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Surrogate Loss Functions

Various losses are widely used as in the classical decision theoretic setting
to evaluate procedures

A wide range of “losses” are also used as criteria for building procedures;
e.g., M-estimators, Z-estimators, empirical risk estimators, etc

A very large literature on showing that such losses yield defensible inference
A particularly active area: “surrogate loss functions” for discrimination

We develop a mathematical understanding of the properties of such loss
functions, via a connection to f-divergences

— our work is based on seminal work of Blackwell (1951)



Motivating Example: Decentralized Detection
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e Wireless network of motes equipped with sensors (e.g., light, heat, sound)
e Limited battery: can only transmit quantized observations

e |s the light source above the green region?



Decentralized Detection

() Hypothesis: Y € {£1}

X! ) X2 o X3 () Observations: Xell,...,.M}*

Quantized versions: Z € {1,...,L}"
L<«<M



Decentralized Detection (cont.)

e General set-up:

— data are (X,Y) pairs, assumed sampled i.i.d. for simplicity, where Y €
{0,1}

— given X, let Z = Q(X) denote the covariate vector, where () € Q, where
Q is some set of random mappings (can be viewed as an experimental
design)

— consider a family {v(:)}, where y is a discriminant function lying in some
(nonparametric) family T’

e Problem: Find the decision (();~) that minimizes the probability of error
P(Y #~(Z))

e Applications include:

— decentralized compression and detection
— feature extraction, dimensionality reduction
— problem of sensor placement



Perspectives

e Signal processing literature

— everything is assumed known except for ()—the problem of “decentralized
detection” is to find @)

— this is done via the maximization of an “f-divergence” (e.g., Hellinger
distance, Chernoff distance)

— basically a heuristic literature from a statistical perspective (plug-in
estimation)

e Statistical literature

— (Q is assumed known and the problem is to find ~

— this is done via the minimization of an “surrogate loss function” (e.g.,
boosting, logistic regression, support vector machine)

— decision-theoretic flavor; consistency results



f-divergences (Ali-Silvey Distances)

The f-divergence between measures i1 and 7 is given by

) = zzjﬂ(z)f(igz;).

,+00) — RU{+0o0} is a continuous convex function

where f : [0

e Kullback-Leibler divergence: f(u) = ulogu.

I(p,m) = > p(2)log ;L_Ez;

e variational distance: f(u) = |u — 1]|.

Ir(uom) == 3 |n(z) — w(2)].

e Hellinger distance: f(u) = 3(v/u — 1)

I m) == 32 (=) = /().

z€Z



Why the f-divergence?

A classical theorem due to Blackwell (1951): If a procedure A has a smaller
f-divergence than a procedure B (for some fixed f), then there exist some
set of prior probabilities such that procedure A has a smaller probability of
error than procedure B

Given that it is intractable to minimize probability of error, this result
has motivated (many) authors in signal processing to use f-divergences as
surrogates for probability of error

|.e., choose a quantizer () by maximizing an f-divergence between P(Z|Y =
1) and P(Z|Y = —1)

— Hellinger distance (Kailath 1967; Longo et al, 1990)
— Chernoff distance (Chamberland & Veeravalli, 2003)

Supporting arguments from asymptotics

— Kullback-Leibler divergence in the Neyman-Pearson setting
— Chernoff distance in the Bayesian setting



Statistical Perspective

Decision-theoretic: based on a loss function ¢(Y, (%))

E.g., 0-1 loss:
1 ifY #~(2)
0 otherwise

¢(Ya V(Z)) — {

which can be written in the binary case as ¢(Y,v(Z)) = 1(Y~(Z) < 0)

The main focus is on estimating ~; the problem of estimating () by
minimizing the loss function is only occasionally addressed

It is intractable to minimize 0-1 loss, so consider minimizing a surrogate loss
functions that is a convex upper bound on the 0-1 loss



Margin-Based Surrogate Loss Functions
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Margin value

e Define a convex surrogate in terms of the margin u = yy(z2)

— hinge loss: ¢(u) = max(0,1 — u)
— exponential loss: ¢(u) = exp(—u)

— logistic loss: ¢(u) = log[1 + exp(—u)]

support vector machine
boosting
logistic regression
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Estimation Based on a Convex Surrogate Loss

e Estimation procedures used in the classification literature are generally
M-estimators ( “empirical risk minimization" )

e Given i.i.d. training data (x1,v1),-- -, (Tn, Yn)

e Find a classifier v that minimizes the empirical expectation of the surrogate
loss:

E¢(Yv(X Z S (yiv(x:))

where the convexity of ¢ makes this fea5|b|e in practice and in theory
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Some Theory for Surrogate Loss Functions
(Bartlett, Jordan, & McAuliffe, JASA 2005)

e ¢ must be classification-calibrated, i.e., for any a,b > 0 and a # b,

inf  ¢(a)a+ o(—a)b > érel{]l;% d(a)a + p(—a)b

a:a(a—b)<0
(essentially a form of Fisher consistency that is appropriate for classification)

e This is necessary and sufficient for Bayes consistency; we take it as the
definition of a “surrogate loss function” for classification

e In the convex case, ¢ is classification-calibrated iff differentiable at 0 and
¢'(0) <0
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Outline

e A precise link between surrogate convex losses and f-divergences

— we establish a constructive and many-to-one correspondence
e A notion of universal equivalence among convex surrogate loss functions

e An application: Proof of consistency for the choice of a (Q,~) pair using
any convex surrogate for the 0-1 loss
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Setup

e We want to find (@, ) to minimize the ¢-risk

Ry(v,Q) = E¢(Y~(Z))
o Define:

Wz = P(Y =12 =p / Q(z|x)dP(z]Y = 1)

w(z) = PY =-1,2)= q/Q(z|ac)dP(:c\Y = —1).

e ¢-risk can be represented as:

Ry(7,Q) =Y _ ¢(v(2))u(2) + ¢p(—v(2))7(2)
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Profiling

e Optimize out over ~ (for each z) and define:
Ry(Q) = infrerRy(y, Q)

e For example, for 0-1 loss, we easily obtain v(z) = sign(u(z) — 7(2)). Thus:

Ro1(@) = D> min{u(z),7(2)}

zEZ

I 1
= 5—52\/1(2)—”(2”

z€EZ
= (- V()

where V' (u, ) is the variational distance.

e |.e., optimizing out a ¢-risk yields an f-divergence. Does this hold more
generally?
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Some Examples

e hinge loss:

Rpinge(Q) =1—V(pu,m) (variational distance)

e exponential loss:

Rexp(Q) =1 — Z Vi(z) =/ (variational distance)

z€EZ

e logistic loss:

u+w u+w

Riog(Q) = log 2—D(p| )—D(r|

) (capacitory discrimination)
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Link between ¢-losses and f-divergences

SE

Surrogate loss functions Class of f-divergences

17



Conjugate Duality

Recall the notion of conjugate duality (Rockafellar): For a lower-
semicontinuous convex function f : R — R U {oo}, the conjugate dual
f*:R— RU{oo} is defined as

f*(u) = sup{uv — f(v)},

vER

which is necessarily a convex function.

Define
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Link between ¢-losses and f-divergences

Theorem 1. (a) For any margin-based surrogate loss function ¢, there is an
[-divergence such that Ry(Q) = —I(p,m) for some lower-semicontinuous
convex function f.

In addition, if ¢ is continuous and satisfies a (weak) regularity condition,
then the following properties hold:

(i) W is a decreasing and convex function.

(1) W(¥(B)) = B for all 5 € (51, 52).

*

(ii1) There exists a point u* such that V(u*) = u*.

(b) Conversely, if f is a lower-semicontinuous convex function satisfying
conditions (i—iii), there exists a decreasing convexr surrogate loss ¢ that
induces the corresponding f-divergence
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The Easy Direction: ¢ — f

e Recall

= s +o(=(2))7(2)

z€ZX

e Optimizing out ~y(z) for each z:

Ri@) = 3 inf o) o)) = S n(o)nt (91
z€ZX
e For each z let u % define:

f(u) == —inf(o(—a) + ¢(a)u)

— f is a convex function
— we have

Ry(Q) = —I¢(p, )
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The f — ¢ Direction Has a Constructive Consequence

e Any continuous loss function ¢ that induces an f-divergence must be of the

form

¢la) =

[ if =0

U(gla+u*)) ifa>0

Lg(—a+u*) ifa<O,

where g : [u*, +00) — R is some increasing continuous and convex function
such that g(u*) = u*, and g is right-differentiable at v* with ¢’(u*) > 0.
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Example — Hellinger distance
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e Hellinger distance corresponds to an f-divergence with f(u) = —2\/u

1/8 when 3> 0

e Recover immediate function ¥(3) = f*(—3) = { .
+00  otherwise.

e Choosing g(u) = e“" ! yields ¢(a) = exp(—a) = exponential loss
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Example — Variational distance
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e Variational distance corresp. to an f-divergence with f(u) = —2min{u, 1}

(2—08)y when 8 >0

e Recover immediate function ¥(3) = f*(-p3) = { .
+o0 otherwise.

e Choosing g(u) = u yields ¢(a) = (1 — )y = hinge loss
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Example — Kullback-Leibler divergence

¢ loss

margin (o)

e There is no corresponding ¢ loss for either D(u||7) or D(7||p)

e But the symmetrized KL divergence D(u||7) + D(7||1)
is realized by

dla)=¢e % —a
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Bayes Consistency for Choice of (Q, \)

e Recall that from the 0-1 loss, we obtain the variational distance as the
corresponding f-divergence, where f(u) = min{u, 1}.

e Consider a broader class of f-divergences defined by:

f(u) = —cmin{u, 1} + au + b

e And consider the set of (continuous, convex and classification-calibrated)
¢-losses that can be obtained (via Theorem 1) from these f-divergences

e \We will provide conditions under which such ¢-losses yield Bayes consistency
for procedures that jointly choose (Q, \)

e (And later we will show that only such ¢-losses yield Bayes consistency)
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Setup

Consider sequences of increasing compact function classes C; C ... C I' and

DyC...C9

Assume there exists an oracle that outputs an optimal solution to:

min R : = min

Dn) % > D oY) QX))

1=1 262

and let (v}, Q%) denote one such solution.

