On Loss Functions and *f*-**Divergences**

Michael I. Jordan

Department of Statistics Department of EECS University of California, Berkeley

With XuanLong Nguyen and Martin Wainwright

Surrogate Loss Functions

- Various losses are widely used as in the classical decision theoretic setting to evaluate procedures
- A wide range of "losses" are also used as criteria for building procedures; e.g., M-estimators, Z-estimators, empirical risk estimators, etc
- A very large literature on showing that such losses yield defensible inference
- A particularly active area: "surrogate loss functions" for discrimination
- We develop a mathematical understanding of the properties of such loss functions, via a connection to f-divergences
 - our work is based on seminal work of Blackwell (1951)

Motivating Example: Decentralized Detection

- Wireless network of motes equipped with sensors (e.g., light, heat, sound)
- Limited battery: can only transmit quantized observations
- Is the light source above the green region?

Decentralized Detection

Decentralized Detection (cont.)

- General set-up:
 - data are (X,Y) pairs, assumed sampled i.i.d. for simplicity, where $Y \in \{0,1\}$
 - given X, let Z = Q(X) denote the covariate vector, where $Q \in Q$, where Q is some set of random mappings (can be viewed as an experimental design)
 - consider a family $\{\gamma(\cdot)\}$, where γ is a discriminant function lying in some (nonparametric) family Γ
- Problem: Find the decision $(Q;\gamma)$ that minimizes the probability of error $P(Y\neq\gamma(Z))$
- Applications include:
 - decentralized compression and detection
 - feature extraction, dimensionality reduction
 - problem of sensor placement

Perspectives

- Signal processing literature
 - everything is assumed known except for $Q-\!\!\!\!$ the problem of "decentralized detection" is to find Q
 - this is done via the maximization of an "f-divergence" (e.g., Hellinger distance, Chernoff distance)
 - basically a heuristic literature from a statistical perspective (plug-in estimation)
- Statistical literature
 - Q is assumed known and the problem is to find γ
 - this is done via the minimization of an "surrogate loss function" (e.g., boosting, logistic regression, support vector machine)
 - decision-theoretic flavor; consistency results

f-divergences (Ali-Silvey Distances)

The *f*-divergence between measures μ and π is given by

$$I_f(\mu, \pi) := \sum_z \pi(z) f\left(\frac{\mu(z)}{\pi(z)}\right).$$

where $f:[0,+\infty)\to\mathbb{R}\cup\{+\infty\}$ is a continuous convex function

• Kullback-Leibler divergence: $f(u) = u \log u$.

$$I_f(\mu,\pi) = \sum_z \mu(z) \log rac{\mu(z)}{\pi(z)}.$$

• variational distance: f(u) = |u - 1|.

$$I_f(\mu, \pi) := \sum_{z} |\mu(z) - \pi(z)|.$$

• Hellinger distance: $f(u) = \frac{1}{2}(\sqrt{u} - 1)^2$.

$$I_f(\mu, \pi) := \sum_{z \in \mathcal{Z}} (\sqrt{\mu(z)} - \sqrt{\pi(z)})^2.$$

Why the *f*-divergence?

- A classical theorem due to Blackwell (1951): If a procedure A has a smaller f-divergence than a procedure B (for some fixed f), then there exist some set of prior probabilities such that procedure A has a smaller probability of error than procedure B
- Given that it is intractable to minimize probability of error, this result has motivated (many) authors in signal processing to use *f*-divergences as surrogates for probability of error
- I.e., choose a quantizer Q by maximizing an $f\mbox{-divergence}$ between P(Z|Y=1) and P(Z|Y=-1)
 - Hellinger distance
 - Chernoff distance

(Kailath 1967; Longo et al, 1990) (Chamberland & Veeravalli, 2003)

- Supporting arguments from asymptotics
 - Kullback-Leibler divergence in the Neyman-Pearson setting
 - Chernoff distance in the Bayesian setting

Statistical Perspective

- Decision-theoretic: based on a loss function $\phi(Y, \gamma(Z))$
- E.g., 0-1 loss:

$$\phi(Y,\gamma(Z)) = \begin{cases} 1 & \text{if } Y \neq \gamma(Z) \\ 0 & \text{otherwise} \end{cases}$$

which can be written in the binary case as $\phi(Y,\gamma(Z)) = \mathbb{I}(Y\gamma(Z) < 0)$

