� �T J
ting � � / , � � / , and � � /b, then the2 2 2 2 2� � � � �o f o m o
minimizer of (2.6) is the same as the minimizer of

T�1
2 2�y � K � � � � �� � M � � N ��1 �1� �t t t S t�1 t t t Qt t

t∈� t�1

2 2� ��� � � � � ��� � . (2.7)�11 Q T J* *

Letting � → � is equivalent to the ‘‘perfect model’’
assumption (or constraint). In that case (2.7) becomes
the following. Find �1 to minimize

2 2 2�y � K � � � ��� � � � � ��� � ,�1 �1� t t t S 1 Q T Jt * *t∈�

(2.8)
where the �t, t � 2, . . . , T are constrained to satisfy

�t � Mt�1�t�1 � Nt�1. (2.9)
Except (possibly) for the inclusion of the penalty term

���T , (2.7), (2.8), and (2.9) are the basis for the ‘‘stan-2�J
dard’’ three- and four-dimensional variational data as-
similation methods and also correspond to the fixed-lag
Kalman smoother. See Lorenc (1986), Zou et al. (1992),
Bennett (1992), Rabier et al. (1993), Thepaut et al.
(1993), Parrish and Derber (1992), and Cohn et al.
(1994). Terms that penalize large gravity waves, lack
of balance, or other nonmeteorological phenomena are
in fact frequently included in operational data assimi-
lation models.
In what follows, we will assume that St is known

reasonably well, and, hence, the variational problem can
be rescaled so that we can set St � I. In order to use
the generalized cross-validation and unbiased risk meth-
ods here, it is necessary to have a large dataset2 whose
error structure is close to white or at least well known.
In practice this assumption is reasonably well satisfied
when the data includes a large subset from, for example,
radiosondes, and correlation in the so-called errors of
representativeness can be neglected. Highly positively
correlated errors that are not accounted for may cause
the cross validation to confuse noise with signal.
We will be considering the adaptive estimation of the

weighting parameters � and (in the weak constraint case)
�, the smoothing parameter �, as well as two ‘‘physical’’
parameters U0 and �, which are part of a distributed
parameter in Mt, to be described later. Let � stand col-
lectively for � � (U0, �, �, �, �) or, if � � � (the strong
constraint case), � � (U0, �, �, �). Letting ŷt � Kt ,�̂t
ŷ � ( , . . . , )�, then, either in the weak constraintŷ� ŷ�1 T
case (2.7) or the strong constraint case (2.8) and (2.9),
there exists a matrix A(�), known as the influence ma-
trix, such that

2 This may be a subset of the entire dataset; see Wahba et al. (1994).

ŷ � A(�)y � quantities independent of y. (2.10)
The GCV estimate of � is given by the minimizer of
V(�), where

�1n RSS(�)datV(�) � , (2.11)
�1 2{n Tr[I � A(�)]}dat

where ndat is the number of data points (dimension of
y) and RSS(�) � �y � ŷ�2. Here and elsewhere, if there
is no subscript on � �, then the Euclidean norm is in-
tended. The UBR estimate of �, which may be used
when is known, is given by the minimizer of U(�)2�o
defined by

1 1
2U(�) � RSS(�) � 2� TrA(�). (2.12)on ndat dat

Letting be the ‘‘true’’ but unknown�t, both U(�)TRUE�t
and V(�) are, under suitable assumptions, known to be
proxies for the predictive mean square error (PMSE),
given by R(�) where

1
TRUE 2ˆR(�) � �K � � K � (�)� . (2.13)� t t t tn t∈�dat

By proxies for R(�), here it is meant that the GCV and
UBR estimates are good estimates of the minimizer of
R(�) in the sense that their inefficiencies, as measured
by R1/2( )/min�R1/2(�), where is either the minimizerˆ ˆ� �
of U or of V, tend to 1 as the sample size becomes large,
under fairly general assumptions. WJGG has several
examples that demonstrate the properties of these es-
timates, and appendices A and B there give a brief dis-
cussion of the mathematical conditions sufficient to en-
sure that these estimates are good proxies for R. The
GCV estimate, proposed in Craven and Wahba (1979)
and Golub et al. (1979), was first used in an atmospheric
sciences context in Wahba andWendelberger (1980) and
is discussed in the books of Golub and van Loan (1989),
Eubank (1988), Wahba (1990b), Hastie and Tibshirani
(1990), Green and Silverman (1994), and elsewhere.
Rigorous theoretical mathematical justification of these
estimates has been provided by Li (1986).

3. The experiment
a. The equivalent barotropic vorticity equation on a

latitude circle
The equivalent barotropic vorticity equation that we

used is
�

2(� � � �) � U(x)� � �� � � f U , (3.1)xx xxx x 0 x�t
where x is the space variable, on the latitude circle at
� � 45�; � is the streamfunction; f0 � 2� sin� is the
Coriolis parameter; � � 2� cos�/a, the meridional de-
rivative, and a is the radius of the earth; �2 � /gH;2f 0
and U(x) � U0[1 � �g(x)], where U0 and � are ‘‘dis-
tributed’’ parameters to be estimated, and g(x) is a fixed
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FIG. 1. The (true) distributed parameter U(x), in dimensionless
form.

perturbation function. Taking H � 103 m, g � 10 m s�2

results in f0 � 10�4 s�1, � � 1.57 � 10�11 s�1 m�1, and
�2 � 10�12 m�2. For numerical calculations a dimen-
sionless form of (3.1) was used via the transformations

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

t → f t0
�1x → L x
1

�(x, t) → �(x, t)
2L f 0
1

U(x) → U(x)
L f 0
L

� → �
f 0

2 2 2� → L �
�� 1 ��

→
�x L f �x0

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎭

, (3.2)

where L � 4496 km (radius of the earth times cos45�).
The result is

�
2(� � � �) � U(x)� � �� � �U , (3.3)xx xxx x x�t

where the parameters above become � � cos45� �
0.707; �2 � 20. Here, U(x) is given in dimensionless
form in Fig. 1, U0 � 0.0355, � � 0.10.

b. ‘‘Nature’’ and ‘‘the model’’
In reality the atmosphere (‘‘nature’’) exists in contin-

uous space and time, evolving according to laws of
physics at all scales, and on which observations, con-
sisting of (noise-contaminated) values of functionals,
which may involve derivatives, point values, or weight-
ed integrals over various-sized regions, are available.
The computer model, discrete in time and space, is only
an approximation to nature at the cruder scales, and the
model observation operator Kt, which is a map from

state space to observation space, is only an approxi-
mation to the real observation operator, which is a map
from nature space to observation space. In the present
work, we will avoid the (important) issues of the best
ways to go from continuous time and space to discrete
time and space3 by letting our proxy for nature be an
atmosphere and an evolution operator defined on a fine
time and space grid (the ‘‘nature’’ grid), while the model
evolution operator Mt and state vector �t are defined
on a crude time and space grid (the ‘‘model’’ grid),
which is a subgrid of the nature grid. Similarly, the
nature observation functionals will be defined by an
observation operator from the nature grid to observation
space, while the model observation operator Kt will be
defined from the model grid to observation space. The
model error in atmospheric and oceanic dynamical sys-
tems models has to do with the fact that the objects that
in reality play the role of the nature grid and nature
evolution operator are not the same as those that play
the role of the model grid and the model evolution op-
erator. Thus the assumption that the �t in the Kalman
filter model described above behave as though they are
independent from time step to time step (either in the
present work or in reality) is probably the least tenable
assumption made here (and elsewhere). Nevertheless,
the description has been found to be useful in some
contexts.
The nature grid for our experiment is a fine grid with

space points approximately 21 km apart and time grid
points 8.7 s apart. The nature streamfunction at the start
(0 h or model time t � 1) for our primary experiment
is defined by discretizing �start(x) given by

