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Surrogate Loss Functions

• Various losses are widely used as in the classical decision theoretic setting
to evaluate procedures

• A wide range of “losses” are also used as criteria for building procedures;
e.g., M-estimators, Z-estimators, empirical risk estimators, etc

• A very large literature on showing that such losses yield defensible inference

• A particularly active area: “surrogate loss functions” for discrimination

• We develop a mathematical understanding of the properties of such loss
functions, via a connection to f -divergences

– our work is based on seminal work of Blackwell (1951)
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Motivating Example: Decentralized Detection

...
...

...
...

Light source

sensors

• Wireless network of motes equipped with sensors (e.g., light, heat, sound)

• Limited battery: can only transmit quantized observations

• Is the light source above the green region?
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Decentralized Detection

. . .

. . .

. . .

Hypothesis: Y ∈ {±1}

X1 X2 X3 XS

Z1 Z2 Z3 ZS

Q1 Q2 Q3 QS

γ(Z1, . . . , ZS)

Observations: X ∈ {1, . . . , M}S

Quantized versions: Z ∈ {1, . . . , L}S

L " M
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Decentralized Detection (cont.)

• General set-up:

– data are (X,Y ) pairs, assumed sampled i.i.d. for simplicity, where Y ∈
{0, 1}

– given X , let Z = Q(X) denote the covariate vector, where Q ∈ Q, where
Q is some set of random mappings (can be viewed as an experimental
design)

– consider a family {γ(·)}, where γ is a discriminant function lying in some
(nonparametric) family Γ

• Problem: Find the decision (Q; γ) that minimizes the probability of error
P (Y #= γ(Z))

• Applications include:

– decentralized compression and detection
– feature extraction, dimensionality reduction
– problem of sensor placement
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Perspectives

• Signal processing literature

– everything is assumed known except for Q—the problem of “decentralized
detection” is to find Q

– this is done via the maximization of an “f -divergence” (e.g., Hellinger
distance, Chernoff distance)

– basically a heuristic literature from a statistical perspective (plug-in
estimation)

• Statistical literature

– Q is assumed known and the problem is to find γ
– this is done via the minimization of an “surrogate loss function” (e.g.,

boosting, logistic regression, support vector machine)
– decision-theoretic flavor; consistency results
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f-divergences (Ali-Silvey Distances)

The f -divergence between measures µ and π is given by

If(µ, π) :=
∑

z

π(z)f

(

µ(z)

π(z)

)

.

where f : [0, +∞) → R ∪ {+∞} is a continuous convex function

• Kullback-Leibler divergence: f(u) = u log u.

If(µ, π) =
X

z

µ(z) log
µ(z)

π(z)
.

• variational distance: f(u) = |u − 1|.

If(µ, π) :=
X

z

|µ(z) − π(z)|.

• Hellinger distance: f(u) = 1
2(
√

u − 1)2.

If(µ, π) :=
X

z∈Z

(
q

µ(z) −
q

π(z))2.
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Why the f-divergence?

• A classical theorem due to Blackwell (1951): If a procedure A has a smaller
f -divergence than a procedure B (for some fixed f), then there exist some
set of prior probabilities such that procedure A has a smaller probability of
error than procedure B

• Given that it is intractable to minimize probability of error, this result
has motivated (many) authors in signal processing to use f -divergences as
surrogates for probability of error

• I.e., choose a quantizer Q by maximizing an f -divergence between P (Z|Y =
1) and P (Z|Y = −1)

– Hellinger distance (Kailath 1967; Longo et al, 1990)
– Chernoff distance (Chamberland & Veeravalli, 2003)

• Supporting arguments from asymptotics

– Kullback-Leibler divergence in the Neyman-Pearson setting
– Chernoff distance in the Bayesian setting
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Statistical Perspective

• Decision-theoretic : based on a loss function φ(Y, γ(Z))

• E.g., 0-1 loss:

φ(Y, γ(Z)) =

{

1 if Y #= γ(Z)

0 otherwise

which can be written in the binary case as φ(Y, γ(Z)) = I(Y γ(Z) < 0)

• The main focus is on estimating γ; the problem of estimating Q by
minimizing the loss function is only occasionally addressed

• It is intractable to minimize 0-1 loss, so consider minimizing a surrogate loss
functions that is a convex upper bound on the 0-1 loss
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Margin-Based Surrogate Loss Functions
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• Define a convex surrogate in terms of the margin u = yγ(z)

– hinge loss: φ(u) = max(0, 1 − u) support vector machine
– exponential loss: φ(u) = exp(−u) boosting
– logistic loss: φ(u) = log[1 + exp(−u)] logistic regression
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Estimation Based on a Convex Surrogate Loss

• Estimation procedures used in the classification literature are generally
M -estimators (“empirical risk minimization”)

• Given i.i.d. training data (x1, y1), . . . , (xn, yn)

• Find a classifier γ that minimizes the empirical expectation of the surrogate
loss:

Êφ(Y γ(X)) :=
1

n

n
∑

i=1

φ(yiγ(xi))

where the convexity of φ makes this feasible in practice and in theory
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Some Theory for Surrogate Loss Functions
(Bartlett, Jordan, & McAuliffe, JASA 2005)

• φ must be classification-calibrated, i.e., for any a, b ≥ 0 and a #= b,

inf
α:α(a−b)<0

φ(α)a + φ(−α)b > inf
α∈R

φ(α)a + φ(−α)b

(essentially a form of Fisher consistency that is appropriate for classification)

• This is necessary and sufficient for Bayes consistency; we take it as the
definition of a “surrogate loss function” for classification

• In the convex case, φ is classification-calibrated iff differentiable at 0 and
φ′(0) < 0
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Outline

• A precise link between surrogate convex losses and f -divergences

– we establish a constructive and many-to-one correspondence

• A notion of universal equivalence among convex surrogate loss functions

• An application: Proof of consistency for the choice of a (Q, γ) pair using
any convex surrogate for the 0-1 loss
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Setup

• We want to find (Q, γ) to minimize the φ-risk

Rφ(γ,Q) = Eφ(Y γ(Z))

• Define:

µ(z) = P (Y = 1, z) = p

∫

x
Q(z|x)dP (x|Y = 1)

π(z) = P (Y = −1, z) = q

∫

x
Q(z|x)dP (x|Y = −1).

• φ-risk can be represented as:

Rφ(γ,Q) =
∑

z

φ(γ(z))µ(z) + φ(−γ(z))π(z)
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Profiling

• Optimize out over γ (for each z) and define:

Rφ(Q) := infγ∈ΓRφ(γ,Q)

• For example, for 0-1 loss, we easily obtain γ(z) = sign(µ(z)− π(z)). Thus:

R0-1(Q) =
∑

z∈Z

min{µ(z), π(z)}

=
1

2
− 1

2

∑

z∈Z

|µ(z) − π(z)|

=
1

2
(1 − V (µ, π))

where V (µ, π) is the variational distance.

• I.e., optimizing out a φ-risk yields an f -divergence. Does this hold more
generally?
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Some Examples

• hinge loss:

Rhinge(Q) = 1 − V (µ, π) (variational distance)

• exponential loss:

Rexp(Q) = 1−
∑

z∈Z

(
√

µ(z)−
√

π(z))2 (variational distance)

• logistic loss:

Rlog(Q) = log 2−D(µ‖µ + π

2
)−D(π‖µ + π

2
) (capacitory discrimination)
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Link between φ-losses and f-divergences

φ1

φ2

φ3

f1

f2

f3

Surrogate loss functions Class of f -divergences
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Conjugate Duality

• Recall the notion of conjugate duality (Rockafellar): For a lower-
semicontinuous convex function f : R → R ∪ {∞}, the conjugate dual
f∗ : R → R ∪ {∞} is defined as

f∗(u) = sup
v∈R

{uv − f(v)},

which is necessarily a convex function.

• Define
Ψ(β) = f∗(−β)
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Link between φ-losses and f-divergences

Theorem 1. (a) For any margin-based surrogate loss function φ, there is an
f -divergence such that Rφ(Q) = −If(µ, π) for some lower-semicontinuous
convex function f .

In addition, if φ is continuous and satisfies a (weak) regularity condition,
then the following properties hold:

(i) Ψ is a decreasing and convex function.

(ii) Ψ(Ψ(β)) = β for all β ∈ (β1, β2).

(iii) There exists a point u∗ such that Ψ(u∗) = u∗.

(b) Conversely, if f is a lower-semicontinuous convex function satisfying
conditions (i–iii), there exists a decreasing convex surrogate loss φ that
induces the corresponding f -divergence
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The Easy Direction: φ → f

• Recall
Rφ(γ,Q) =

∑

z∈Z

φ(γ(z))µ(z) + φ(−γ(z))π(z)

• Optimizing out γ(z) for each z:

Rφ(Q) =
∑

z∈Z

inf
α
φ(α)µ(z)+φ(−α)π(z) =

∑

z

π(z)inf
α

(

φ(−α) + φ(α)
µ(z)

π(z)

)

• For each z let u = µ(z)
π(z), define:

f(u) := − inf
α

(φ(−α) + φ(α)u)

– f is a convex function
– we have

Rφ(Q) = −If(µ, π)
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The f → φ Direction Has a Constructive Consequence

• Any continuous loss function φ that induces an f -divergence must be of the
form

φ(α) =











u∗ if α = 0

Ψ(g(α + u∗)) if α > 0

g(−α + u∗) if α < 0,

where g : [u∗,+∞) → R is some increasing continuous and convex function
such that g(u∗) = u∗, and g is right-differentiable at u∗ with g′(u∗) > 0.
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Example – Hellinger distance
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g = exp(u−1)
g = u
g = u2

• Hellinger distance corresponds to an f -divergence with f(u) = −2
√

u

• Recover immediate function Ψ(β) = f∗(−β) =

(

1/β when β > 0

+∞ otherwise.

• Choosing g(u) = eu−1 yields φ(α) = exp(−α) ