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ABSTRACT

We investigate the behavior of the optimal regularization parameter in the
method of regularization for solving first kind integral equations with noisy data,
under a range of definitions of "optimal", varying from mean square error in higher
derivatives of the solution, to mean square error in the predicted data. We study how
the optimal regularization parameter changes when the optimality criteria changes,
under a broad range of smoothness assumptions on the solution, the kemel of the
integral operator, and the penalty functional. Although some of the calculations we
present have been given elsewhere, we organize the results with a specific goal in
mind. That is, we study a certain class of problems within which we can identify
conditions on the solution, the kernel of the operator and the penalty functional for
which the rate at which the optimal regularizaﬁon parameter goes to zero is the same
for both predictive mean square error and solution mean square error optimality cri-:
teria, and for which it is different. The former circumstances are of interest because
then data based estimates of the regularization parameter such as generalized cross-
validation, which are known to be optimal for predictive mean square error, will also
go to zero at the optimal rate for solution mean square error.
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1. INTRODUCTION

Consider the Fredholm integral equation of the first kind
1

Ixcu)fmdwg(r). te(0,1] (1.1)
where g is measured discretely and with error. We are given data
yi =g ) +e i =12 a2
where
E g = 0, EE;Sj = 0'28.';. . iJ=l,2....,Il (13)

and o? is unknown, §; =0,i#j; 1,i=j.

In the method of regularization, the estimate f, , of f is taken as the minimizer

of
LIRS ) =y, + AIS 12
j=l
where
1
&F )0 = IK(t.s)f (s)ds,
and -1l ‘is a norm or seminorm in a Hilbert space in which L,f = (Kf)(t) is a

bounded linear functional for each re[0,1] ( see, for example Wahba [20] and the
bibliography there).

As is well known, the solution (both in theory and practice) can be very sensi-
tive to the choice of A. As n — o, the optimal A — 0 under rather general assump-
tions. Rates of decay for the optimal A in this problem and related smoothing prob-

lems have been obtained by many authors under various assumptions (see for exam-
ple [1, 2, 4-6, 8, 10, 14-20]).

Generalized cross validation (GCV) has been a popular method for choosing A
from the data, see for example (3, 9, 11]. This method has optimality properties for
a predictive mean square error criteria, in particular, if 4 is the GCV estimate of A
and

1

ROY= 1315 - (K aste)is?

i=|

then R(i)/mgnR (A) is known to decrease t0 1 as n — o in various senses, see, for
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example, Wahba [17], Speckman [16], Li (7). Recently there has been some discus-
sion in the literature raising the question of what to do if one were more interested in
minimizing a different and somewhat more natural loss function, such as

1

DO = 1[0’. a(5) = £ (s))ds

(see e.g. Rice (14], O'Sullivan [12]). Since the properties of & with respect to R ()
are fairly well established, the question arises of determining the circumstances, if
any, under which the minimizer of R (A) also comes close to minimizing D (A). It has
been the first author's observation based on a number of realistic numerical simula-
tions in different contexts, that the A that minimizes R (A) also comes close to minim-
izing D(A). Further discussion and references conceming this point may be found in
Wahba [19] (p.1361 ). Thus, we thought it appropriate to collect in one place as gen-
eral as possible a set of rate calculations so that this issue of whether or not 4 i 1s good
for minimizing D (-) can be examined theoretically,

We consider only convolution equations

2(t) = l[h(r-.s-»f(.r)ds

with periodic kemels and periodic solutions.

Modest generalizations when the kemels K and R commute may be obtained
by the methods in Wahba [19], but we do not discuss them here.

We develop rates of convergence of the optimal A under a wide range of condi-

tions, and then specialize to the criteia ER A and ED(), and let
: \

2= l(f“"’(u ))%du. In section 5, we give the following results: Let the kth Fourier

coefficients of f and h go to zero at the rates k™ and k® with B > 0 and a+B > 1.
Let A5 and Ap be the minimizers of £D (A) and ER (A), respectively.

SupposeZm+—2|::L2-1-,m>1 then as n — o,

2 2
:.:E
As = lp =p P
for any B, where "U=V" means that there are two constants ¢ and d such that

cU sV <dU for n sufficiently large. Suppose a > 2m + %. m > % Then
_mif
'lp = ’Ls =n o
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or
Ap =0(\s)

according as B > o - 2m +%) or Bsa——(2m+-;—).

2. THE STATISTICAL MODEL AND THE BASIC LEMMA

We consider the convolution equation

1

g(r)=l[h(l-s)f(s)ds. tel01]and f; = - i=12,.n. Q1)
To avoid cumbersome notation, we assume that 4 and f have cosine series expan:

sions. It is clear that the results 8o through if a general Fourier series expansion is
allowed. Let the cosine series expansions of g, &, f be
1

g) =Y 2g cos2nkt, with g = ‘[ cos2mkt g (1)dr;
k=l

1

h(t) =Y 2h, cos2mkt, with hy = | cos2mke h(t)dr:
k=l

1

f@)= i 2fy cos2mkt,  with f, = l[ cos2mke” f (¢ )dt
k=l

and g = hfy. The relationship among g, h,f is described by the convolution
g=hsf. :

The method of regularization is to estimate f by the solution of the following
problem: find the minimizer £, , of ‘

1
L3 0 - o)) + =2 .[(f ™) d. 2.3)
i=l '

We will make use of the finite Fourier transform as Rice [14] did. Let

Yun = 3, yjcos2mjkin,

/=l
wm =2, 8(1j)Xos2njkin
i=l
€Lc.



IXSENSITIVITY OF OPTIMAL REGULARIZATION PARAMETER 1689

1

Now n7lg, =g, + rn., where r, = —2 g (t;)cos2mjk In -lg(r) cos2mkedr. If
i

¢() is a continuous function, r,, tends 1o zero. In the remainder of this work we will
proceed as though g, = ng, = nhyf; etc.

Assume that f, » has Fourier coefficients £,’s. To estimate f by the method of
regularization essentially is lo find f4’s, which are the minimizers of

2 n
2 ( 22 b i) +AT kR (2.4)
= k=] :
Note that
1
1[(f""’(:))2 dt =+ ): (21:)2*1:2";'2
k=]
%(Zﬂ)hz k?ﬂf 2
k=]
Then ‘ ,
foale D

W o b N

The resulting estimate §, of g, is

Yia htz

":.h:—-—--—-—,
=iy PETYE

In the rest of the paper, we w111 use the following lemma which was proved in
Cox [1] and Lukas (8]. S

Lemma: Let

D)= i k(1 +2k7)2,

h=]

Then if s < 2r=1, D(As) < o, for all A > 0. Furthermore, when A — 0*,

A <5 <201
DAs)=1 log(1/A) if s =-1
1 if 5s'<-1

3. THE ESTIMATION ERRORS UNDER DIFFERENT NORMS

The mean square error in the solution
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1

L(far-1)= t[(f‘,.dx(:) -f0)a, G.1)

is typically the loss function of interest in most practical cases.
By the discrete Fourier transformation and Parseval's indentity,

Ll ==X =) (3.2)

k=l

That is
MSSE = EL(f, 5 - £) = ES. (s - f2)°
k=] "

=EY(fu = fil (3.3)

k=]

The mean square error in the /th derivative of the solution, if it exists, is
|

! RO dt = EY @k (fy - f1)2.

k=l

The mean square error for §, , = h#f . i.€. the mean square prediction error for
the problem is

MSPE = EL (G - ¢)

2EY G ~ g

k=)

=E i Wl = fe)*. : (34)

k=l

Let Il * Il y be defined by:

lif “3 = E qx If* lz, qc > 0. k = 1.2..... (3-5)
k=l
where f,’s are the Fourier coefficients of f. (This is the general form of the norms

defined in Cox (1] and Lukas [8]). Let H, be the Hilbert space of functions for
which (3.5) is finite, with inner product

< . 8>= 2 alfrgul.
k=)

( See (1], (8], [10] ),
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The expected mecan square error under this norm is defined as

MSE, (M) ='Ei AR -1 | (3.6)

k=]

for the f, and f, defined in Section 2.

MSSE, MSPE and mean square error in the derivative are all special cases of
MSE ,. When g, =1,k =0,1,.., MSE ; is the mean square solution crror, when
@ = h2, k=0,1,.., MSE , is the mean square prediction error, and when g, = (nk)?,
MSE , is the mean square error in the /th derivative of f, if it exists. Now

E(2) = =hfs,

Thus,

MSE,(\) = EY, ¢:(fx = f1)?

k=]

= iqt(Efk "'fk)z‘* i‘hE(fk ‘Efg)z

k=1 k=l
Zq f ] 0.2 Qkhkz

= ofs ~——-—-2-.
ksl hz ¥ “‘h i (hd + M)

We will use the definition of the optimal A as follows:
Let Ao be the minimizer of MSE ,(A). If A has the property that

MSE, (\) = MSE, (%)

we will say A is optimal. This deﬁnitioh corresponds to the weak optimality defined
by Davies and Anderssen (51.

4. CONVERGENCE RATES OF THE OPTIMAL A

- In order to investigate the convergence properties of the optimal A for MSE, we
will assume that -

fe=k® m=kP q =k 4.1)
a,p20, k=12,---
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Then

2
c 1V o2 w kT3P

Lomrr-2a o? - Ly
= },2 o — ——— e
E TELET V) R § (1 + AkmeD)

S pmbme ol k2P
e 12 —_ + — —_— 4.2
el T n kzzl (1 + Ak%mP) =

Letting 5, = 4(m+B)y+y-20, s2 = 1+2f and r = 2(m+B), the asymptotic behavior of
(4.2) as A — 0 is given by the Lemma in Section 2 provided s; < 2r-1, 52 < 2r-1. We
have to consider each of the interesting combinations of 5; € (-1,2r-1),5; =-1 and
s; < -1 separately.

Note that

MSE, = i kTP (3.

k=1

If 4+2B < 0 then this is a weaker norm than the L, norm and corresponds to pul-
ting less penalty on high frequency rather than low frequency errors. Thus it is of lit-
tle practical interest and we omit the straight forward but tedious calculations for the
special cases s, =y+2p s-1. In what follows, then, we are assume =1 < s < 2r-1,
which results in the conditions

B> max{-—;-uw). -;—(1+1rM}. @4.3)

The three cases below then correspond, respectively, to s, € (-1, 2r-1),s;=-1
and 5 < -1,

Case I: -1 <4(m+p)y+y-2a < 4(m+p)-1

This gives
¥ < 20-1, (4.4)
1 1 1
B> S (a-Qm+ 3%, (4.5)
B> max{—-;-(lw). é—(lﬂ)—?-m}. (4.6)

Thus under the condition

B> max{-%(u = (2m+%)}--i-v , —-;-(H*r) ' %(lﬂ) - 2m}. 4.7
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we have

_ 4(m 20+1 0.2 _Ypel
MSE,@y =222 mp 4 £ Em

JEEL, | g BB
=\ 2Am+P) Tl Um+p) : (4.8)

The optimal A, satisfies
Zopl g DL

A Um+p) --l— Am+P) =
n
That is
20~y-1 1
A AmB) = -
mp
Ag=n P 4.9)

which does not depend on y provided the condition (4.4), (4.5), (4.6) are
satisfied.

Case Il : 4(m+PH+y-2a =-1
Combining this with (4.3) gives, if

L i 10
= 2(m—(bn+2))-4v.

1 1 |
B> max{—-i-(lw), -5-(1+'y-2m )},
then
| o2 B
MSE, () = A log3- + ——2 %P, (4.10)

The optimal A, satisfies

1, _ o2 popsl RS
2llogl A n2(m+B)l =0,

That is

Um BBl 1
A AmeB (Zlog-i- -1)=n", ) (4.11a)

_AmiB)
A = o(n dmesbr), (4.11b)
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Case III : 4(m+pry-2a<-1

These conditions, combined with (4.3) give

1 1 1
B < T(a-Cm+-7 Y
B> max{—%(lw). S (4p-2m )}.

then

0.2.1.“'_.2@."_

- 1 st
MSE, () = A+—2 D), : (4.12)

n
and the optimal A, satisfies

s ox .
2 - Ez.. J“*_?Mx Am+p) l-—o'

o 2m+B) = (4.13a)

g SH B (4.13b)

5. CONVERGENCE RATES OF THE OPTIMAL A
FOR MSSE AND MSPE

We are especially interested in the convergence rates of the optimal A’s chosen
by minimizing MSSE and MSPE.

MSE,(A) = MSSE, withy=0 (5.1)
and |
MSE,(») = MSPE, with y=-2f. . (5.2)
Let As and A, be the minimizers of MSSE and MSPE, respectively. We have
the following

Theorem:

(A) Suppose 2m+% 2a> _51., m > -}? Then for any allowed B,

-mnp
Ap =)~3 =y

(B) Suppose a > (Zm-!-%-), m> %, and p > (a-(2m+-%-)). Then

-mif
Ap 39\.3 =n o)
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(C) Suppose a > (2m+%). m > % andB < (a.—(2m+-;-)). Then A, does not oth-

erwise depend on a and
Ap =0 (As).
(D) Under the conditions of (A) or (B),

1
o

MSSEQ;) = MSSEQA,) =n &8,

If
- 0< l(Ol-(2m+-1-)) <p= (a*(2m4--l-i)
2 2 v
then
-
MSSE(s) =n b
whereas
MSSE@®;) = o))
MSSEQ,)
If
1 1
0< B < E(a—(2m+-2-)).
then
- AmB)
MSSEQ@Qg) =n 4mssh
and
MSSEQs) i}
MSSEQ,) '

and the rate of convergence of MSSE for thfs problem could be increased to
1 :
a-—
2

n *® by increasing m so that B> -;-(a-(2m+~%-). (Note that doms

am6pl

‘increasing with m and equals (a—%y(mﬂ) if = %(a—(bm%)).)

Proof: _
1 1 1
(A) 2m+2 2a> 2,m>-‘-‘-.
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Under these conditions the inequality of (4.7) holds for y=0 and
Y=-2B so that the conditions of Case I are satisfied for any B> 0 and so

- mif

As =n B, (5.3)
_m+f

Ap=n o, 5.4

(B) a> 2m+—;];-, B> (a-(2m+—;-)), m > -j— ;

Again, the inequality (4.7) holds for y= 0 and y = —28. Thus

-mf
ls =n ﬂ*ﬁ,
-mf
)LP =n O.*ﬂ.

(C) The condition B < (u—(2m+—;—)) will be divided into four cases, (Ci) - (Civ).
Ci) B= (a—-(2m+—;-)) >0, m20.

When y = 0, the Case I conditions are still satisfied,

omip
As =n u+ﬂ.

However, for y= -2, the conditions of the Case II are satisfied, and we have

m

hp =o(n e, (5.5)
Substituting 2a =4m+23+1 iﬁm (5.5) gives
- mf
Ap =o(n °P), (5.6)

2
If y=0, the Case I conditions are still satisfied,

(Cii) 0< -%—(a—(&n+-%-)) <P < av(2m+l).

m +)

As=n oP,
but ¥ = ~2p falls into Case III and
Ap=n 7%;%*)7. (5.7)
Here 4(m+B)+1 < 2(a+p), which gives

lp = 0(13 ).
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(Ciii) B = -%-(a-(?.m+-;-)) >0, Here 4(m+p) = 20-1.

2Amsp) _msp

As =o(n By o(n oPB)
and ’
Am+B) - _ (m+B)
Ap mpimetl oy @ (5.8)
Thus,
Ap = o(As). ' : (5.9)
(Civ) 0<B < ~(o-2m+LY)
AT
Here
_ 2meB)
Ag = n AmeobHl (5.10) -
o 2(m
Ap =n YmBH - 500). (5.11)

(D) These results are obtained by a straight forward substituting (5.3), (5.4), (5.6),
(5.8), (5.9), (5.10), (5.11) into (4.8) and (4.12) under the different conditions.

We make some remarks conceming these results. Let Wg be the Hilbert space

of periodic functions whose Fourier coefficients g;'s satisfy Yx*°l1g, 12 < . Wy is a
: k

reproducing kemel space for any 6 > % and if 1g, 1 = k=P, then g will be in W, if
(a+B)>0+ -;— Thus the assumption (a + B) > 1 insures that g is in some reproduc-

ing kernel space, i.e. g(t) is well defined pointwise, not just as an L,-function. The -
condition a > % is what is needed to guarantee that f is square integrable. Note that

although the estimation procedure involves the W, norm, the square bias plus vari-
ance for MSSE (y = 0) is finite even though f ¢ W,,.

We remark in passing that questions about f's not satisfying high order
periodic boundary conditions can be answered by studying f's which are Bemoulli
polynomials, since f, for the jth Bemoulli polynomial is a multiple of u™.

Thus the following "theoretical" advice (as opposed to "practical" advice)
obtains:
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To obtain the best possible MSSE, for a given B and a, choose m large enough
so that f 2 %(a -2m + —;—)). If after doing this, B is still less than a = (2m + %) the
A chosen by an MSPE criteria will not result in the optimal convergence rate. If it is
desired to use an MSPE estimate for A and obtain the optimal MSSE rate, then

choose m large enough so that B > a -~ (2m + %).

Of course with small, medium and even large data sets, many other factors
come into play including the hidden constants, and information such as the solution
contains at most 300 or at least 10 continuous derivatives is not really meaningful.
The authors take no responsibility for anyone following this theoretical advice, but do
remark that GCV can also be used to choose m. The best practical advice remains:
make as realistic a simulation as possible of the problem at hand, and test the avail-
able estimation methods against simulated truth,
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