�start(x) � 0.002(sinx � 0.5 cos2x � 0.6 sin3x),
x ∈ [0, 2�] (3.4)

on the nature space grid. The nature streamfunction at
0 h appears in the upper left-hand corner of Fig. 3. A
secondary experiment used a stronger ‘‘signal’’ obtained
by multiplying �start in (3.4) by 6.28. The nature dy-
namics are defined via a leapfrog scheme on the nature
grid for the numerical solution of (3.3), initiated by a
first-order difference scheme, and using the initial state
determined by (3.4) or Eq. (3.4) � 6.28. Nature was
evolved for 48 h. The nature streamfunction is then
known on the nature grid, and the nature wind field is
defined as the central divided difference of the nature
streamfunction on the nature space grid. The model uses
as its state vector values of the streamfunction on the
coarse model grid of 194 points approximately 146 km
apart in space (every seventh nature space grid point),
with a time step of 4 h (�1667 nature time steps). The
model wind vector is defined as the central divided dif-
ference of the model streamfunction on the model space
grid. The model dynamics was represented by a first-

3 This issue is discussed in Wahba (1990b) and Bennett (1992).
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FIG. 2. Nature and model streamfunction (a) and nature and model wind (b) at 48 h (model time t � 13), based on discretizing �start on
the nature and model grids, respectively, and integrating forward via the nature and model evolution operators, respectively. Dotted lines
are nature and solid lines are model.

order forward difference scheme to integrate (3.3) on
the model grid. Let , , and stand for the first-,˜ ˜ ˜� � �| | |1 2 3
second-, and third-order circulant difference matrices
given, respectively, by

�1 1 0 · · · 0 0 �2 1 0 · · · 1
0 �1 1 · · · 0 0 1 �2 1 · · · 0
� � � 5 5 � , 0 1 �2 · · · 0 ,
0 0 0 · · · �1 1 � � 5 5 �� � � �
1 0 0 · · · 0 �1 1 0 · · · 1 �2

�3 1 0 0 · · · �1 3
3 �3 1 0 · · · 0 �1

�1 3 �3 1 · · · 0 0 ,
� � � 5 5 � �� �
1 0 0 · · · �1 3 �3

and let � , k � 1, 2, 3, where �x is the˜ �k� � (�x)| |k k
distance between two model space grid points. Let xi
be the ith model grid point and G be the diagonal matrix
with g(xi) in the iith position. The vector form of this
forward difference scheme is then

�t�1 � [I � B�1(C � D)]�t � B�1Ft, (3.5)
where

2 2B � (� � � I)�x| 2
2C � U (I � �G)� �x �t|0 3

2D � �� �x �t,| 1

�U(x ) g(x ) � g(x )1 2 1

�x �x
�U(x ) g(x ) � g(x )2 3 2

2 2F � �x �t � U � �x �t,�x �xt 0
� · · ·� � � ��U(x ) g(x ) � g(x )n 1 n

�x �x

t � 1, . . . , T � 1,

where �t is the time between two model time steps.
We attempted to choose the nature and model grids
and dynamics so that the differences between the evo-
lution of nature and evolution defined by the model
were relatively small but not negligible compared to
observation errors. The dotted line in Fig. 2a gives
the nature streamfunction at 48 h (model time t � T
� 13) as was determined by evolving �start(x) of (3.4)
via the nature dynamics on the nature grid, and the
solid line is the streamfunction at the same time as
obtained by evolving �start via the model dynamics
on the model grid. Figure 2b gives the corresponding
wind fields computed as the central divided difference
of the nature and model streamfunctions, respectively,
on the nature and model grids. The root-mean-square
difference between the nature and model streamfunc-
tions, averaged over the model grid points at the last
time step, was about 0.2 km2 s�1, and the root-mean-
square difference in the wind fields on the model grid
points was about 0.37 m s�1.

c. The observations
The wind observations were generated at model times

t ∈ � � {1, 4, 7, 10, 13} (corresponding to 0, 12, 24,
36, and 48 h) on a regular space grid with a hole in it,
specifically on the 164 model grid points numbered 1–
30 and 61–194. This was done by first computing the
nature wind at these points in space and time, then add-
ing observation errors to the nature wind as independent
zero mean Gaussian random variables with a common
standard deviation. Figure 3 gives the nature stream-
function (evolved from �start) and wind field at the ob-
servation times, with observed winds superimposed on
the nature wind plot. These wind observations were gen-
erated with a standard deviation of � 2 m s�1 in the2�o
wind observation error.

d. The forecast
The forecast used by the model in our experiment

was obtained by adding a 194-dimensional forecast
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FIG. 3. Nature streamfunction at the observation times t � 1, 4, 7, 10, 13 (left column) and corresponding nature wind and wind observa-
tions (right column).
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FIG. 4. Wind field forecast error correlation function �(r), chosen
to resemble Hollingsworth and Lonnberg (1986, Fig. 5).

FIG. 5. Nature streamfunction (solid line) and noisy streamfunction
forecast (dots) at t � 1.

error vector to the vector of true streamfunctions��f

at the initial time obtained by discretizing �start(x) on
the model space grid. Here, was generated as a��f

zero mean Gaussian random vector with covariance
Q*, where Q* is a circulant (isotropic) correlation
2�f
matrix to be described. Since the wind field is defined
as the central divided difference of the stream-�| c
function, then and , the wind field forecast error,� �� Vf f

are related by � . Figure 4 gives the wind� � �|V c �f f

field forecast error correlation function �(r), which
corresponds to the streamfunction correlation that we
used. Here, � was chosen to be visually indistinguish-
able from the longitudinal wind field forecast error
correlation implied in Fig. 5 of Hollingsworth and
Lonnberg (1986). The wind field forecast error co-
variance is then , where is to be specified and2� C �V V Vf f f

the j, kth entry of is �(�j � k� � 150 km). TheCVf
and Q* that we used satisfy � .2 2 2� � (� Q )�� � C| |f c f c V Vf f*Since is not of full rank, this equation does not�| c

always have a solution, and when it does, it is not
unique. We did a small amount of tinkering [in Fourier
transform space; see Wahba (1968)] with both Q* and
� so that both the equation is satisfied and Q* is offull rank for numerical stability. Figure 5 gives a plot
of the �start(x) along with a noisy streamfunction fore-
cast obtained by adding a random . For this figure,��f

was taken as 0.485 m s�1, which resulted in �f ��Vf
0.726 km2 s�1. Note the evidence of spatial correla-
tion.

e. Calculations for the experiment

We now give details for the calculation of the min-
imizers of (2.7) and (2.8), subject to (2.9): �t is the
194-dimensional model state vector of streamfunction
values at time t � 1, . . . , 13, and yt is the 164-dimen-
sional vector of wind observations at t ∈ � � 1, 4, 7,
10, 13. Here, Mt � M(U0, �) � M independent of t is
obtained from (3.5) as M � [I � B�1(C � D)], and Nt
� �B�1Ft � N(U0, �) � N, independent of t, where Ft
is given in (3.5). In this experiment we set Qt � I. This

is partly because methods for modeling the model error
are beyond the scope of this paper. But also, we are
particularly interested in seeing what might happen
when a misspecified ‘‘model error covariance’’ is used,
something that is likely to occur in practice. Extension
of the formulas below to the general Qt case is straight-
forward, however, and they could be extended to the
case where model error is, for example, described as a
low-order autoregressive or moving average scheme on
the model time grid. See Bennett et al. (1996) and Ben-
nett et al. (1997), who employ an autoregressive scheme
for model error. We set J to correspond to a penalty on
the sum of squares of the second differences of the
streamfunction values; that is,