- \bullet The main focus is on estimating $\gamma;$ the problem of estimating Q by minimizing the loss function is only occasionally addressed
- It is intractable to minimize 0-1 loss, so consider minimizing a surrogate loss functions that is a convex upper bound on the 0-1 loss

Margin-Based Surrogate Loss Functions

- Define a convex surrogate in terms of the margin $u = y\gamma(z)$
 - hinge loss: $\phi(u) = \max(0, 1 u)$
 - exponential loss: $\phi(u) = \exp(-u)$
 - logistic loss: $\phi(u) = \log[1 + \exp(-u)]$

support vector machine boosting logistic regression

Estimation Based on a Convex Surrogate Loss

- Estimation procedures used in the classification literature are generally *M*-estimators ("empirical risk minimization")
- Given i.i.d. training data $(x_1, y_1), \ldots, (x_n, y_n)$
- Find a classifier γ that minimizes the empirical expectation of the surrogate loss:

$$\hat{\mathbb{E}}\phi(Y\gamma(X)) := \frac{1}{n} \sum_{i=1}^{n} \phi(y_i\gamma(x_i))$$

where the convexity of ϕ makes this feasible in practice and in theory

Some Theory for Surrogate Loss Functions

(Bartlett, Jordan, & McAuliffe, JASA 2005)

• ϕ must be classification-calibrated, i.e., for any $a, b \ge 0$ and $a \ne b$,

$$\inf_{\alpha:\alpha(a-b)<0}\phi(\alpha)a+\phi(-\alpha)b>\inf_{\alpha\in\mathbb{R}}\phi(\alpha)a+\phi(-\alpha)b$$

(essentially a form of Fisher consistency that is appropriate for classification)

- This is necessary and sufficient for Bayes consistency; we take it as the definition of a "surrogate loss function" for classification
- In the convex case, ϕ is classification-calibrated iff differentiable at 0 and $\phi'(0) < 0$

Outline

- A precise link between surrogate convex losses and f-divergences
 - we establish a constructive and many-to-one correspondence
- A notion of universal equivalence among convex surrogate loss functions
- An application: Proof of consistency for the choice of a (Q,γ) pair using any convex surrogate for the 0-1 loss

Setup

- We want to find (Q,γ) to minimize the $\phi\text{-risk}$

$$R_{\phi}(\gamma, Q) = \mathbb{E}\phi(Y\gamma(Z))$$

• Define:

$$\mu(z) = P(Y = 1, z) = p \int_{x} Q(z|x) dP(x|Y = 1)$$

$$\pi(z) = P(Y = -1, z) = q \int_{x} Q(z|x) dP(x|Y = -1).$$

• ϕ -risk can be represented as:

$$R_{\phi}(\gamma, Q) = \sum_{z} \phi(\gamma(z))\mu(z) + \phi(-\gamma(z))\pi(z)$$

Profiling

• Optimize out over γ (for each z) and define:

$$R_{\phi}(Q) := \inf_{\gamma \in \Gamma} R_{\phi}(\gamma, Q)$$

• For example, for 0-1 loss, we easily obtain $\gamma(z) = \operatorname{sign}(\mu(z) - \pi(z))$. Thus:

$$R_{0-1}(Q) = \sum_{z \in \mathcal{Z}} \min\{\mu(z), \pi(z)\}$$
$$= \frac{1}{2} - \frac{1}{2} \sum_{z \in \mathcal{Z}} |\mu(z) - \pi(z)|$$
$$= \frac{1}{2} (1 - V(\mu, \pi))$$

where $V(\mu, \pi)$ is the variational distance.

• I.e., optimizing out a ϕ -risk yields an f-divergence. Does this hold more generally?

Some Examples

• hinge loss:

 $R_{hinge}(Q) = 1 - V(\mu, \pi)$ (variational distance)

• exponential loss:

$$R_{exp}(Q) = 1 - \sum_{z \in \mathcal{Z}} (\sqrt{\mu(z)} - \sqrt{\pi(z)})^2 \qquad (\text{variational distance})$$

• logistic loss:

$$R_{log}(Q) = \log 2 - D(\mu \| \frac{\mu + \pi}{2}) - D(\pi \| \frac{\mu + \pi}{2}) \qquad \text{(capacitory discrimination)}$$

Link between ϕ -losses and f-divergences

Conjugate Duality

• Recall the notion of *conjugate duality* (Rockafellar): For a lowersemicontinuous convex function $f : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$, the conjugate dual $f^* : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ is defined as

$$f^*(u) = \sup_{v \in \mathbb{R}} \{uv - f(v)\},\$$

which is necessarily a convex function.

• Define

$$\Psi(\beta) = f^*(-\beta)$$

Link between ϕ -losses and f-divergences

Theorem 1. (a) For any margin-based surrogate loss function ϕ , there is an f-divergence such that $R_{\phi}(Q) = -I_f(\mu, \pi)$ for some lower-semicontinuous convex function f.

In addition, if ϕ is continuous and satisfies a (weak) regularity condition, then the following properties hold:

(i) Ψ is a decreasing and convex function.

(*ii*) $\Psi(\Psi(\beta)) = \beta$ for all $\beta \in (\beta_1, \beta_2)$.

(iii) There exists a point u^* such that $\Psi(u^*) = u^*$.

(b) Conversely, if f is a lower-semicontinuous convex function satisfying conditions (i-iii), there exists a decreasing convex surrogate loss ϕ that induces the corresponding f-divergence

The Easy Direction: $\phi \rightarrow f$

• Recall

$$R_{\phi}(\gamma, Q) = \sum_{z \in \mathcal{Z}} \phi(\gamma(z))\mu(z) + \phi(-\gamma(z))\pi(z)$$

• Optimizing out $\gamma(z)$ for each z:

$$R_{\phi}(Q) = \sum_{z \in \mathcal{Z}} \inf_{\alpha} \phi(\alpha) \mu(z) + \phi(-\alpha) \pi(z) = \sum_{z} \pi(z) \inf_{\alpha} \left(\phi(-\alpha) + \phi(\alpha) \frac{\mu(z)}{\pi(z)} \right)$$

• For each z let $u = \frac{\mu(z)}{\pi(z)}$, define:

$$f(u) := -\inf_{\alpha}(\phi(-\alpha) + \phi(\alpha)u)$$

- f is a convex function
- we have

$$R_{\phi}(Q) = -I_f(\mu, \pi)$$

The $f \rightarrow \phi$ Direction Has a Constructive Consequence

- Any continuous loss function ϕ that induces an $f\mbox{-divergence}$ must be of the form

$$\phi(\alpha) = \begin{cases} u^* & \text{if } \alpha = 0\\ \Psi(g(\alpha + u^*)) & \text{if } \alpha > 0\\ g(-\alpha + u^*) & \text{if } \alpha < 0, \end{cases}$$

where $g: [u^*, +\infty) \to \overline{\mathbb{R}}$ is some increasing continuous and convex function such that $g(u^*) = u^*$, and g is right-differentiable at u^* with $g'(u^*) > 0$.

Example – Hellinger distance

- Hellinger distance corresponds to an f-divergence with $f(u)=-2\sqrt{u}$
- Recover immediate function $\Psi(\beta) = f^*(-\beta) = \begin{cases} 1/\beta & \text{when } \beta > 0 \\ +\infty & \text{otherwise.} \end{cases}$
- Choosing $g(u) = e^{u-1}$ yields $\phi(\alpha) = \exp(-\alpha) \implies \text{exponential loss}$

Example – Variational distance

- Variational distance corresp. to an *f*-divergence with $f(u) = -2\min\{u, 1\}$
- Recover immediate function $\Psi(\beta) = f^*(-\beta) = \begin{cases} (2-\beta)_+ & \text{when } \beta > 0 \\ +\infty & \text{otherwise.} \end{cases}$
- Choosing g(u) = u yields $\phi(\alpha) = (1 \alpha)_+ \Rightarrow$ hinge loss

Example – Kullback-Leibler divergence

- There is no corresponding ϕ loss for either $D(\mu \| \pi)$ or $D(\pi \| \mu)$
- But the symmetrized KL divergence $D(\mu \| \pi) + D(\pi \| \mu)$ is realized by

$$\phi(\alpha) = e^{-\alpha} - \alpha$$

Bayes Consistency for Choice of (Q, λ)