Let R,,s denote the minimum Bayes risk:
R = inf R Q).
Bayes = () o}8r, g Bever 1 D

Excess Bayes risk: Rpayes(7;:, QF) —

*
Bayes
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Setup

e Approximation error:

& Cnapn — inf R , —R*
ol )= i, Fel, @) = B

where R} := inf(, g)e(r,0) Ry(7v,Q)

e Estimation error:

£E1(Cn,Dy)=E  sup  |Ry(7,Q) — Ry(7, Q)
(VaQ)E(Cn,'Dn)

where the expectation is taken with respect to the measure P"(X,Y)
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Bayes Consistency for Choice of (Q, \)

Theorem 2.

Under the stated conditions:

2
RBayes(/ﬁ;a Q;) _ R*Bayes S _{ gl (Cna Dn) + £O(Cna Dn) + 2Mn\/2

C

In(2/5) }

n

e Thus, under the usual kinds of conditions that drive approximation and
estimation error to zero, and under the additional condition on ¢:

M, := max sup sup [¢(yy(2))| < oo,
ye{-1+1} (4,Q)e(Cn,Dn) 2€Z

we obtain Bayes consistency (for the class of ¢ obtained from f(u) =
—cmin{u, 1} + au + b)
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Universal Equivalence of Loss Functions

e Consider two loss functions ¢ and ¢35, corresponding to f-divergences
induced by f; and f5

e ¢ and @5 are universally equivalent, denoted by

b1 = o

if for any P(X,Y) and quantization rules Q 4, @, there holds:

R¢1(QA) < R¢1(QB) A R¢2(QA) < R¢2(QB)-

29



An Equivalence Theorem

Theorem 3.

b1 R o

of and only if
fi(u) =cfa(u) +au+0b

for constants a,b € R and ¢ > 0.

e < |s easy;, = Is not

e In particular, surrogate losses universally equivalent to 0-1 loss are those
whose induced f divergence has the form:

f(u) = —cmin{u, 1} +au+b

e Thus we see that only such losses yield Bayes consistency for procedures
that jointly choose (Q, \)
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Estimation of Divergences

Given i.i.d. {x1,..., 2} ~Q, {y1,.. ., Yn} ~ P

— P, Q are unknown multivariate distributions with densities pg,qo wrt
Lesbegue measure u on R?

Consider the problem of estimating a divergence; e.g., KL divergence:

— Kullback-Leibler (KL) divergence functional

Dk (P,Q) = /po 1og% dp
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Existing Work

Relations to entropy estimation

— large body of work on functional of one density (Bickel & Ritov, 1988;

Donoho & Liu 1991; Birgé & Massart, 1993; Laurent, 1996 and so on)

KL is a functional of two densities

Very little work on nonparametric divergence estimation, especially for high-

dimensional data

Little existing work on estimating density ratio per se
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Main ldea

e Variational representation of f-divergences:
Lemma 4. Letting F be any function class in X — R, there holds:

+(P, Q) >sup/fd@ o (

ferF

with equality if F N O¢(qo/po) 7 0.

®* denotes the conjugate dual of ¢

e Implications:

— obtain an M-estimation procedure for divergence functional
— also obtain the likelihood ratio function dP/dQ

— how to choose F

— how to implement the optimization efficiently

— convergence rate?



Kullback-Leibler Divergence

e For the Kullback-Leibler divergence:

Dk (P, Q) :sup/k)gg dP—/gd@+1.

g>0

e Furthermore, the supremum is attained at g = pg/qo.
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M-Estimation Procedure

e Let § be a function class: X — R

e [ dP, and [ dQ, denote the expectation under empirical measures IP,, and
Qy,, respectively

e One possible estimator has the following form:

ﬁK:supflogg dIP’n—/ngn+1.

gegyg

e Supremum is attained at §,,, which estimates the likelihood ratio pg/qq
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Convex Empirical Risk with Penalty

In practice, control the size of the function class G by using a penalty
Let I(g) be a measure of complexity for g

Decompose G as follows:

G = Ui<m<ooYm,

where Gy is restricted to g for which I(g) < M.

The estimation procedure involves solving:

An
Jn = argmingcg / 9dQ, — / log g dPPy, + -1 “(9).
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Convergence Rates

Theorem 5. When \,, vanishes sufficiently slowly:

At = 0p(n )1+ 1(g0)),

n

then under P:
ho(90, Gn) = Op(ALY)(1 4 I(go))
1(gn) = Op(1 + 1(g0))-

37
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Conclusions

Formulated a precise link between f-divergences and surrogate loss functions
Decision-theoretic perspective on f-divergences
Equivalent classes of loss functions

Can design new convex surrogate loss functions that are equivalent (in a
deep sense) to 0-1 loss

— Applications to the Bayes consistency of procedures that jointly choose
an experimental design and a classifier
— Applications to the estimation of divergences and entropy
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