J � .���| |2 2 (3.6)
Let y � ( , , , , )�, � � ( , . . . , )�, andy� y� y� y� y� �� ��1 4 7 10 13 1 13
let P be the 164 � 194 submatrix of the identity matrix
obtained by deleting columns 31–60 (corresponding to
no observations). Then Kt � P . Let K be the (5 ��| c
164) � (13 � 194) matrix defined by �t∈� �yt �
P � �y � K��2. The functional to be minimized2� � �| c t
becomes

12
2 2�y � K�� � � �� � M� � N�� t�1 t

t�1

�1� �(� � � )�Q (� � � ) � ��� J� . (3.7)1 1 T T* * *
The minimizer then depends on the choice of the�̂

parameters � � (Uo, �, �, �, �). The normal equations
for � areˆ ˆ� �(�)

Eweak � bweak,�̂ (3.8)
where

�1Q · · · 0*
E � K�K � �C � � � 5 �weak M � �0 · · · 0

0 · · · 0
� � � 5 � , (3.9)� �0 · · · J
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where
M �M �M �
�M I � M �M �M �

C � 5M

I � M �M �M �� �
�M I

(3.10)
and

�M �
NI �M �
N5Ib � K�y � �weak �5 � ��M �� � N

I
�1Q �* *
0

� � � .
�� �
0

The linear system (3.8) is 2522 � 2522 (2522 � 194
� 13), and for this experiment we used a packed Cho-
lesky decomposition to solve it; see chapter 5 of Don-
garra et al. (1979). A truncated conjugate gradient al-
gorithm for solving the variational problem could have
been used here (see WJGG), then the algorithm stopping
time would have been an additional tuning parameter.
In the strong constraint case, we minimized

�y � K��2 � �(�1 � �*)�Q (�1 � �*)
�1
*

� � J�T��T (3.11)
subject to the constraints

t
t j�1˜ ˜� � M � � N , N � M N,�t�1 1 t t [ ]j�1

t � 1, 2, . . . , T � 1. (3.12)
The minimizer then depends on the choice of the�̂1
parameters � � (Uo, �, �, �). Letting M̃ � (I, M, . . . ,
MT�1), the normal equations for the minimizer of�̂1
(3.11) subject to (3.12) are

Estrong�1 � bstrong, (3.13)
where

�1Q · · · 0*˜E � M K�K � � � 5 �strong � �� 0 · · · 0

0 · · · 0
˜� � � 5 � M �, (3.14)� ��0 · · · J

and

(3.15)�1 T�1˜ ˜b � MK�ỹ � �Q � � �(M�) JN ,strong T* *
where ỹ � y � K(0�, , . . . , )�. Since the system˜ ˜N� N�1 T�1
is small and linear, use of a sophisticated solution meth-
od such as the adjoint method was not necessary.
WJGG described the randomized trace method for

estimating Tr[I � A(�)] for both linear and nonlinear
estimates. We review the linear case used here. Let ŷ
� ŷ(y) � K , where the notation means � isˆ ˆ�(�) �(�)
fixed and ŷ(y) means that the estimate is based on the
data y. Then ŷ � A(�)y � �, where � is some vector
that may depend on � but does not depend on y. Let
ŷ(y � z) be based on the data y � z. Since is linear�̂
in y, we have that z�{z � [ŷ(y � z) � ŷ(y)]} � z�[I �
A(�)]z.4 The randomized trace estimate is based on the
fact that if z is a random vector whose components are
uncorrelated zero mean random variables with variance
, then z�[I � A(�)]z has expected value Tr[I2 �1 �1 2� n n �z dat dat z

� A(�)]. Furthermore A(�) is a smoother matrix, that
is, a symmetric matrix with all its eigenvalues in the
interval [0, 1], and it can be shown that if A(�) is a
smoother matrix then the variance of z�[I � A(�)]z�1ndat
goes to 0 as ndat → �. These and related results may be
found in Girard (1989, 1991) and are explained in more
detail in WJGG. An estimate for Tr[I � A(�)] may�1ndat
thus be obtained by solving the variational problem with
randomly perturbed data y � z. In the experiment here
we used Hutchinson’s (1989) form of the trace estimate,
which uses pseudorandom values of �1 for the com-
ponents of z. The same z is used to estimate Tr[I ��1ndat
A(�)] for all � values of interest. Then to reduce the
variability of the estimate, an average of 10 replicates
were used for the final estimate of Tr[I � A(�)].�1ndat

f. Optimum physical parameters in the model

Before proceeding with the main results of the ex-
periment, we observe that the ‘‘best’’ values of the phys-
ical parameters (U0, �) in the model, as judged by any
particular prediction criteria, are not necessarily the na-
ture values. Let be the vectors of the natureTRUE�t
streamfunction on the model grid and let (U0, �)MODEL�t
be the vectors of model streamfunction values at the
same points, evolved via the model dynamics from the
nature streamfunction at the start restricted to the model
grid, and using varying values of the physical param-
eters (U0, �) in the model dynamics. Define MSEV(U0,
�) � (5 � 164)�1 �t∈� �Kt � Kt (U0, �)�2TRUE MODEL� �t t
and MSE�(U0, �) � (5 � 194)�1 �t∈� � �TRUE�t

(U0, �)�2. The minimizers over (U0, �) ofMODEL�t
and based on evolving �start were at1/2 1/2MSE MSE� V

(0.040, 0.093) and (0.038, 0.095), respectively, while
the nature value is (0.0355, 0.10). This is likely due to

4 This is approximate in the nonlinear case; see WJGG.
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the fact that the model integration has larger discreti-
zation errors due to its coarser finite-difference mesh.
This leads to errors in the phase and group velocities
of Rossby waves that can be compensated for statisti-
cally by using parameter values that are not precisely
those of the nature simulation. Below we will see that
the fitted (U0, �) are closer to the minimizer of MSEV
than to the nature value, which is not surprising con-
sidering the optimality criteria R(�) � �t∈�

�1ndat
� � of (2.13) associated with the es-TRUE 2ˆK� K� (�)�t t t t
timation procedure.

4. Results

a. The weak constraint case

We used this model in several different experi-
ments. In the first experiment, we generated a nature
run with the streamfunction as in (3.4) and a set of
observations and a forecast as shown in Figs. 3 and
5. Using the nature run and this data, we examined
in detail the sensitivity of the target criteria R1/2(�) to
the parameters � � (U0, �, �, �, �). Then we examined
the efficacy of V(�) and U1/2(�) as proxies for the in
practice unobservable R1/2(�). We evaluated R, V, and
U on a grid in five dimensions. For (U0, �) we used
a fine-grid scheme, 41 � 41 for U0 ∈ [0.031, 0.063]
and � ∈ [0.07, 0.11], which covers the true values
(0.0355, 0.100), while for (�, �, �) we used a coarse
grid of 3 � 5 � 4 values; log10� � 3, 4, 5; log10� �
3.04, 3.91, 4.78, 5.65, 6.51; and log10� � 1.94, 2.24,
2.54, 2.84. These values actually were chosen after
some preliminary experimentation. Only plots for the
three values 3.04, 4.78, 6.51 for log10� will be shown
here. Figure 6 gives 36 contour plots for R1/2(U0, �,
�, �, �) for the 36 � 3 � 3 � 4 values of �, �, �
noted. The global minimum over this grid occurs at
log10� � 4, log10� � 4.78, log10� � 2.54 (middle plot
in the lower left block), and (U0, �) � (0.041, 0.102),
and is indicated by an asterisk. This value for (U0, �)
may be compared with the minimizer (U0, �) �
(0.038, 0.095) of (U0, �) of section 3f, as well1/2MSEV
as with the true values (0.0355, 0.100). From Fig. 6
the sensitivity of the target function R1/2 to changes
in (U0, �) for each set of values of (�, �, �) may be
observed. Letting �R be the value of � noted above
where the global minimum occurs, the sensitivity of
R(�) near �R to changes in the other parameters may
be seen by examining R1/2(�)/R1/2(�R) while varying
one parameter at a time and setting the other param-
eters at their minimizing values. Using the data files
that were used to generate Fig. 6, the results are plot-
ted schematically in Fig. 7. The horizontal axis in Fig.
7 is log10�, log10�, or log10�. The dotted line gives
min��R1/2(�)/R1/2(�R), where min�� means that the
minimum is taken over all the parameters except �,
similarly for � (solid line), and � (dashed line). Here,
R1/2 is clearly sensitive to changes in � and �, while

it is sensitive to decreases in � below the minimizer
but is quite flat as � increases. Meanwhile, R1/2(�)
increases very slowly as � becomes large.
Figures 8 and 9 give the same 36 contour plots,

except for V(�) and U1/2(�), respectively. Within the
resolution of the plots, the minimizers of V(�) and
U1/2(�) are the same and are log10� � 4, log10� �
4.78, log10� � 2.24 (middle plot in the upper-right
block), and (U0, �) � (0.0397, 0.100). These minima
are indicated by an asterisk on the plots. It can be
seen that they both follow R1/2 fairly well. (In theory,
V � R � in the neighborhood of the minimizer,2�o
while U � R; see WJGG). Letting �R, �V, and �U be
the minimizers of R(�), V(�), and U(�), respectively,
we can measure the inefficiencies IV and IU of the
estimates provided by �V and �U by IV � R1/2(�V)/R1/2(�R)
and IU � R1/2(�U)/R1/2(�R). In this case the inefficiencies,
which measure the root-mean-square error when the es-
timate is used divided by the minimum root-mean-
square error obtainable if nature were known, are both
given by 0.2991/0.2764 � 1.082, to within the reso-
lution of the crude search employed. Theoretical dis-
cussions of the properties of these estimates may be
found in Li (1986) and Wahba (1990b). We conclude
that (for this example) the minimizers �V and �U of V(�)
and U(�) do very well from the point of view that R(�V)
and R(�U) are not much larger than R(�R). We can con-
clude also that since R1/2 is quite sensitive to all of the
parameters except �, we should be able to obtain rel-
atively stable estimates of these parameters for similar
signals. Notice that in each of Figs. 6, 8, and 9 the
location of the minimizing value of (Uo, �) is nearly the
same in the four lower-right blocks in each 3 � 3 con-
tour plot in (Uo, �), but not elsewhere. This suggests
that good estimates of (Uo, �) may be obtained inde-
pendently of �, �, � for a range of values of these
parameters about the minimizer but, if these parameters
are fixed at poor values, then a search made to find the
minimum over (Uo, �) may give quite different values.

b. The strong constraint case
Using the same data as in section 4a, Fig. 10 gives

nine contour plots each for R1/2(�), V(�), and U1/2(�),
where now � � (U0, �, �, �). The grid scheme is
similar to the one for the weak constraint: 41 � 41
for U0 ∈ [0.0335, 0.0446], and � ∈ [0.075, 0.115],
with three values for log10�, 3, 4, 5, and three values
for log10�, 1.54, 2.04, 2.54. These values were chosen
after some trial and error. The minimum of R1/2 over
this fine grid in (U0, �) and crude grid in �, � occurred
at log10� � 2.04, log10� � 4, and (U0, �) � (0.041,
0.106), and is marked with an asterisk, as are the other
minima discussed next. The minimum of the V(�) oc-
curs for the same � and �, at (U0, �) � (0.039, 0.099).
Here, R1/2(�V), where �V is the minimizer of V given
above, was 0.330. Thus IV � 0.330/0.319 � 1.034.
As before, U(�) behaves similar to V(�) and gives the
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FIG. 6. R1/2(�).

same minimizer as V(�), to the resolution of the crude
grid search, and the minimizer of U(�) or V(�) pro-
vides a good estimate of the minimizer of R(�). In
theory the strong constraint case is a special case of
the weak constraint case as � → �. However, we
cannot compute the strong constraint case as a limit
of the weak constraint case, and the strong constraint
case has been computed via an independent algorithm.
We did try a set of weak constraint cases with U0, �,

�, and � set to their values above which minimized
R1/2 in the strong constraint case, and then let � in-
crease. We found that R1/2(�) appeared to approach its
strong constraint value of 0.319. This may be com-
pared with the global minimum of R1/2(�) found in
section 4a of 0.2764 (although the search grid in
log10� was not exactly the same).
The extremely wiggly curves in some parts of the

contour plots in Fig. 9 are caused by the instability
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FIG. 7. Relative sensitivities of R1/2(�) to changes in log10�, log10�,
and log10�. Dotted line, �; solid line, �; dashed line, �.

of the computation.5 When (U0, �) is in those wiggly
regions of the contour plots, the condition number of
the matrix Estrong in the normal equations of (3.13) is
very large. Physically, there is an admissible range
for the distributed parameters in the barotropic vor-
ticity equation. The discretization scheme we used to
form the dynamical model is a conditionally stable
scheme. Beyond the admissible range of the distrib-
uted parameters, the instability of the discretization
scheme will show up. The wiggly curves may cor-
respond to the boundary or near boundary of this
range. This instability was not evident in the weak
constraint case for the values of � that we tried.

c. Replications

It is known that variability in the random errors in
the data that go into adaptive estimation of smoothing
parameters in the moderate sample size case can have
an observable effect on smoothing parameter estima-
tion. We have therefore replicated this experiment 10
additional times with the same nature but with new ran-
dom numbers drawn for the forecast errors and the ob-
servation errors. Instead of a global search, we have
used a slightly modified Powell’s direction set method
(Press et al. 1990, section 10.5; Avriel 1976) to search
for the minimizers of R(�), V(�), and U(�). Since all
three functions are expected to have their minima with
all parameters positive, Powell’s algorithmwasmodified
so that when the search approaches or crosses the bound-
ary between positive and negative values, a large func-

5 Some chaotic appearing contours above the extremely wiggly
contours have been removed. Future experiments must, of course, be
concerned with stable calculations.

tion value will be returned so that the next search di-
rection chosen by Powell’s algorithm will be changed
to move toward the interior of the positive orthant. Let-
ting F(�k) stand for R(�k), V(�k), or U(�k), where �k is
the kth value of �, the modified Powell’s algorithm was
set to stop when �F(�k�1) � F(�k)� � 10�4�F(�k�1) �
F(�k)�.
The results may be seen in Table 1. Replicate (11)

used the same observations and forecast as went into
Figs. 6, 8, 9, and 10, but the Powell’s algorithm was
used for the search. The columns headed by (U0, �),
log10�, log10�, and log10� give, for replicates (1)–(11),
the values of the components of � that were found by
the Powell’s algorithm to minimize the PMSE, UBR,
and GCV functions, that is, to minimize R, U, and V.
The column marked R1/2(�) gives the value of R1/2 at the
� minimizing R, U, and V, and the column marked
‘‘Ineff’’ gives /R1/2(�R), where is the minimizer1/2 ˆ ˆR (�) �
that was found for U or V and �R is the minimizer of
R. The replicates marked (11A) and (11B) give, re-
spectively, the same information previously obtained
with the crude grid search behind Figs. 6, 8, and 9 (11A)
and Fig. 10 (11B).
It can be seen that R1/2(�) at the minimizers found in

(11) and (11A) are quite similar, which are shown to
indicate how close minimizers obtained by the grid
search and the Powell’s algorithm are. Several note-
worthy observations are to be made from this table.

1) The values of U0 that minimize R are systematically
larger than the ‘‘true’’ U0 � 0.0355, and the values
of U0 that minimize V and U appear to be scattered
about the minimizer of R, not about 0.0355. This is
suggestive of the perfectly plausible idea that the
‘‘best’’ value of a distributed parameter for fitting
purposes in a computer model that is an imperfect
representation of the truth is not necessarily the true
value.

2) An examination of the Ineff column indicates that 8
out of these 11 cases had both the UBR and the GCV
inefficiencies less than 1.20. There were three GCV
and two UBR inefficiencies between 1.2 and 1.38
(replicates 1, 2, and 8). In each of these cases the
difficulty appears to be the apparent inability of the
minimizer of V or U to find an � close to the min-
imizer of the � that minimizes R. This is certainly
related to the fact that R appears to be insensitive to
� over a wide range of �, and this insensitivity may
be related to the fact that we are using a least squares
penalty on model error (i.e., Qt was set to I), whereas
the true model error is certainly correlated in space,
as well as time.

3) Putting the model in as a strong constraint avoids
the problem of choosing �, but this involves an as-
sumption that the model error is sufficiently small
over the time period considered. In the present ex-
ample the weak constraint appears to be beneficial,
as can be seen by comparing replicates (11A) and
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FIG. 8. V(�).

(11B), but only experimentation with more realistic
systems can answer this question in practice.
In Tables 2 and 3 we report results of repeating

the experiment of Table 1 with smaller noise and
stronger signal, respectively. For Table 2 the obser-
vation error standard deviation has been reduced
from 2 to 1 m s�1, and the forecast error standard
deviation in the wind has been reduced from 0.485
to 0.16 m s�1. For Table 3 the observation and wind
forecast error standard deviations have been set back
to the same values as in Table 1, but the the signal
has been made stronger by replacing�start(x) of (3.4)

by 6.28�start(x). Thus, the signal-to-noise ratio has
gone up in both of these cases. We note the follow-
ing.

4) As the signal-to-noise ratio behind both Tables 2 and
3 has gone up, the inefficiencies overall are less than
those in Table 1, falling between a low of 1.01 and
a high of 1.16.

5) Some of the replicates in Tables 2 and 3 demonstrate
an insensitivity to � in that the UBR or GCV estimate
of � is quite different than the PMSE value while
the inefficiency is still quite small.

6) As in Table 1, the values of U0 that minimize U
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FIG. 9. U1/2(�).

and V in Tables 2 and 3 appear to be scattered
about the U0, which minimizes R, not about
0.0355. The value of U0, which minimized R, is
about the same in Tables 1 and 2, which have the
same signal, while it is less in Table 3, where the
signal is more intense.

7) The variability in the estimates in Tables 1, 2, and
3 suggest the variability that might be encountered
in practice due to random errors in the observation
and forecast, with similar sample size and data
distribution. This component of the variability can
be expected to go down as the sample size goes

up; conversely, changes in the synoptic situation
can be expected to cause changes in the tuning
parameter estimates.

d. Imputed and estimated weighting and smoothing
parameters

As noted and described in section 2, the statistical
formalism behind the Kalman filter leads to specific
meanings for �, �, and � as ratios of variances. Sup-
pose observation error, model error, and forecast error
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FIG. 10. (a) R1/2(�), (b) U1/2(�), (c) V(�), strong constraint.

were all random vectors with the covariance matrices
St, Qt, and Q*, which are implied by the var-
2 2 2� � �o m f
iational problem (2.6), which is being solved. Sup-
pose we pretended that �T were a random vector with
the covariance bJ�1. Then � � / , � � / , and2 2 2 2� � � �o m o f
� � /b. In this section we compare the tuned values2�o
of �, �, and � that were obtained, with theoretical
values for these variance ratios that we derived or
imputed as though the assumptions behind the Kalman
filter were true. To the extent that the reasoning de-
scribed here can be applied in practice, it can provide
a method for getting starting values for the tuning

parameters and may also provide a reasonableness
check on the values obtained and/or the model being
fitted. It does have to be kept in mind, however, that,
as in the estimation of (Uo, �), that the optimum ‘‘the-
oretical’’ statistical parameters may not be the best
for prediction if the assumptions behind the theoret-
ical model [which consists here of (2.1), (2.2), and
(2.3), including misspecification of St, Qt, and Q*] are
not satisfied.
In our experiment, the observation error and the

forecast error were simulated according to the given
random assumptions, and so we know the true and2�o
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TABLE 1. Case 1: 2 m s�1 observation error standard deviation and 0.485 m s�1 wind forecast error standard deviation.

Replicate R1/2 (�) Ineff �: {(U0, �) log10� log10� log10�}

1 PMSE
UBR
GCV

0.3147
0.4337
0.4175

1.3781
1.3267

(0.0381, 0.1018)
(0.0416, 0.0903)
(0.0417, 0.0904)

6.66
9.48
9.48

2.31
2.38
2.45

4.25
3.32
3.47

2 PMSE
UBR
GCV

0.2994
0.3464
0.3755

1.1570
1.2542

(0.0413, 0.1035)
(0.0451, 0.0940)
(0.0444, 0.0926)

5.08
3.67
3.40

2.37
2.33
2.15

4.15
3.95
3.80

3 PMSE
UBR
GCV

0.3278
0.3319
0.3349

1.0125
1.0217

(0.0408, 0.1027)
(0.0413, 0.1015)
(0.0406, 0.1032)

4.85
9.47
9.13

2.08
2.24
2.31

4.00
4.04
4.17

4 PMSE
UBR
GCV

0.3345
0.3567
0.3527

1.0663
1.0544

(0.0404, 0.1055)
(0.0422, 0.1121)
(0.0410, 0.1143)

5.80
9.75
9.04

2.35
2.58
2.56

4.06
4.42
4.43

5 PMSE
UBR
GCV

0.2986
0.3475
0.3505

1.1637
1.1738

(0.0426, 0.1056)
(0.0391, 0.1229)
(0.0393, 0.1224)

4.54
9.51
9.48

2.74
2.49
2.37

4.33
4.25
4.14

6 PMSE
UBR
GCV

0.3488
0.3636
0.3601

1.0424
1.0324

(0.0396, 0.0999)
(0.0406, 0.0933)
(0.0401, 0.0926)

6.58
6.49
6.57

2.24
2.55
2.46

4.11
4.41
4.33

7 PMSE
UBR
GCV

0.3694
0.3925
0.3926

1.0625
1.0628

(0.0411, 0.1034)
(0.0436, 0.0973)
(0.0437, 0.0972)

5.82
4.50
4.55

2.17
2.23
2.24

4.00
4.29
4.30

8 PMSE
UBR
GCV

0.3665
0.4581
0.4595

1.2499
1.2537

(0.0407, 0.1078)
(0.0389, 0.0971)
(0.0390, 0.0970)

4.89
6.41
6.16

2.54
2.46
2.46

4.20
3.29
3.28

9 PMSE
UBR
GCV

0.3715
0.3824
0.3915

1.0293
1.0538

(0.0415, 0.1057)
(0.0415, 0.1059)
(0.0416, 0.1054)

5.37
4.04
3.85

2.33
2.25
2.19

4.10
3.93
3.86

10 PMSE
UBR
GCV

0.3047
0.3363
0.3370

1.1037
1.1060

(0.0401, 0.1008)
(0.0429, 0.1006)
(0.0428, 0.1008)

6.67
6.67
6.67

1.98
2.21
2.25

4.07
3.98
4.03

11 PMSE
UBR
GCV

0.2750
0.3023
0.3087

1.0993
1.1225

(0.0411, 0.1041)
(0.0397, 0.0995)
(0.0397, 0.0993)

4.58
4.27
4.17

2.68
2.21
2.17

4.33
3.84
3.82

11A PMSE
UBR
GCV

0.2764
0.2991
0.2991

1.0821
1.0821

(0.0407, 0.1020)
(0.0397, 0.1000)
(0.0397, 0.1000)

4.78
4.78
4.78

2.54
2.24
2.24

4.00
4.00
4.00

11B PMSE
UBR
GCV

0.3192
0.3305
0.3305

1.0354
1.0354

(0.0411, 0.1060)
(0.0397, 0.0993)
(0.0397, 0.0993)

�
�
�

2.04
2.04
2.04

4.00
4.00
4.00

and hence the theoretical �. Assumptions like these2�f
are very natural in practice. We are of course over-
simplifying things here by assuming that St and Q*
are known. However, it is not unreasonable to identify
and and hence � with quantities whose values2 2� �o f

are at least approximately known in practice.
Recalling the definition of J given in (3.6), we imputed

a value for b1/2 as (bput)1/2 � {(1/194) [ (xi�2) �194 TRUE� �i�1 T
2 (xi�1) � (xi)]2}1/2. Note that bput would be anTRUE TRUE� �T T
unbiased estimate for b under the (artificial) assumption
that were a random vector whose second differencesTRUE�T
on the model space grid were independent N(0,b). This
assumption corresponds to the smoothness penalty that has
been imposed on �T in (3.7) and should be considered
as a standin for more realistic penalty functionals that
could be developed based on, for example, damping out
waves inversely proportional to the energy that they are

a priori believed to have in the real atmosphere. A simple
example may be found in Wahba (1982b).
Of all the variances, it is probably least realistic to at-

tempt to impute a theoretical value to , even given2�m

everything we know in this experiment, because the ‘‘mod-
el’’ for the model error is unrealistic. Here, nature was
generated by evolving an assumed (smooth) streamfunc-
tion at the start, and the model error was generated by
differences between the nature and model dynamics, but
the model for model error is zero mean, independent from
time to time with covariance [from (2.6)] Qt with Qt �2�m

I. However, since we ‘‘know everything’’ about nature and
the estimates here, we will attempt to impute values to

from this knowledge. We imputed the ad hoc value2�m

to �m as � [(13 �194)�1 � �put put 13 TRUE� � � �m m t�1 t

(U0, �)�2]1/2. Under the (artificial) assumption thatMODEL�t
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TABLE 2. Case 2: 1 m s�1 observation error standard deviation and 0.16 m s�1 wind forecast error standard deviation.

Replicate R1/2(�) Ineff �: {(U0, �) log10� log10� log10�}

1 PMSE
UBR
GCV

0.2376
0.2713
0.2601

1.1418
1.0947

(0.0399, 0.0996)
(0.0416, 0.0952)
(0.0415, 0.0950)

5.07
3.50
3.83

2.609
2.625
2.809

4.04
3.38
3.54

2 PMSE
UBR
GCV

0.2320
0.2489
0.2581

1.0728
1.1125

(0.0410, 0.1010)
(0.0429, 0.0958)
(0.0428, 0.0955)

4.20
3.44
3.27

2.527
2.540
2.493

3.90
3.57
3.46

3 PMSE
UBR
GCV

0.2388
0.2458
0.2509

1.0293
1.0507

(0.0409, 0.1011)
(0.0408, 0.0998)
(0.0409, 0.0996)

3.74
4.92
9.87

2.263
2.386
2.618

3.76
3.78
4.02

4 PMSE
UBR
GCV

0.2445
0.2586
0.2604

1.0577
1.0650

(0.0408, 0.1014)
(0.0419, 0.1044)
(0.0418, 0.1050)

4.49
8.77
8.55

2.576
2.871
2.950

3.89
4.25
4.27

5 PMSE
UBR
GCV

0.2397
0.2534
0.2542

1.0572
1.0605

(0.0414, 0.1015)
(0.0399, 0.1093)
(0.0399, 0.1094)

8.77
8.78
8.78

2.829
2.653
2.565

4.28
4.14
4.07

6 PMSE
UBR
GCV

0.2350
0.2659
0.2730

1.1315
1.1617

(0.0401, 0.1008)
(0.0412, 0.0984)
(0.0412, 0.0982)

4.07
3.23
3.15

2.182
2.525
2.524

3.85
3.62
3.59

7 PMSE
UBR
GCV

0.2442
0.2485
0.2490

1.0176
1.0196

(0.0407, 0.0988)
(0.0407, 0.0962)
(0.0407, 0.0961)

4.42
7.04
7.11

2.527
2.696
2.713

3.88
4.17
4.20

8 PMSE
UBR
GCV

0.2484
0.2600
0.2612

1.0467
1.0515

(0.0407, 0.1013)
(0.0422, 0.0978)
(0.0423, 0.0976)

3.97
4.14
4.38

2.472
2.431
2.501

3.72
4.02
4.11

9 PMSE
UBR
GCV

0.2451
0.2909
0.2877

1.1868
1.1738

(0.0413, 0.1020)
(0.0403, 0.0959)
(0.0404, 0.0957)

3.90
6.89
7.02

2.843
2.718
2.783

3.98
3.28
3.36

10 PMSE
UBR
GCV

0.2478
0.2506
0.2517

1.0112
1.0157

(0.0411, 0.1023)
(0.0415, 0.1015)
(0.0415, 0.1015)

4.25
3.99
3.91

2.617
2.457
2.427

3.99
3.78
3.75

11 PMSE
UBR
GCV

0.2251
0.2421
0.2403

1.0755
1.0675

(0.0411, 0.1016)
(0.0406, 0.0989)
(0.0406, 0.0990)

4.03
3.88
3.94

2.560
2.107
2.140

3.98
3.61
3.63

(Uo, �)� N( , I), independent for differentMODEL TRUE 2� � �t t m
t, then ( )2 would be an unbiased estimate of .put 2� �m m
The results for (bput)1/2 were (bput)1/2 � 0.055 km2 s�1

for cases 1 and 2 and 0.345 km2 s�1 � 6.28 � 0.055
km2 s�1 for case 3.
To obtain , for cases 1 and 2, which have the sameput�m

signal, we used the values of (U0, �), which minimized
, the result was � 0.158 km2 s�1. For case 3,put put� �m m
was obtained in the same way and was 0.279 km2put�m

s�1.
The third column of Table 4 gives the imputed values

of �1/2 for � � �, �, �, as the ratios of the actual or
imputed standard deviations, in physical units, and the
fourth column gives log10 of the square of the values in
the third column, converted to dimensionless form for
comparison with the estimated log10�, log10�, and
log10�. The dimensionless form of the ratios in column
3 are obtained by multiplying them by (4496 km) �
10�3 km � m�1. The fifth column gives the mean and
standard deviation for the 11 values of log10�, log10�,
and log10�, which minimize R(�) from the eleven rep-
licates of cases 1, 2, and 3 from Tables 1, 2, and 3, and

the sixth and seventh columns give the same information
for U(�) and V(�). It can be seen in all three cases that
the minimizers of R, V, and U in log10� are generally
close to the imputed value, it appears that these mini-
mizers provide an estimate of the observed versus fore-
cast variance ratio / . In cases 1 and 2 the minimizers2 2� �o f
in � are close to their imputed values, while in case 3
(stronger signal) the minimizer is larger. The minimizers
in � are larger by a factor of between 101/2 and 103 than
their ad hoc imputed values. An examination of the
evolution of � (U0, �) (not shown here)TRUE MODEL� �t t
indicates that this difference is fairly systematic in time,
concentrated in the neighborhood of the maximum of
U(x). Thus the ‘‘model’’ for model error as well as the
procedure for imputing are probably both unrealistic2�m
and may provide an explanation for the difference be-
tween the imputed and estimated �. However, it appears
that the fitting is drawing strongly to the model. Further
work in accounting for model errors is warranted.
The imputed values allow common physical units to

be attached to this particular set of smoothing param-
eters, which allows a direct comparison of sensitivity.
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TABLE 3. Case 3: signal times 6.28, 2 m s�1 observation error, and 0.485 m s�1 wind forecast error.

