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Abstract

This document provides a brief introduction to the R package gss for nonparametric
statistical modeling in a variety of problem settings including regression, density estima-
tion, and hazard estimation. Functional ANOVA (analysis of variance) decompositions
are built into models on product domains, and modeling and inferential tools are provided
for tasks such as interval estimates, the “testing” of negligible model terms, the handling
of correlated data, etc. The methodological background is outlined, and data analysis is
illustrated using real-data examples.

Keywords: Bayesian confidence interval, cross-validation, functional ANOVA decomposition,
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1. Introduction

Nonparametric function estimation using stochastic data, otherwise known as smoothing, has
been studied by generations of statisticians. While scores of methods have proved successful
for univariate smoothing, ones practical in multivariate settings number far less. Smoothing
spline ANOVA models are a versatile family of smoothing methods that are suitable for both
univariate and multivariate problems.

In this article, we introduce the package gss for R (R Core Team 2014) that embodies suites
of functions implementing smoothing spline ANOVA models in the settings of Gaussian and
non-Gaussian regression, density estimation, and hazard estimation. The first public release
of gss dated back to 1999, when the total number of R packages on CRAN, the Comprehensive
R Archive Network, was in dozens. The package was originally designed as a front end to
RKPACK (Gu 1989), a collection of Ratfor routines for Gaussian regression. Over the years,
new functionalities have been added, numerical efficiency improved, the user interface refined,
and gss has now matured into a comprehensive package that can be used in a great variety
of problem settings. As active development tapers off, gss is likely to remain stable in the
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foreseeable future, and it is time to compile an introductory document for the current version
of the package.

A treatise on the theory and practice of smoothing spline ANOVA models can be found in
a recently updated monograph by the author (Gu 2013), which contains detailed discussions
of gss with extensive code illustrations. This document is intended as a software-oriented
executive summary of the monograph, and for the exposition of the key methodological ingre-
dients, technical discussions are unavoidable. Attempts have been made to keep the technical
discussions lucid if not rigorous, yet readers unfamiliar with the methodology may still find
the contents more mathematical than they might prefer.

The rest of the article is organized as follows. In Section 2, the methodological background
is outlined, and in Section 3, the basic functionality of the gss suites are introduced with
limited illustrations. Model configurations via explicit and implicit means are described in
Section 4, and extra features such as semiparametric models and mixed-effect models are
discussed in Section 5. After a brief discussion of the numerical engine in Section 6, three
real-data examples are presented in Section 7 to demonstrate data analysis using gss facilities.
Section 8 notes on some further software utilities without detailed elaboration, and Section 9
concludes the article with a brief summary.

Chunks of executable R code are collected in the supplementary material. The output of the
code, which includes a few figures, are however not reproduced in this document.

2. Methodological background

Observing Yi ∼ N (η(xi), σ
2), i = 1, . . . , n on xi ∈ [0, 1], one may estimate η(x) via the

minimization of a penalized least squares functional,

1

n

n∑
i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

(
η′′(x)

)2
dx. (1)

The minimization takes place in a function space
{
f :
∫ 1

0

(
f ′′(x)

)2
dx <∞

}
of infinite dimen-

sion, and the solution is known as a smoothing spline. The minimizer of (1) is a piecewise
cubic polynomial, so it is called a cubic smoothing spline.

The method in (1) has been generalized from univariate Gaussian regression to a variety of
estimation problems on generic domains, which include Gaussian and non-Gaussian regression,
density estimation, and hazard estimation. Key ingredients of the methodology are outlined
below.

Smoothing splines are not to be confused with penalized regression splines, with which esi-
mation takes place in a finite-dimensional function space pre-configured using basis functions
of local support. Penalized regression splines are numerically more vulnerable to the curse of
dimensionality, as the number of local-support basis functions explodes when the dimension
of the domain goes up.

2.1. Penalized likelihood estimation

The penalized least squares functional in (1) is a special case of the general penalized likelihood
functional,

L(η) + λJ(η), (2)
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where L(η) is usually taken as the minus log likelihood of the observed data and J(η) is a
quadratic “roughness” functional; the minimization of (2) takes place in H =

{
f : J(f) <∞

}
.

With different configurations of L(η) and J(η), the minimizer of (2) may or may not be a
piecewise polynomial, but it is called a smoothing spline for being the solution to a penalized
minimization problem.

Function evaluation η(x) appears in L(η), so the evaluation functional [x]f = f(x) should be
continuous in H =

{
f : J(f) <∞

}
. A space in which the evaluation functional is continuous

is known as a reproducing kernel Hilbert space possessing a reproducing kernel R(x, y), a
nonnegative-definite function satisfying the reproducing property,

(
f,R(x, ·)

)
= f(x), ∀f ∈ H,

where (·, ·) is the inner product in H.

J(f) is usually a square semi norm in H, and a square full norm in an orthogonal complement
of the null space NJ =

{
f : J(f) = 0

}
of J(f), HJ = H 	 NJ . The reproducing kernel

RJ(x, y) of HJ satisfies J
(
RJ(x, ·), f

)
= f(x), ∀f ∈ HJ . When L(η) depends on η only

through η(xi), i = 1, . . . , n, as is the case in (1), the minimizer of (2) resides in the space
NJ ⊕ span

{
RJ(xi, ·), i = 1, . . . , n

}
, of finite dimension (Kimeldorf and Wahba 1971).

For J(f) =
∫ 1

0

(
f ′′(x)

)2
dx as in (1), NJ = span{1, x}, and an orthogonal complement of NJ

is HJ =
{
f :
∫ 1

0 f(x)dx=
∫ 1

0 f
′(x)dx=0,

∫ 1
0

(
f ′′(x)

)2
dx <∞

}
.

2.2. Functional ANOVA decomposition

On X = X1 ×X2, one has a functional ANOVA decomposition of η(x) = η(x〈1〉, x〈2〉),

η(x) = (I −A1 +A1)(I −A2 +A2)η

= A1A2η + (I −A1)A2η +A1(I −A2)η + (I −A1)(I −A2)η

= η∅ + η1(x〈1〉) + η2(x〈2〉) + η12(x〈1〉, x〈2〉), (3)

where I is the identity operator, A1, A2 are averaging operators acting respectively on argu-
ments x〈1〉, x〈2〉 that satisfy A1 = 1; subscripts in brackets denote coordinates of a point on a
multi-dimensional domain while ordinary subscripts are reserved for multiple points. Exam-
ples of averaging operators include Af =

∫ b
a f(x)dx/(b − a) and Af =

∑m
i=1 f(xi)/m. The

two-way ANOVA decomposition of (3) also implies a one-way ANOVA decomposition on X
with A = A1A2, η(x) = (I −A+A)η = Aη+ (I −A)η = η∅+ ηx(x), where ηx = η1 + η2 + η12

for η1, η2, and η12 as in (3). Similar constructions in more than two dimensions can be done
directly or recursively.

For X1 × X2 discrete, η(x〈1〉, x〈2〉) is a matrix of treatment means usually denoted by µij in
standard ANOVA model notation, with (3) in the form of

µij = µ·· + (µi· − µ··) + (µ·j − µ··) + (µij − µi· − µ·j + µii)

= µ+ αi + βj + (αβ)ij ,

where µi· =
∑

j cjµij for
∑

j cj = 1, µ·j =
∑

i diµij for
∑

i di = 1, and µ·· =
∑

i,j cjdiµij .

ANOVA decompositions can be built into (2) via the configuration of J(η) in the so-called
tensor product reproducing kernel Hilbert spaces, and the resulting estimates are called tensor
product splines. Schematically, one may write the ANOVA decomposition as η =

∑
β ηβ, with

J(η) of the form J(η) =
∑

β θ
−1
β Jβ(ηβ), where Jβ(ηβ) quantify the roughness of ηβ and θβ are

tuning parameters adjusting their relative weights in J(η).
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Selective term elimination in ANOVA decompositions helps to combat the curse of dimension-
ality in estimation; it also facilitates the interpretation of the fitted models. Models containing
only main effects are known as additive models (Hastie and Tibshirani 1990).

2.3. Efficient approximation

As noted earlier, the minimizer of (2) often resides in NJ ⊕ span
{
RJ(xi, ·), i = 1, . . . , n

}
,

permitting numerical computation, but the computation is generally of the order O(n3).
When L(η) depends on η via more than a finite number of function evaluations, however, the
exact solution is usually intractable numerically.

Under mild conditions, as n → ∞ and λ → 0, the minimizer η̂ of (2) in H converges to
the true η0 at a rate U(η̂ − η0) = Op(n

−1λ−1/r + λp), where U(η̂ − η0) is a setting-specific
quadratic loss, r > 1 codes the “smoothness” of functions in H implied by J(f), and p ∈ [1, 2]
depending on how smooth η0 is; in the setting of (1), U(g) =

∫ 1
0 g

2(x)f(x)dx for f(x) the

limiting density of {xi}, r = 4, and p = 2 when
∫ 1

0

(
η

(4)
0 (x)

)2
dx <∞. Now consider a space

H∗ = NJ ⊕ span
{
RJ(zj , ·), j = 1, . . . , q

}
, (4)

where {zj} is a random subset of {xi}. The minimizer η̂∗ of (2) in H∗ converges to η0 at
the same rate as η̂ when qλ2/r → ∞, hence is an efficient approximation of η̂. The optimal
convergence rate Op(n

−pr/(pr+1)) is achieved at λ � n−r/(pr+1), so one needs q � n2/(pr+1)+ε,
∀ε > 0. One may calculate η̂∗ for practical estimation, as is done in most of the gss suites,
and the computation is of the order O(nq2).

Unlike penalized regression splines, the space H∗ is data-adaptive rather than pre-configured,
with resources allocated only where needed. This does not make the estimation problem
any easier, but does make the numerical tasks much more manageable on high-dimensional
domains.

Unless q = n, the minimizer of (1) in H∗ is no longer a piecewise cubic polynomial, but we
will abuse the terminology and still call it a cubic spline.

2.4. Cross-validation

For the method in (2) to work in practice, a critical issue is the proper selection of smoothing
parameters, the λ in front of J(η) and the θ’s hidden in J(η) for tensor product splines.

For Gaussian regression as in (1), write Y =
(
Y1, . . . , Yn

)>
and Ŷ =

(
ηλ(x1), . . . , ηλ(xn)

)>
,

where the dependence of η̂ = ηλ on λ is spelled out. One has Ŷ = A(λ)Y, where A(λ) is
the so-called smoothing matrix and the argument λ also represents the θ’s if present. One
may select the smoothing parameters by minimizing the generalized cross-validation score of
Craven and Wahba (1979),

V (λ) =
n−1Y>

(
I −A(λ)

)2
Y{

n−1tr
(
I − αA(λ)

)}2 , (5)

for α = 1, which is designed to track the mean square error
∑n

i=1

(
ηλ(xi) − η0(xi)

)2
. Cross-

validation occasionally yields severe undersmoothing, and a fudge factor α = 1.4 proves to
be effective in curbing undersmoothings on “bad” samples while maintaining the generally
favorable performances of cross-validation on “good” ones.
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In most other settings, one may use a setting-specific Kullback-Leibler discrepancy KL(η0, ηλ)
as the performance measure for the minimizer ηλ of (2), and schematically, KL(η0, ηλ) =
A(ηλ)+B(η0, ηλ)+C(η0), where A(ηλ) can be computed, C(η0) can be dropped, and B(η0, ηλ)
can be estimated by some version of cross-validation. The resulting cross-validation scores
are typically of the form

V (λ) = A(ηλ) + B̂(η0, ηλ) = L(ηλ) + αP (ηλ) (6)

for α = 1, where the likelihood L(ηλ) decreases with λ while P (ηλ) moves in the opposite
direction; see, e.g., Gu and Wang (2003). A fudge factor α > 1 may improve performance in
some settings but not in some others, though a larger α generally yields a smoother estimate.

2.5. Bayesian confidence intervals

The square norm J(f) in HJ and the reproducing kernel RJ(·, ·) are “inverses” of each other,
and λJ(η) in (1) acts like the minus log likelihood of a Gaussian process prior with E

[
η(x)

]
= 0

and E
[
η(x)η(y)

]
∝ RJ(x, y). The minimizer η̂ yields the posterior mean under such a prior

and one may also calculate the posterior standard deviation s(x), yielding Bayesian confidence
intervals, η̂(x)± 1.96 s(x), for η(x) (Wahba 1983). Doing the analysis on individual terms in
an ANOVA decomposition, one gets the component-wise intervals (Gu and Wahba 1993).

When L(η) is non-quadratic such as with non-Gaussian regression, one may consider its
quadratic approximation at η̂, Qη̂(η); the approximate posterior minus log likelihood Qη̂(η)+
λJ(η) is Gaussian with mean η̂, based on which approximate Bayesian confidence intervals
can be constructed.

2.6. Kullback-Leibler projection

ANOVA structures may be enforced via selective term elimination in estimation, and may be
inferred from fitted models containing possibly redundant terms. The latter task resembles
hypothesis testing, with H0 : η ∈ H0 versus Ha : η ∈ H0 ⊕ H1; for an example, consider
H0 = {η : η = η∅ + η1 + η2} and H1 = {η : η = η12}.
Lacking sampling distributions in settings with infinite-dimensional nulls, the classical testing
approach is of little help in this situation. Instead, an approach based on the Kullback-Leibler
geometry was developed in Gu (2004): one calculates an estimate η̂ ∈ H0 ⊕ H1, obtains its
Kullback-Leibler projection η̃ ∈ H0 by minimizing a setting-specific KL(η̂, η) over η ∈ H0,
then inspects an “entropy decomposition,” KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc), an exact or
approximate identity, where ηc is a degenerate fit such as a constant regression function or a
uniform density. When KL(η̂, η̃)/KL(η̂, ηc) is small, one loses little by cutting out H1.

3. Basic functionality: Estimation and inference

Listed in Table 1 are gss suites with brief descriptions. To be presented in this section are
their basic user interfaces with core arguments and some defaults. The syntax of the gss
suites has been designed to resemble that of the lm and glm suites in base R. Each suite has
a fitting function and utility functions for the evaluation of the fits, and most also have a
method project implementing the Kullback-Leibler projection or a variant thereof.
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Suite Purpose/Feature

ssanova Gaussian regression
ssanova9 Gaussian regression, with correlated data
ssanova0 Gaussian regression, legacy routine
gssanova Non-Gaussian regression, direct cross-validation
gssanova1 Non-Gaussian regression, indirect cross-validation
gssanova0 Non-Gaussian regression, legacy routine with indirect CV

ssden Density estimation
ssden1 Density estimation, in high dimensions
sscden Conditional density estimation
sscden1 Conditional density estimation, for large samples
ssllrm Conditional density estimation, with discrete y in f(y|x)

sshzd Hazard estimation, with or without covariate
sshzd1 Hazard estimation, with continuous covariate
sscox Estimation of relative risk in proportional hazard models

Table 1: gss suites with brief descriptions.

3.1. Regression suites

For Gaussian regression, one may use ssanova or ssanova0. For non-Gaussian regression,
one may use gssanova, gssanova1, or gssanova0. For Gaussian regression with correlated
data, one may use ssanova9.

ssanova

The following sequence loads the NOx data included in gss and calculates the minimizer of
(1) in H∗ of (4), with λ minimizing V (λ) in (5) for α = 1.4.

R> data("nox", package = "gss")

R> fit <- ssanova(log(nox) ~ equi, data = nox)

The default α = 1.4 is based on simulations of limited scales (Kim and Gu 2004), and may
be overridden via an argument alpha. One may also choose to select λ using the GML score
of Wahba (1985) through method = "m". To evaluate the fit on a grid, one may try

R> xx <- sort(nox$equi)

R> est <- predict(fit, data.frame(equi = xx), se = TRUE)

where est is a list with η̂(x) in est$fit and s(x) in est$se. The fitted curve can then be
plotted along with the Bayesian confidence intervals.

R> plot(nox$equi, log(nox$nox), col = 3)

R> lines(xx, est$fit)

R> lines(xx, est$fit + 1.96 * est$se, col = 5)

R> lines(xx, est$fit - 1.96 * est$se, col = 5)

The default q in (4) is set at 10n2/9, again based on simulations (Kim and Gu 2004), and can
be overridden via an argument nbasis. Due to the random selection of {zj} in (4), repeated
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calls to ssanova generally return slightly different fits unless q = n, but one may ensure
the same selection of {zj} by using an argument seed, or one may pass the same {zj} into
subsequent calls through id.basis = fit$id.basis.

To fit a tensor product spline on X = X1 ×X2 with all terms included, use

R> fit <- ssanova(y ~ x1 * x2)

and to evaluate η1(x) + η12(x) for x〈1〉 in xx1 and x〈2〉 in xx2, say, with standard errors, try

R> predict(fit, data.frame(x1 = xx1, x2 = xx2), se = TRUE,

+ inc = c("x1", "x1:x2"))

To calculate the Kullback-Leibler projection into the space of additive models, use

R> project(fit, inc = c("x1", "x2"))

which returns a list object with the element ratio containing the ratio KL(η̂, η̃)/KL(η̂, ηc).
To fit an additive model, use

R> fit <- ssanova(y ~ x1 + x2)

gssanova and gssanova1

Non-Gaussian regression models can be fitted using gssanova or gssanova1, which calcu-
late the minimizer of (2) in H∗ of (4); gssanova uses direct cross-validation as in (6) for
smoothing parameter selection, while gssanova1 employs the indirect cross-validation of Gu
(1992a). Discussions concerning direct and indirect cross-validation can be found in Gu (2013,
Section 5.2). Practical performances of gssanova and gssanova1 for different distribution
families were compared in Gu (2013, Section 5.4, 8.6) via limited simulations.

The syntax is similar to that of glm in base R, but the argument family only takes character
strings from the list "binomial", "poisson", "Gamma", "inverse.gaussian", "nbinomial",
"weibull", "lognorm", and "loglogis"; only one link is used for each family, one that is
free of constraint. The likelihood term L(η) in (2) is of the form,

L(η) =
1

n

n∑
i=1

li
(
η(xi);Yi

)
.

The link and the minus log likelihood l(η; y) for exponential families binomial, Poisson,
Gamma, and inverse Gaussian are listed in Table 2, along with those of the negative bi-
nomial family. For the binomial family, the response may be two columns of (yi,mi − yi), or
a column of yi/mi with mi entered via an optional argument weights. For the negative bi-
nomial family, the response is either two columns of (yi, νi), or a column of yi with a common
ν to be estimated along with η(x).

The following sequence generates some synthetic binomial data and calculates a cubic spline
logistic fit.



8 Smoothing Spline ANOVA Models: R Package gss

Family Response density f(y) Link l(η; y) = − log f(y)

Binomial
(
m
y

)
py(1− p)m−y η = log

{
p/(1− p)

}
−yη +m log(1 + eη)

Poisson λye−λ/y! η = log λ −yη + eη

Gamma 1
βαΓ(α)y

α−1e−y/β η = logµ = log(αβ) ye−η + η

Inv. Gauss. 1√
2πσ2

y−3/2e−(y−µ)2/2σ2µ2y η = logµ ye−2η/2− e−η

Neg. Binom. Γ(ν+y)
y! Γ(ν) p

ν(1− p)y η = log
{
p/(1− p)

}
(ν + y) log(1 + eη)− νη

Table 2: Likelihood for exponential families in gssanova.

R> x <- (0:100)/100

R> eta <- 400 * x^5 * (1 - x)^3 - 1

R> p <- plogis(eta)

R> y <- rbinom(x, 3, p)

R> fit <- gssanova(cbind(y, 3 - y) ~ x, family = "binomial")

gssanova fits can also be evaluated using predict, with η̂(x) and s(x) on the link scale.

R> est <- predict(fit, data.frame(x = x), se = TRUE)

The fit can then be plotted along with Bayesian confidence intervals on the probability scale.

R> plot(x, plogis(est$fit), type = "l", ylim = c(0, 1))

R> points(x, y/3, col = 3)

R> lines(x, plogis(est$fit + 1.96 * est$se), col = 5)

R> lines(x, plogis(est$fit - 1.96 * est$se), col = 5)

The method project also works with gssanova fits.

The Weibull, log normal, and log logistic families are the same accelerated life models as
implemented in the survreg suite of the survival package (Therneau and Grambsch 2000;
Therneau 2014). The response is of the form Y = (X, δ, Z), where X = min(T,C) is the
follow-up time for T the lifetime of an item and C the right-censoring time, δ = I[T≤C] is the
censoring indicator, and Z < X is a possible left-truncation time at which the item enters
surveillance. Of interest is the estimation of the hazard function λ(t) = −d logS(t)/dt, where
S(t) = P(T > t) is the survival function.

For the accelerated life models, log T follows a location-scale family distribution, with

λ(t;µ, σ) =
1

σt

f(z)

1− F (z)
, for z =

log t− µ
σ

,

where f(z) is a probability density on (−∞,∞) and F (z) is the associated distribution func-
tion; the Weibull family has f(z) = we−w for w = ez, the log normal family has f(z) = φ(z),
and the log logistic family has f(z) = w/(1 +w)2 for w = ez. One is to estimate the location
parameter η = µ as a function of the covariate u, and the minus log likelihood is given by

l(η;Y ) = δ log λ(X;µ, σ)−
∫ X

Z
λ(t;µ, σ)dt,
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where Z = 0 if there is no left-truncation.

Instead of a Surv(...) construct for survreg, the response for gssanova should be a matrix
of two or three columns, with Xi in the first column, δi in the second, and Zi in an optional
third. The scale parameter σ is assumed to be common and is estimated along with η(u), in
the form of ν = σ−1.

The following sequence loads the Stanford heart transplant data included in gss and fits a
Weibull regression, with the age at transplant as the covariate.

R> data("stan", package = "gss")

R> fit <- gssanova(cbind(time + 0.01, status) ~ age, data = stan,

+ family = "weibull")

One has a proportional hazard model in a Weibull fit,

λ(t, u) =
ν

t
ez = νtν−1e−νη(u) = λ0(t)λ1(u)

where the relative risk λ1(u) is defined up to a multiplicative constant. Cutting out η∅ from
η = η∅ + ηu, one may evaluate and plot the relative risk e−νηu(u).

R> est <- predict(fit, stan, se = TRUE, inc = "age")

R> ix <- order(stan$age)

R> age0 <- stan$age[ix]

R> plot(age0, exp(-fit$nu * est$fit[ix]), type = "l", ylim = c(0,5))

R> lines(age0, exp(-fit$nu * (est$fit[ix] - 1.96 * est$se[ix])), col = 5)

R> lines(age0, exp(-fit$nu * (est$fit[ix] + 1.96 * est$se[ix])), col = 5)

ssanova0 and gssanova0

The original ssanova and gssanova referred to in Gu (2002) have been renamed as ssanova0
and gssanova0, which calculate the minimizer of (2) inH using the legacy RKPACK routines.
The numerical treatments in RKPACK take advantage of a special structure that only holds
for q = n, and the O(n3) algorithms in RKPACK often execute faster than the O(nq2)
algorithms powering ssanova, gssanova, and gssanova1. Repeated calls to ssanova0 or
gssanova0 yield identical results, as q = n in this setting.

Unfortunately, important modeling tools such as the Kullback-Leibler projection and the
mixed-effect models (see the section on optional arguments) are numerically incompatible
with the algorithms implemented in RKPACK, and an α > 1 in (5) is difficult to insert in
the RKPACK routines. With limited capabilities compared to the alternatives, these legacy
suites are largely obsolete.

ssanova9

For Gaussian regression with correlated data, Y ∼ N (η(x), σ2W−1), where Y = (Y1, . . . , Yn)>

and η(x) =
(
η(x1), . . . , η(xn)

)>
, one may set

L(η) =
(
Y − η(x)

)>
W
(
Y − η(x)

)
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in (2), where W may depend on a few correlation parameters. One may use ssanova9 in
this setting, with the smoothing parameters selected along with correlation parameters by a
cross-validation score derived in Han and Gu (2008).

An argument cov specifies W in ssanova9 calls. For W−1 known, use cov = list("known",

w), where w contains W−1. For longitudinal observations, use cov = list("long", id),
where id is a factor; when data at the same id levels are grouped together in Y, W−1 = I +
γZZ>, where ZZ> is block-diagonal with blocks of the form 11>. For serially correlated data,
one may set cov = list("arma", c(p, q)) to use an ARMA(p, q) model for ε = Y− η(x).

More generally, one may enterW−1 via cov = list(fun = fun, env = env, init = init),
with W−1 to be evaluated by cov$fun(gamma, cov$env); env contains constants and init

provides initial values for the correlation parameters γ, which should be on scales free of
constraint.

3.2. Density estimation suites

To estimate a probability density f(x) on X , one may use ssden or ssden1. To estimate a
conditional density f(y|x) on X × Y, use sscden or sscden1. For Y discrete, one may use
ssllrm to fit f(y|x), which is regression with cross-classified responses.

ssden

A probability density f(x) is positive and integrates to one. Consider a logistic density
transform f(x) = eη(x)/

∫
X e

η(x)dx, which can be made one-to-one by cutting out η∅ in a
one-way ANOVA decomposition η = η∅ + ηx. One may set

L(η) = − 1

n

n∑
i=1

η(Xi) + log

∫
X
eη(x)dx

in (2), where Xi are independent samples from f(x).

The following sequence draws samples from a normal mixture and fits a cubic spline to the
log density.

R> u <- runif(100)

R> x <- rnorm(100) * 0.1

R> x <- ifelse(u > 1/3, x + 0.7, x + 0.3)

R> fit <- ssden(~ x)

The domain X does contribute to estimation through
∫
X e

η(x)dx, and it is a good idea to
specify X explicitly via domain = data.frame(x = c(a, b)); if unspecified, as is the case
in the call above, the domain is set internally, extending the data range by 5% on both ends.

To use the fitted univariate density, one has the usual d-, p-, and q- functions, but no r-.

R> domain <- fit$domain$x

R> xx <- seq(domain[1], domain[2], length = 101)

R> plot(xx, dssden(fit, xx), type = "l")

R> qq <- qssden(fit, (0:10)/10)

R> pssden(fit, qq)



Journal of Statistical Software 11

On product domains, ANOVA structures in log density may have conditional independence
implications. A log density η on X1 ×X2 ×X3 containing all interactions can be fitted by

R> fit <- ssden(~ x1 * x2 * x3)

and one may check the Kullback-Leibler projection

R> project(fit, inc = c("x1", "x2", "x3", "x1:x3", "x2:x3"))

A log density of the form η = η1 + η2 + η3 + η13 + η23 implies conditional independence of
X〈1〉 and X〈2〉 given X〈3〉, or (X〈1〉⊥X〈2〉)|X〈3〉, to be fitted via

R> fit <- ssden(~ (x1 + x2) * x3)

The fitted density at xx can still be evaluated through dssden(fit, xx), but xx here must
be a data frame; pssden and qssden however are meaningless for a multivariate density. One
may evaluate a “slice” of the fitted multivariate density via the implied conditional density,
say f(x〈1〉|x〈2〉 = 0.5, x〈3〉 = 0.8), via

R> cond <- data.frame(x2 = 0.5, x3 = 0.8)

R> cdssden(fit, xx1, cond = cond)$pdf

R> qq <- cqssden(fit, (0:10)/10, cond = cond)

R> cpssden(fit, qq, cond = cond)

Additive models for the log density on product domains imply the mutual independence of
the marginals, and in this circumstance, it is preferred to estimate the marginal densities
separately.

sscden

Consider a logistic conditional density transform f(y|x) = eη(x,y)/
∫
Y e

η(x,y)dy, which can be
made one-to-one by cutting out η∅+ ηx in an ANOVA decomposition η = η∅+ ηx + ηy + ηx,y.
Observing (Xi, Yi), i = 1, . . . , n, one may set

L(η) = − 1

n

n∑
i=1

{
η(Xi, Yi)− log

∫
Y
eη(Xi,y)dy

}
in (2) for the estimation of f(y|x). Domains X and Y are generic, and can be product domains
themselves, so ηy and ηx,y may be further decomposed.

The following sequence loads the penny thickness data included in gss and fits a tensor product
spline to the log conditional density.

R> data("penny", package = "gss")

R> fit <- sscden(~ year * mil, ~ mil, data = penny)

The first formula in a sscden call specifies model terms and the second formula lists the
y-variables; η∅ and terms in ηx are removed internally. It would be a good idea to specify Y
explicitly via ydomain.

The fitted f(y|x) can be evaluated using dsscden, and when Y is a real interval, as is the
case here, one may also use psscden and qsscden. The code below plots selected quantiles
of f(y|x) as functions of x.
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R> quan <- qsscden(fit, c(0.05, 0.25, 0.5, 0.75, 0.95),

+ data.frame(year = penny$year))

R> plot(penny$year, penny$mil, col = 3)

R> for (i in 1:5) lines(penny$year, quan[i, ])

One may specify more than one y-variable in a sscden call, though at least one of them must
be continuous. To evaluate conditional densities such as f(y〈1〉|x, y〈2〉), one has the cdsscden,
cpsscden, and cqsscden functions.

ssllrm

For Y binary, the estimation of f(y|x) reduces to logistic regression, and for Y discrete in
general, it generalizes logistic regression to settings with cross-classified responses. To accom-
modate features specific to an all discrete Y, ssllrm was created.

The following R function generates Y |x on Y = {0, 1}2, with py(x) = P(Y = y|x) given by(
p0,0(x) p0,1(x)
p1,0(x) p1,1(x)

)
∝
(

2q1(x)q2(x) q1(x)p2(x)
p1(x)q2(x) 2p1(x)p2(x)

)
,

where p1(x) + q1(x) = p2(x) + q2(x) = 1; the odds ratio p0,0(x)p1,1(x)/p1,0(x)p0,1(x) = 4 is a
constant here, independent of x.

R> rtest <- function(x) {

+ p1 <- plogis(400 * x^5 * (1 - x)^3 - 1)

+ p2 <- plogis(50 * x^2 * (1 - x)^4)

+ q1 <- 1 - p1; q2 <- 1 - p2

+ p <- cbind(2 * q1 * q2, q1 * p2, p1 * q2, 2 * p1 * p2)

+ y1 <- y2 <- NULL

+ for (i in 1:length(x)) {

+ ywk <- rmultinom(1, 1, p[i, ])

+ y1 <- c(y1, ywk[3] + ywk[4])

+ y2 <- c(y2, ywk[2] + ywk[4])

+ }

+ cbind(y1, y2)

+ }

The sequence below draws a sample and fits f(y|x).

R> x <- runif(200)

R> ywk <- rtest(x)

R> y1 <- factor(ywk[, 1])

R> y2 <- factor(ywk[, 2])

R> fit <- ssllrm(~ x * y1 * y2, ~ y1 + y2)

where the y-variables must be factors. The log conditional density is of the form

η = ηy + ηx,y = η1 + η2 + η12 + ηx1 + ηx2 + ηx12,

where ηy(y〈1〉, y〈2〉) is decomposed into η1 + η2 + η12 and ηxy(x, y〈1〉, y〈2〉) into ηx1 + ηx2 + ηx12;
the log odds ratio only involves η12 + ηx12. To check for (Y〈1〉⊥Y〈2〉)|X, or η12 + ηx12 = 0,
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R> project(fit, inc = c("y1", "y2", "x:y1", "x:y2"))

and to check for a constant odds ratio, or ηx12 = 0,

R> project(fit, inc = c("y1", "y2", "x:y1", "x:y2", "y1:y2"))

To evaluate the fitted f(y|x) on a grid, use

R> xx <- seq(0, 1, length = 51)

R> predict(fit, data.frame(x = xx))

which returns a matrix with columns corresponding to y values as ordered in fit$qd.pt.
Confidence intervals do not make sense for density estimates due to normalization, but for a
y-contrast of log f(y|x),

θ =
∑

y cy log f(y|x) =
∑

y cy η(x, y),
∑

y cy = 0,

the normalizing constant
∫
Y e

η(x,y)dy cancels out. The log odds ratio is a y-contrast, and one
may evaluate it on a grid along with standard errors

R> est <- predict(fit, data.frame(x = xx), odds = c(1, -1, -1, 1),

+ se = TRUE)

where odds specifies cy in the order of fit$qd.pt.

ssden1

Integrals of the form
∫
X h(x)eη(x)dx have to be performed in ssden, which is numerically

prohibitive for a high-dimensional X . Jeon and Lin (2006) set

L(η) =
1

n

n∑
i=1

e−η(Xi) +

∫
X
η(x)ρ(x)dx

in (2) for ρ(x) a known density, with the resulting estimate f(x) ∝ eη(x)ρ(x). When ρ(x) =∏
γ ργ(x〈γ〉) on X =

∏
γ Xγ ,

∫
X η(x)ρ(x)dx can be calculated as sums of products of uni-

variate integrals, and ANOVA structures in η(x) have the same conditional independence
implications; the marginal density estimates on Xγ are natural choices for ργ(x〈γ〉).

The approach is implemented in ssden1 with the same user interface as ssden. Utility
functions dssden, cdssden, cpssden, and cqssden also work with ssden1 fits, except that the
f(x) values returned from dssden are unnormalized. A variant of Kullback-Leibler projection
is implemented in project, one that avoids integrals of the form

∫
X h(x)eη(x)dx.

sscden1

For the estimation of f(y|x), integrals of the form
∫
Y h(Xi, y)eη(Xi,y)dy are performed repeat-

edly in sscden, which can be numerically formidable for n large despite the typically low
dimension of Y; the drag here is the number of distinctive Xi’s. One may set

L(η) =
1

n

n∑
i=1

{
e−η(Xi,Yi) +

∫
Y
η(Xi, y)ρ(Xi, y)dy

}
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in (2) for some ρ(x, y) satisfying
∫
Y ρ(x, y)dy = 1, ∀x, with the resulting estimate f(y|x) ∝

eη(x,y)ρ(x, y). The term ηx is needed in η for the approach to work, though it cancels out in
the fitted f(y|x). The integrals

∫
Y η(Xi, y)ρ(Xi, y)dy are linear combinations of integrals of

basis functions, which only need to be computed once for all.

The approach is implemented in sscden1, with syntax the same as for sscden except for
the specification of ρ(x, y) via an argument rho. The default rho = list("xy") “estimates”
ρ(x, y) internally using ssanova, and rho = list("y") orders a marginal density estimate
on Y from ssden for use as ρ(x, y). One may also create ρ(x, y) externally and pass it into
sscden1 through rho = list(fun = fun, env = env), to be evaluated via rho$fun(x, y,

rho$env, outer), where env contains constants and outer indicates whether to return a
vector of ρ(xi, yi) or a matrix ρ(x,y>).

The utility functions for the evaluation of f(y|x) also work for sscden1 fits. A variant of
Kullback-Leibler projection is implemented in project, but the tool is not as useful here; with
ρ(x, y) in the scene, conditional independence may not be inferable just from the ANOVA
structures in η(x, y).

3.3. Hazard estimation suites

Observing (Xi, δi, Zi, Ui), i = 1, . . . , n, where X = min(T,C), δ = I[T≤C], Z < X, and U

is a possible covariate, one is to estimate the hazard λ(t, u) = eη(t,u). The accelerated life
models via gssanova are parametric in t, and as more flexible alternatives, one may use
sshzd or sshzd1 for fully nonparametric estimation. In case a proportional hazard model
holds, λ(t, u) = λ0(t)λ1(u), one may also use sscox to estimate the relative risk λ1(u).

sshzd

With or without a covariate, one may set

L(η) = − 1

n

n∑
i=1

{
δiη(Xi, Ui)−

∫ Xi

Zi

eη(t,Ui)dt
}

in (2), where Ui drops out if absent in the data, and Zi = 0 if there is no left-truncation.

The following sequence fits a log hazard of the form η = η∅ + ηt + ηu + ηt,u to the Stanford
heart transplant data.

R> data("stan", package = "gss")

R> fit <- sshzd(Surv(futime, status) ~ futime * age, data = stan)

Data scatter more evenly on the t∗ =
√
t scale, and futime is thus transformed; the hazard

on the original time scale should be eη(
√
t,u)/2

√
t.

The Surv(t, delta, z = 0) construct has a similar appearance as that in the survival
package, but is parsed differently here; the t main effect must appear among the model
terms.

To assess the plausibility of a proportional hazard model, or an additive model in log hazard,
check the Kullback-Leibler projection

R> project(fit, inc = c("futime", "age"))
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To evaluate the fitted eη(t∗,u), say 400 days after transplant (so futime = 20) for a 30-year-old
and 100 days after transplant for a 20-year-old, use

R> new <- data.frame(futime = c(20, 10), age = c(30, 20))

R> est <- hzdrate.sshzd(fit, new, se = TRUE)

where est$fit contains eη̂(t∗,u) and est$se contains the standard error s(t∗, u) of η̂(t∗, u).
For hazard curves at given u values, say for a 20-year-old and a 30-year-old, try

R> tt <- seq(0, 60, leng = 51)

R> age0 <- c(20, 30)

R> hzdcurve.sshzd(fit, tt, data.frame(age = age0))

One may also calculate the expected survival via

R> survexp.sshzd(fit, tt, data.frame(age = age0))

which is simply the estimated survival probability Ŝ(t∗, u) = exp
{
−
∫ t∗

0 eη̂(s,u)ds
}

.

sscox

For λ(t, u) = λ0(t)λ1(u), one may treat the base hazard λ0(t) as a nuisance and estimate the
relative risk λ1(u) = eη(u), using in (2) the partial likelihood,

L(η) = − 1

n

n∑
i=1

δi

{
η(Ui)− log

n∑
j=1

I[Zj<Xi≤Xj ]e
η(Uj)

}
.

As λ1(u) is defined only up to a multiplicative constant, we choose to cut out η∅ from η(u) =
η∅ + ηu.

The following sequence estimates the relative risk of age in stan and evaluates the fit on the
data points.

R> fit <- sscox(Surv(time, status) ~ age, data = stan)

R> risk <- predict(fit, data.frame(age = stan$age), se = TRUE)

Only the ordering of Xi matters here, so one may use either the original time or the trans-
formed futime and get the same fit. The fitted relative risk eη̂u(ui) are in risk$fit and the
standard error s(ui) of η̂u(ui) are in risk$se. To estimate the base hazard given ri = ηu(ui),
one may use sshzd with offset.

R> fit.b <- sshzd(Surv(futime, status) ~ futime, data = stan,

+ offset = log(risk$fit))

which effectively uses in (2) the likelihood

L(η) = − 1

n

n∑
i=1

{
δiη(Xi)−

∫ Xi

Zi

eη(t)+ridt
}
.

The base hazard is easily evaluated on a grid.
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R> hzd.b <- hzdcurve.sshzd(fit.b, tt, se = TRUE)

Note that the relative risk and the base hazard in a proportional hazard model can be esti-
mated jointly using sshzd through penalized full likelihood.

R> fit0 <- sshzd(Surv(futime, status) ~ futime + age, data = stan)

R> risk0 <- hzdrate.sshzd(fit0, data.frame(age = stan$age), se = TRUE,

+ inc = "age")

R> hzd.b0 <- hzdrate.sshzd(fit0, data.frame(futime = tt), se = TRUE,

+ inc = c("1", "futime"))

sshzd1

With continuous covariates Ui, integrals of the form
∫ Xi
Zi

h(t, Ui)e
η(t,Ui)dt are performed re-

peatedly in sshzd, putting it under similar numerical burdens as sscden. As an alternative,
one may use

L(η) =
1

n

n∑
i=1

{
δie
−η(Xi,Ui)ρ(Xi, Ui) +

∫ Xi

Zi

η(t, Ui)ρ(t, Ui)dt
}

in (2); integrals
∫ Xi
Zi

η(t, Ui)ρ(t, Ui)dt are linear combinations of integrals of basis functions,

which only need to be computed once for all. The hazard estimate is still eη(t,u), not too
sensitive to the choice of ρ(t, u), which essentially serves as weights in estimation.

The approach is implemented in sshzd1, with the same syntax and utility functions as sshzd.
The default rho = list("marginal") uses as ρ(t, u) a covariate-free hazard estimate from
sshzd, and rho = list("weibull") fits a Weibull regression using gssanova and uses as
ρ(t, u) the resulting hazard estimate λ(t, u) = νtν−1e−νη(u).

4. Model configurations

Model terms are specified by the model formula as in lm, and schematically, the configurations
of the terms are through the construction of the“inverse”of J(η) =

∑
β θ
−1
β Jβ(ηβ), RJ(x, y) =∑

β θβRβ(x, y). For ηβ a main effect, say η1(x〈1〉), Rβ(x, y) = R〈1〉(x〈1〉, y〈1〉) is simply a kernel
on X1, and for ηβ an interaction, say η12(x〈1〉, x〈2〉), Rβ(x, y) = R〈1〉(x〈1〉, y〈1〉)R〈2〉(x〈2〉, y〈2〉) is
the product of kernels on X1 and X2. Besides the model formula, model configurations are
through the specifications of the marginal kernels.

4.1. Numerical vectors

For x a numerical vector x〈γ〉 ∈ Xγ = [a, b], the default marginal kernel is the “inverse”

of
∫ b
a

(
f ′′(x)

)2
dx, and terms ηβ involving x〈γ〉 satisfy side conditions

∫ b
a ηβ(x)dx〈γ〉 = 0. The

domain may be set internally by extending the data range 5% on each end, or may be specified
explicitly via

type = list(x = list("cubic", c(a, b)))
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In density estimation suites, specifications via domain or ydomain also get used in kernel
generation.

A useful alternative to the default kernel is a periodic cubic spline kernel, the “inverse” of∫ b
a

(
f ′′(x)

)2
dx for f(x) periodic on [a, b]. Such a kernel is specified via

type = list(x = list("per", c(a, b)))

and terms involving such a x〈γ〉 are periodic in x〈γ〉.

4.2. Numerical matrices

The marginal domains Xγ are generic, which can be mathematically multi-dimensional. Two
such cases are the Euclidean space (−∞,∞)d and the unit sphere S. With a matrix x in the
model formula, one may entertain multi-dimensional marginals, usually geographic/spatial,
in tensor product splines.

The default kernel for a numerical matrix x is a thin-plate spline kernel of order m = 2, which,
for x〈γ〉 = z = (z〈1〉, z〈2〉) ∈ (−∞,∞)2, is the “inverse” of∫ ∫ ( ∂2f

∂z2
〈1〉

+ 2
∂2f

∂z〈1〉∂z〈2〉
+

∂2f

∂z2
〈2〉

)2
dz〈1〉dz〈2〉.

One needs 2m > d, and to specify an order m 6= 2, use

type = list(x = list("tp", m))

Unless more detailed customization is done via type, terms ηβ involving such an x〈γ〉 add
up to zero on the data points along x〈γ〉,

∑
i ηβ(. . . , xi〈γ〉, . . . ) = 0. Thin-plate splines are

invariant to arbitrary shifting and rotation of the coordinate system on the domain.

For x with two columns, one may alternatively treat it as x〈γ〉 ∈ S and specify a spherical
spline via

type = list(x = list("sphere", m))

where m = 2, 3, 4 with 2 the default order; technical details are to be found in Wahba (1981).
The first column in x should be the latitude in the range [−90, 90] and the second column
the longitude in the range [−180, 180]. Spherical splines are invariant to rotations of the
coordinates on S, and terms ηβ involving such an x〈γ〉 satisfy

∫
S ηβ(x)dx〈γ〉 = 0.

To preserve a matrix element in a data frame, one may use the as-is function I(...), as
shown below.

R> test <- data.frame(x = 1:5, y = I(cbind(1:5, 5:9)))

R> test[, 2]

R> test$y

4.3. Factors

On a discrete Xγ , a function f(x) is a vector and a reproducing kernel R(x, y) is a square
matrix, and a quadratic “roughness” functional can be written as a quadratic form J(f) =
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f>Jf for J a nonnegative-definite matrix. In the column space of J with the square norm
f>Jf , the reproducing kernel is J+, the Moore-Penrose inverse of J .

Discrete variables enter the model formula as factors. For x nominal, the kernel is the one asso-
ciated with J(f) =

∑
x

(
f(x)− f̄

)2
, where f̄ =

∑
x f(x)/

∑
x 1. For x ordinal on {1, . . . ,K},

the kernel is associated with J(f) =
∑K

x=2

(
f(x) − f(x − 1)

)2
. For x binary, there is no

distinction.

5. Optional arguments

We now discuss a couple of optional arguments that help to broaden the scope of application.

5.1. Parametric terms

In some applications, semiparametric models of the form ζ(x, z) = η(x) + z>β are desirable,
where η is “nonparametric” and z>β comprises parametric terms. Replacing η by ζ in the
likelihood L(η) in (2), and minimizing the resulting functional with respect to η and β, one
obtains the so-called partial splines.

Partial spline models can be fitted in the regression and hazard estimation suites; due to
normalization, such models make little sense for density estimation. To enter parametric
terms z1β1 + z2β2 + z1z2β12, say, use

partial = ~ z1 * z2

which acts just like a formula in lm. Variables in partial are expected to be numerical vectors,
and the partial terms are centralized internally; centralization serves the same purpose as the
averaging operators for the ANOVA terms. Like the ANOVA terms, the partial terms may
also be selectively included/excluded in predict or hzdrate.sshzd. To maintain model
identifiability, one should avoid “overlaps” among the variables in x and z.

5.2. Random effects

Mixed-effect models are widely used for the modeling of correlated data, such as those arising
in longitudinal studies. Consider a mixed-effect model ζ(x, z) = η(x) + z>b, where b ∼
N (0, B). One may estimate η and b jointly via the minimization of

L(ζ) + λJ(η) + b>Σb,

where Σ ∝ B−1. Mixed-effect models for the log hazard are known as frailty models.

The random effects z>b in a mixed-effect model appear identical to the parametric terms
z>β in a partial spline model, except that they need to be penalized via b>Σb. The matrix
Σ is typically structured containing correlation parameters γ, which are to be selected along
with the smoothing parameters.

The term z>β in partial spline models are often more important than η(x), but the random
effects z>b are a nuisance and are usually set to zero when the fits are evaluated. These terms
may coexist, but one would need different symbols to distinguish the two z’s.

Random effects are specified via Z = (z1, . . . , zn)> and Σ. One may use an optional argument
random in the regression and hazard estimation suites, as a formula or a list. With
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random = ~ 1 | id

where id is a factor with p levels, Z = diag(1, . . . ,1) when data at the same id levels are
grouped together, with the 1’s possibly of different lengths, and Σ = γIp with a single γ; this
typically characterizes correlations in longitudinal data. With

random = ~ gid | id

where gid is either the same as id or a coarser grouping with levels collapsed from those of
id, Z is the same as above, but Σ is now block-diagonal with blocks of the form γkIpk , for∑

k pk = p; this can be used to characterize correlations in clustered data. More generally,
one may use a list

random = list(z = z, sigma = list(fun, env), init = init)

where z contains Z, sigma specifies Σ to be evaluated via

sigma$fun(gamma, sigma$env)

and init holds initial values for γ, presumably on scales free of constraint.

For Gaussian regression with longitudinal data, ssanova9 with cov = list("long", id)

should be used when p � n, and ssanova with random = ~ 1 | id should be used when
p = O(

√
n).

Random effects find little use in density estimation due to normalization, but z>b for a
univariate ζ can be propagated into multivariate versions for use in ssllrm (Gu and Ma
2011), which accepts random.

6. Numerical engines

Apart from ssanova0, gssanova1, and gssanova0, the estimation is done in two nested
loops, with the outer loop minimizing a cross-validation score V (λ) with respect to smoothing
parameters plus possible correlation parameters, and with the inner loop minimizing (2) with
fixed tuning parameters. The inner loop follows Newton iteration with safeguards such as
step-halving, and the outer loop uses the quasi-Newton iteration of Dennis and Schnabel
(1996) as implemented in the R function nlm; the inner loop is absent in ssanova where the
estimate is analytical.

It can be shown that for η ∈ H∗ as in (4), J(η) = c>RJ(z, z>)c = c>
(∑

β θβQβ
)
c, where

Qβ = Rβ(z, z>) and cj are coefficients of the basis functions RJ(zj , ·). Fixing the θ’s in
J(η) =

∑
β θ
−1
β Jβ(ηβ), the outer loop with a single λ is a simple task, and the starting values

for the θ iteration via quasi-Newton are obtained through two passes of fixed-θ outer loop:

1. Set θ̆−1
β ∝ tr(Qβ), then minimize V (λ) with respect to λ to obtain η̆.

2. Set θ̃β ∝ Jβ(η̆β), then minimize V (λ) with respect to λ to obtain η̃.

Step 1 is invariant to arbitrary scalings of Jβ(ηβ), allowing equal opportunity for all. Step 2
grants more allowances to terms that showed strengths in Step 1. The ensuing θ iteration
fixes λ and starts from θ̃β.
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The starting values θ̃β proved to be highly effective, often leaving only the “last 20%” per-
formance for the θ iteration to pick up. When the number of θβ’s are large, quasi-Newton
iteration with numerical derivatives is slow to converge, and one may simply take η̃ and forgo
the θ iteration. This can be done by setting skip = TRUE in the fitting functions.

If correlation parameters are involved in the process, as is the case when random is specified
or when ssanova9 is called upon, the computational savings via skip = TRUE would be less
dramatic.

7. Examples

Three examples follow, one involving longitudinal data, another concerning density estimation
on a truncated domain, and a third having a two-dimensional marginal domain.

7.1. Treatment of bacteriuria

A group of 72 patients with acute spinal cord injury and bacteriuria (bacteria in urine)
were randomly assigned to two treatment groups, 36 each. A weekly binary indicator of
bacteriuria was recorded for every patient over 4 to 16 weeks. The data are listed in Joe
(1997, Section 11.4). Removing the week-1 data, in which the disease indicator is positive for
all, one has n = 820. The data are included in gss as a data frame.

R> data("bacteriuria", package = "gss")

R> bact <- bacteriuria

There are 30 distinctive xi’s (15 time points by 2 trt levels), and id 3 and 38 had complete
follow-up under the two trt levels, so the selection of {zj} can be done deterministically.

R> id.z <- (1:820)[bact$id %in% c(3, 38)]

An initial logistic regression model is fitted by

R> fit0 <- gssanova(infect ~ trt * time, "binomial", data = bact,

+ random = ~ 1 | id, id.basis = id.z)

with the logit in ζ(x, s) = η(x) + bs, where s is id levels and bs are subject random effects.
The interaction is negligible, so an additive model is fitted.

R> project(fit0, c("trt", "time"))

R> fit1 <- gssanova(infect ~ trt + time, "binomial", data = bact,

+ random = ~ 1 | id, id.basis = id.z)

id 1–36 were under trt 1 and id 37–72 were under trt 2, and a quick check on the subject
random effects reveals disparity between the two trt levels.

R> var(fit1$b[1:36])

[1] 0.05118155
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R> var(fit1$b[37:72])

[1] 0.2275906

trt 1 seems to allow less “individualism,” so it appears appropriate to attach separate γ’s.

R> fit2 <- gssanova(infect ~ trt + time, "binomial", data = bact,

+ random = ~ trt | id, id.basis = id.z)

R> var(fit2$b[1:36])

[1] 1.582536e-15

The subject effects are effectively absent under trt 1. The estimated infection probability as
a function of time, under trt 1, say, can be evaluated and plotted.

R> new <- data.frame(trt = factor(rep(1, 15)), time = 2:16)

R> est1 <- predict(fit2, new, se = TRUE)

R> plot(2:16, plogis(est1$fit), type = "l", ylim = c(0, 1))

R> lines(2:16, plogis(est1$fit - 1.96 * est1$se), col = 5)

R> lines(2:16, plogis(est1$fit + 1.96 * est1$se), col = 5)

7.2. AIDS incubation

To study AIDS incubation, a valuable source of information is in the records of patients who
were infected with HIV through blood transfusion, of which the date can be ascertained ret-
rospectively. A data set is listed in Wang (1989), which includes the time X from transfusion
to the diagnosis of AIDS, the time Y from transfusion to the end of study, and the age of
the individual at transfusion; it is clear that X ≤ Y . The data are included in gss as a data
frame, and we use the subset with age at 60 or above.

R> data("aids", package = "gss")

R> aids1 <- aids[aids$age >= 60, ]

Conditioning on the truncation mechanism, the density is f(x, y) = eη(x,y)/
∫
T e

η(x,y)dxdy,

where T = {x < y}. The domain T enters estimation through
∫
T e

η(x,y)dxdy, effectively
specified via the quadrature. Lacking better alternatives, we use a regular grid on [0, 100]2,
cutting out points on {x > y}, and halving weights along {x = y}.

R> qd.pt <- expand.grid(incu = 2 * (1:50) - 1, infe = 2 * (1:50) - 1)

R> qd.pt <- qd.pt[qd.pt$incu <= qd.pt$infe, ]

R> qd.wt <- rep(1, nrow(qd.pt))

R> qd.wt[qd.pt$incu == qd.pt$infe] <- 0.5

R> qd.wt <- qd.wt / sum(qd.wt) * 5e3

R> quad <- list(pt = qd.pt, wt = qd.wt)

To fit a log density of the form η = ηx + ηy + ηx,y, use
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R> domain <- data.frame(incu = c(0, 100), infe = c(0, 100))

R> fit0 <- ssden(~ incu * infe, data = aids1, domain = domain, quad = quad)

where quad overrides the internal generation of quadrature for a rectangular domain. Checking

R> project(fit0, c("incu", "infe"))

pre-truncation independence appears plausible, so an additive model can be fitted.

R> fit1 <- ssden(~ incu + infe, data = aids1, domain = domain, quad = quad)

Note that an additive model should never be fitted to a log density on a rectangular domain;
independent marginal densities are best estimated separately in univariate settings.

The fitted incubation density f(x) and infection density f(y) are easily evaluated on a grid.

R> xx <- 2 * (1:50) - 1

R> cdssden(fit1, xx, cond = data.frame(infe = 50))$pdf

R> cdssden(fit1, xx, cond = data.frame(incu = 50))$pdf

7.3. Water acidity in lakes

From the Eastern Lake Survey of 1984 conducted by EPA, Douglas and Delampady (1990)
derived a data set containing geographic locations, water acidity levels, and main ion concen-
trations in 1798 lakes. A subset of the data concerning 112 lakes in the Blue Ridge is included
in gss as a data frame.

R> data("LakeAcidity", package = "gss")

R> acid <- LakeAcidity

A model of the form η = η∅ + ηc + ηg + ηc,g is fitted

R> fit0 <- ssanova(ph ~ log(cal) * geog, data = acid)

where geog, a matrix with two columns, contains the x-y coordinates of the lakes with respect
to a local origin, converted from longitude-latitude. The term ηc,g appears negligible, so an
additive model is fitted.

R> project(fit0, c("log(cal)", "geog"))

R> fit1 <- ssanova(ph ~ log(cal) + geog, data = acid)

The geog main effect can be evaluated on a grid

R> xx0 <- seq(-0.04, 0.04, len = 31)

R> xx <- cbind(rep(xx0, 31), rep(xx0, rep(31, 31)))

R> est.g <- predict(fit1, data.frame(geog = I(xx)), se = TRUE, inc = "geog")

and in turn be plotted as contours
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R> ff <- matrix(est.g$fit, 31, 31)

R> filled.contour(xx0, xx0, ff, asp = 1, plot.axes = points(acid$geog))

R> se <- matrix(est.g$se, 31, 31)

R> filled.contour(xx0, xx0, se, asp = 1, plot.axes = points(acid$geog)})

8. Miscellaneous

Optional arguments affiliated with model formulas, such as subset and weights, are accepted
by the fitting functions in gss, where weights specifies multiplicity counts for duplicated data,
except in Gaussian regression where it calls for weighted least squares. The regression suites
also accept offset.

The cosine diagnostics of Gu (1992b) can be obtained for fitted regression models by using
the method summary, with a flag diag = TRUE.

For density estimation using data that are subject to sampling bias, one may use ssden with
an optional argument bias. Further details can be found in Gu (2013, Sections 7.6.4–7.6.5).

In case one needs to use marginal kernels that are not “canned” in gss, “custom” types can be
defined for variables and be entered via type = list(x = list("custom", ...)). Further
details can be found in Gu (2013, Section A.1.3).

9. Summary

The gss package offers nonparametric modeling tools in many of the standard data analysis
settings. It also defines some non-standard settings, such as regression with cross-classified
responses.

Functional ANOVA decompositions are built-in on multivariate domains, with continuous,
discrete, and even multi-dimensional marginals. Semiparametric models and mixed-effect
models can also be entertained. Smoothing parameters are selected by cross-validation, and
the “testing” of model terms can be done using Kullback-Leibler projection.
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