- Recall that from the 0-1 loss, we obtain the variational distance as the corresponding f-divergence, where $f(u) = \min\{u, 1\}$.
- Consider a broader class of *f*-divergences defined by:

$$f(u) = -c\min\{u, 1\} + au + b$$

- And consider the set of (continuous, convex and classification-calibrated) ϕ -losses that can be obtained (via Theorem 1) from these f-divergences
- We will provide conditions under which such $\phi\text{-losses}$ yield Bayes consistency for procedures that jointly choose (Q,λ)
- (And later we will show that *only* such ϕ -losses yield Bayes consistency)

Setup

- Consider sequences of increasing compact function classes $C_1 \subseteq \ldots \subseteq \Gamma$ and $D_1 \subseteq \ldots \subseteq Q$
- Assume there exists an oracle that outputs an optimal solution to:

$$\min_{(\gamma,Q)\in(\mathcal{C}_n,\mathcal{D}_n)} \hat{R}_{\phi}(\gamma,Q) = \min_{(\gamma,Q)\in(\mathcal{C}_n,\mathcal{D}_n)} \frac{1}{n} \sum_{i=1}^n \sum_{z\in\mathcal{Z}} \phi(Y_i\gamma(z))Q(z|X_i)$$

and let (γ_n^*, Q_n^*) denote one such solution.

• Let R^*_{Bayes} denote the minimum Bayes risk:

$$R^*_{Bayes} := \inf_{(\gamma,Q)\in(\Gamma,Q)} R_{Bayes}(\gamma,Q).$$

• Excess Bayes risk: $R_{Bayes}(\gamma_n^*, Q_n^*) - R_{Bayes}^*$

Setup

• Approximation error:

$$\mathcal{E}_0(\mathcal{C}_n, \mathcal{D}_n) = \inf_{(\gamma, Q) \in (\mathcal{C}_n, \mathcal{D}_n)} \{ R_\phi(\gamma, Q) \} - R_\phi^*$$

where $R_{\phi}^* := \inf_{(\gamma,Q) \in (\Gamma,Q)} R_{\phi}(\gamma,Q)$

• Estimation error:

$$\mathcal{E}_1(\mathcal{C}_n, \mathcal{D}_n) = \mathbb{E} \sup_{(\gamma, Q) \in (\mathcal{C}_n, \mathcal{D}_n)} \left| \hat{R}_{\phi}(\gamma, Q) - R_{\phi}(\gamma, Q) \right|$$

where the expectation is taken with respect to the measure $\mathbb{P}^n(X,Y)$

Bayes Consistency for Choice of (Q, λ)

Theorem 2.

Under the stated conditions:

$$R_{Bayes}(\gamma_n^*, Q_n^*) - R_{Bayes}^* \leq \frac{2}{c} \left\{ 2\mathcal{E}_1(\mathcal{C}_n, \mathcal{D}_n) + \mathcal{E}_0(\mathcal{C}_n, \mathcal{D}_n) + 2M_n \sqrt{2\frac{\ln(2/\delta)}{n}} \right\}$$

• Thus, under the usual kinds of conditions that drive approximation and estimation error to zero, and under the additional condition on ϕ :

$$M_n := \max_{y \in \{-1,+1\}} \sup_{(\gamma,Q) \in (\mathcal{C}_n,\mathcal{D}_n)} \sup_{z \in \mathcal{Z}} |\phi(y\gamma(z))| < +\infty,$$

we obtain Bayes consistency (for the class of ϕ obtained from $f(u) = -c \min\{u, 1\} + au + b$)

Universal Equivalence of Loss Functions

- \bullet Consider two loss functions ϕ_1 and ϕ_2 , corresponding to f-divergences induced by f_1 and f_2
- ϕ_1 and ϕ_2 are **universally** equivalent, denoted by

 $\phi_1 \stackrel{u}{\approx} \phi_2$

if for any P(X, Y) and quantization rules Q_A, Q_B , there holds:

$$R_{\phi_1}(Q_A) \le R_{\phi_1}(Q_B) \Leftrightarrow R_{\phi_2}(Q_A) \le R_{\phi_2}(Q_B).$$

An Equivalence Theorem

Theorem 3.

$$\phi_1 \stackrel{u}{\approx} \phi_2$$

if and only if

$$f_1(u) = cf_2(u) + au + b$$

for constants $a, b \in \mathbb{R}$ and c > 0.

- \Leftarrow is easy; \Rightarrow is not
- In particular, surrogate losses universally equivalent to 0-1 loss are those whose induced f divergence has the form:

$$f(u) = -c\min\{u, 1\} + au + b$$

• Thus we see that only such losses yield Bayes consistency for procedures that jointly choose (Q,λ)

Estimation of Divergences

- Given i.i.d. $\{x_1, \ldots, x_n\} \sim \mathbb{Q}, \{y_1, \ldots, y_n\} \sim \mathbb{P}$
 - \mathbb{P},\mathbb{Q} are unknown multivariate distributions with densities p_0,q_0 wrt Lesbegue measure μ on \mathbb{R}^d
- Consider the problem of estimating a divergence; e.g., KL divergence:
 - Kullback-Leibler (KL) divergence functional

$$D_K(\mathbb{P},\mathbb{Q}) = \int p_0 \log \frac{p_0}{q_0} d\mu$$

Existing Work

- Relations to entropy estimation
 - large body of work on functional of one density (Bickel & Ritov, 1988; Donoho & Liu 1991; Birgé & Massart, 1993; Laurent, 1996 and so on)
- KL is a functional of two densities
- Very little work on nonparametric divergence estimation, especially for highdimensional data
- Little existing work on estimating density ratio per se

Main Idea

• Variational representation of *f*-divergences:

Lemma 4. Letting \mathcal{F} be any function class in $\mathcal{X} \to \mathbb{R}$, there holds:

$$D_{\phi}(\mathbb{P},\mathbb{Q}) \ge \sup_{f\in\mathcal{F}} \int f \ d\mathbb{Q} - \phi^*(f) \ d\mathbb{P},$$

with equality if $\mathcal{F} \cap \partial \phi(q_0/p_0) \neq \emptyset$.

 ϕ^* denotes the conjugate dual of ϕ

- Implications:
 - obtain an M-estimation procedure for divergence functional
 - also obtain the likelihood ratio function $d\mathbb{P}/d\mathbb{Q}$
 - how to choose ${\mathcal F}$
 - how to implement the optimization efficiently
 - convergence rate?

Kullback-Leibler Divergence

• For the Kullback-Leibler divergence:

$$D_K(\mathbb{P}, \mathbb{Q}) = \sup_{g>0} \int \log g \ d\mathbb{P} - \int g d\mathbb{Q} + 1.$$

• Furthermore, the supremum is attained at $g = p_0/q_0$.

M-Estimation Procedure

- Let $\mathcal G$ be a function class: $\mathcal X \to \mathbb R_+$
- $\int d\mathbb{P}_n$ and $\int d\mathbb{Q}_n$ denote the expectation under empirical measures \mathbb{P}_n and \mathbb{Q}_n , respectively
- One possible estimator has the following form:

$$\hat{D}_K = \sup_{g \in \mathcal{G}} \int \log g \ d\mathbb{P}_n - \int g d\mathbb{Q}_n + 1.$$

• Supremum is attained at \hat{g}_n , which estimates the likelihood ratio p_0/q_0

Convex Empirical Risk with Penalty

- $\bullet\,$ In practice, control the size of the function class ${\cal G}$ by using a penalty
- Let I(g) be a measure of complexity for g
- Decompose \mathcal{G} as follows:

$$\mathcal{G} = \bigcup_{1 \leq M \leq \infty} \mathcal{G}_M,$$

where \mathcal{G}_M is restricted to g for which $I(g) \leq M$.

• The estimation procedure involves solving:

$$\hat{g}_n = \operatorname{argmin}_{g \in \mathcal{G}} \int g d\mathbb{Q}_n - \int \log g \ d\mathbb{P}_n + \frac{\lambda_n}{2} I^2(g).$$

Convergence Rates

Theorem 5. When λ_n vanishes sufficiently slowly:

$$\lambda_n^{-1} = O_P(n^{2/(2+\gamma)})(1 + I(g_0)),$$

then under \mathbb{P} :

$$h_{\mathbb{Q}}(g_0, \hat{g}_n) = O_P(\lambda_n^{1/2})(1 + I(g_0))$$
$$I(\hat{g}_n) = O_P(1 + I(g_0)).$$

Results

Conclusions

- Formulated a precise link between *f*-divergences and surrogate loss functions
- Decision-theoretic perspective on f-divergences
- Equivalent classes of loss functions
- Can design new convex surrogate loss functions that are equivalent (in a deep sense) to 0-1 loss
 - Applications to the Bayes consistency of procedures that jointly choose an experimental design and a classifier
 - Applications to the estimation of divergences and entropy