Replicate R1/2(�) Ineff �: {(U0, �) log10� log10� log10�}

1 PMSE
UBR
GCV

0.2751
0.2879
0.2799

1.0465
1.0174

(0.0373, 0.1036)
(0.0373, 0.1007)
(0.0374, 0.1005)

3.719
3.310
3.557

2.205
2.247
2.226

3.578
3.252
3.348

2 PMSE
UBR
GCV

0.2656
0.2783
0.2869

1.0478
1.0802

(0.0373, 0.1046)
(0.0379, 0.0983)
(0.0378, 0.0982)

3.591
3.354
3.198

2.295
2.068
2.069

3.607
3.291
3.212

3 PMSE
UBR
GCV

0.2651
0.2691
0.2856

1.0151
1.0773

(0.0372, 0.1042)
(0.0378, 0.1032)
(0.0372, 0.1031)

3.408
3.697
5.051

2.196
2.123
2.304

3.494
3.439
3.586

4 PMSE
UBR
GCV

0.2847
0.2993
0.2994

1.0577
1.0650

(0.0373, 0.1035)
(0.0373, 0.1116)
(0.0374, 0.1109)

3.655
3.413
3.578

2.257
2.769
2.730

3.404
3.918
3.963

5 PMSE
UBR
GCV

0.2882
0.3176
0.3155

1.0572
1.0605

(0.0370, 0.1048)
(0.0378, 0.1103)
(0.0378, 0.1105)

3.332
7.524
7.520

2.629
2.566
2.473

3.584
3,892
3.825

6 PMSE
UBR
GCV

0.2655
0.2971
0.3060

1.1190
1.1525

(0.0370, 0.1033)
(0.0367, 0.1052)
(0.0366, 0.1051)

3.671
3.339
3.335

2.181
2.665
2.684

3.515
3.545
3.478

7 PMSE
UBR
GCV

0.2698
0.2835
0.2834

1.0508
1.0504

(0.0375, 0.1031)
(0.0374, 0.0953)
(0.0374, 0.0954)

3.601
5.524
5.525

1.972
1.994
1.999

3.499
3.519
3.526

8 PMSE
UBR
GCV

0.2706
0.2758
0.2760

1.0192
1.0199

(0.0372, 0.1057)
(0.0372, 0.1021)
(0.0373, 0.1020)

3.512
3.435
3.520

2.449
2.345
2.330

3.426
3.583
3.613

9 PMSE
UBR
GCV

0.2856
0.3150
0.3138

1.1029
1.0987

(0.0370, 0.1081)
(0.0379, 0.0976)
(0.0380, 0.0977)

3.402
6.826
7.730

2.841
2.098
2.135

3.762
3.128
3.167

10 PMSE
UBR
GCV

0.2797
0.2867
0.2870

1.0250
1.0261

(0.0370, 0.1062)
(0.0379, 0.1038)
(0.0378, 0.1039)

3.442
3.810
3.847

2.559
2.168
2.176

3.683
3.609
3.621

11 PMSE
UBR
GCV

0.2755
0.2890
0.2877

1.0490
1.0443

(0.0374, 0.1058)
(0.0377, 0.1009)
(0.0376, 0.1012)

3.418
3.755
3.842

2.605
1.905
1.963

3.649
3.382
3.409

In the case of variance ratios not involving the model
errors, it appears that imputed values may well serve as
starting points for the tuning.

5. Further discussion
a. Search algorithms
With regard to Powell’s search algorithm, we set a

particularly stringent convergence criterion, and in each
of the iterative searches in � behind the results of Tables
1, 2, and 3, there were of the order of several hundred
iterations. This is clearly not acceptable in practice.
Functions like R, V, and U here tend to be smooth func-
tions of their arguments. It is very expensive to compute
a single value, and derivatives are not readily available.
Without derivatives, effective descent algorithms like
the conjugate gradient algorithm are not available. In
these circumstances we think an appropriate way to pro-
ceed in the future is via what is called the ‘‘design’’
approach in the statistics literature. It is to 1) carefully
select a set of points (the so-called design points), where
the function is to be evaluated; 2) evaluate the function

at these design points; 3) interpolate the function at the
design points using a smoothly differentiable, ‘‘legiti-
mate’’ interpolation scheme; 4) find the minimum of the
interpolant; 5) if desired, lay out another design (i.e.,
set of design points) around this minimum and evaluate
the function at the new design points; and 6) interpolate
to the design points lying within some region surround-
ing the minimum so far and find the minimum of the
new interpolant. By a legitimate interpolation scheme,
we mean one based on a positive definite or condition-
ally positive definite function; see Bates et al. (1993,
section 5). There is extensive literature utilizing this so
called design approach to efficiently find minima of
computer-generated functions of several variables that
are very expensive to evaluate. Choice of the design
points in higher dimensions is an important issue. This
approach may also be used to explore sensitivity to var-
ious parameters of interest. Bowman et al. (1993) de-
scribe the use of this approach to study the sensitivity
of a global equivalent-barotropic model to certain pa-
rameters in the model, for example, viscosity. They use
Latin hypercube designs and positive definite functions
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TABLE 4. Comparison of imputed and estimated parameters.

Case � Imputed �1/2
Dimension-
less log 10�

Minimizer R
(mean � sd)

Minimizer U
(mean � sd)

Minimizer V
(mean � sd)

1 �
�1� 2 m so �

put 2 �1� 0.158 km sm

3.514 5.531 � 0.826 6.745 � 2.450 6.591 � 2.389

�
�1� 2 m so �
2 �1� 0.726 km sf

2.186 2.345 � 0.235 2.357 � 0.142 2.328 � 0.140

�
�1� 2 m so �

1/2 2 �1b 0.055 km sput
4.428 4.145 � 0.119 3.975 � 0.385 3.966 � 0.362

2 �
�1� 1 m so �

put 2 �1� 0.158 km sm

2.912 4.628 � 1.420 5.325 � 2.143 5.801 � 2.501

�
�1� 1 m so �
2 �1� 0.242 km sf

2.538 2.546 � 0.199 2.546 � 0.204 2.593 � 0.220

�
�1� 1 m so �

1/2 2 �1b 0.055 km sput
3.826 3.934 � 0.151 3.782 � 0.327 3.818 � 0.324

3 �
�1� 2 m so �

put 2 �1� 0.2790 km sm

3.018 3.523 � 0.131 4.362 � 1.532 4.609 � 1.655

�
�1� 2 m so �
2 �1� 0.726 km sf

2.186 2.381 � 0.256 2.268 � 0.285 2.281 � 0.258

�
�1� 2 m so �

1/2 2 �1b 0.3455 km sput
2.832 3.564 � 0.109 3.505 � 0.247 3.523 � 0.240

from a convenient family, which includes covariances
of Gaussian form. Other design possibilities include the
I-, D-, and A-optimal designs (see Hardin and Sloane
1993), blending function designs also known as hyper-
bolic cross points (see Wahba 1978), and other inter-
polants including higher-order spline-like interpolants.
It may be of benefit to attempt to divide the various

tuning parameters into groups that could be studied in-
dependently of each other, at least near the minimizing
values. See the remarks at the end of section 4a con-
cerning minimization with respect to (Uo, �).
It is possible to estimate derivatives of V or U by

difference quotients or, in some cases, by differentiating
analytically and evaluating the resulting expressions by
the randomized trace technique and then using a con-
jugate gradient or other descent algorithm using deriv-
atives. Whether or not this will be more efficient than
one of the design approaches above is a question for
future research.

b. Other tuning criteria
Two other tuning criteria are in wide use, namely

ordinary cross validation (leaving out one, or leaving
out several) and various forms of maximum likelihood.
Let be the estimate of � obtained by solving(k)�̂ (�)
the relevant variational problem with the kth data point
left out; here kwould run over the (5� 164) components
of y. Letting yk be the kth component of y that was left
out, the leaving-out-one estimate of � is the minimizer
of Vo(�) defined by Vo(�) � �k [yk � Kk ,�1 (k) 2ˆn � (�)]dat
where Kk is the predicted value of yk based on(k)�̂ (�)

V(�) and Vo(�) are closely related (see Wahba(k)�̂ (�);
1990b), although their computational costs are vastly
different. A leaving-out-one estimate of � may be based
on cross-validating only the data at the last time step;
one minimizes Vo,T(�) � (T)]�1 �k[n � [ykdat k:y observed at T

. The corresponding (partial) GCV estimatek (k) 2ˆK � (�)]
is the minimizer of VT(�) given by

1
RSS (�)Tn (T)datV (�) � ,T 2

1
Tr[I � A (�)]TT� �n (T)dat

where ATT is the TTth block of A(�) and RSST(�) is the
residual sum of squares of the observations minus the
analysis carried forward to observation space (o � a)
at time T. The partial UBR estimate is defined analo-
gously. The partial GCV and partial UBR estimates are
candidates for future study; however, the number of ob-
servations at time T in the present experiment (164) is
probably not enough to estimate all five parameters in
a reproducible fashion. The GML (generalized maxi-
mum likelihood) estimate for the parametrization em-
ployed here, that is, based on factoring out , may be2�o
derived following Wahba (1990b); see also Wahba et
al. (1994) and Wahba (1985). Calculations with the
GML in the present context appear to be more costly
than the randomized trace version of the GCV, although
this may change as more advanced numerical methods
become available. Other parametrizations for maximum
likelihood estimates are also available; see, for example,
Dee (1995).
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6. Summary and conclusions

In this paper we have demonstrated an approach to
quasi-on-line tuning of multiple weighting, smoothing,
and physical parameters in variational data assimilation
procedures involving model constraints, via the gener-
alized cross-validation and unbiased risk methods. In
the examples of our experiment we have found that
physical parameters to which the analysis is sensitive
can be tuned along with one or two weighting param-
eters and a smoothing parameter. We found in our ex-
ample that the smoothing parameter is equally important
as a parameter controlling the trade-off between fit to
the data and fit to the forecast (a result that may surprise
some) and that a parameter that controls the relative
strength of the model as a weak constraint is somewhat
tunable, although not as tunable as the other parameters.
There are a number of oversimplifications that could be
removed in future experiments, including the fact that
the forecast error was generated from a known corre-
lation function that was then used in the analysis, the
linearity of nature and the model, the simplified penalty
when using the model as a weak constraint, and the
regularity of the observation points. We think the ap-
proach is worth pursuing in more sophisticated exper-
iments and raises a number of issues for further work.
The first requirement for tunability is that the analysis
be sensitive to the parameters being tuned. Sensitivity
analysis in general and for parameter estimation in par-
ticular is an important area of ongoing research. A ref-
eree has noted that the use of adjoint sensitivity analysis
may allow the ranking of the importance of parameters
with respect to a given forecast criteria. Adjoint sen-
sitivity analysis is discussed in Rabier et al. (1992),
LeDimet et al. (1995), LeDimet et al. (1997), Sun and
Yeh (1990a), and elsewhere. See also O’Sullivan (1991).
Since sensitivity analyses for certain kinds of parameters
require evaluations of the model for each setting of the
parameters of interest, further work is needed along the
lines of the ‘‘design’’ approach to efficiently study sen-
sitivity. Developments in the papers just mentioned may
be useful. In particular, it would be helpful to be able
to ascertain which groups of parameters, if any, may be
tuned independently of other parameters. We noted that
the minimizers in (Uo, �) are relatively insensitive to
changes of the other parameters within a certain range
near the minimum, but not everywhere. Sensitivity to
some other parameters, specifically certain parameters
inside covariances, can be partly studied outside of a
model and some results along these lines are under de-
velopment. Of interest are scale lengths and other pa-
rameters governing spatial variability inside forecast er-
ror or model error covariances.
One of the referees has asked us to discuss the concept

of identifiability of physical parameters. ‘‘Tunability,’’
as used in this paper, is not exactly the same as the
classic notion of identifiability, where the goal is to
estimate the ‘‘true’’ value of the unknown (distributed)

parameter, although the two are certainly closely related.
In this paper we consider a parameter in the model as
tunable, whether it is a physical, smoothing, or weight-
ing parameter, if the analysis, obtained in conjunction
with a particular model and particular pattern and error
structure of observations, is sensitive to the choice of
the parameter. An optimally tuned physical parameter
is not necessarily an optimal estimate of the true pa-
rameter according to some criteria other than providing
an optimal analysis. The best tuned parameter may be
a biased estimate of the true parameter while compen-
sating well for model error in the analysis, as discussed
in section 3f. Sun and Yeh (1990b) discuss the concept
of ‘‘�-prediction equivalence identifiability,’’ which
quantifies parameter ‘‘identifiability’’ in terms of the
effect of the parameter on prediction. Although their
definition is not exactly the same as tunability, the idea
of defining a kind of parameter identifiability in terms
of its effect on prediction is relevant here. In Sun and
Yeh (1990b) as here the answer generally depends on
the model as well as the pattern and error structure of
the observations. Other relevant references include Kra-
varis and Seinfeld (1986), Wolfenbarger and Seinfeld
(1991), and McLaughlin and Townley (1966). Note that
in this work we have only considered ‘‘carefully cho-
sen’’ parameters that we had previously determined
were tunable (via some pilot experimentation) since we
were concerned with the development of the tuning
method, given tunable parameters.
The question of the accuracy of an analysis using the

model as a strong constraint relative to an analysis based
on the model as a tuned weak constraint has been raised
here, but answered only within the very limited confines
of part of this particular experiment, and has to be raised
anew within the confines of any particular model, signal
or families of signals, and time interval. Other ap-
proaches to weakening the strong model constraint in
4D-Var are also available—see Derber (1989), Zupanski
(1993), Griffith and Nichols (1996)—and certain of their
parameters have the potential of being tuned this way.
Another important open question involves indirect data
such as satellite radiance data. Radiance data can (and
should) be incorporated into the variational problem,
even possibly including some unknown parameters in
the forward problem, which in principle could be in-
cluded in the set of parameters to be tuned. However,
the error structure of such data may have large biases
and be hard to model correctly, and so care must be
taken if it is to be included in the cross validation.
According to D. Dee (1996, personal communication)
‘‘bias estimation is the most underrated problem in data
assimilation.’’ Further research along all of these lines
is needed.
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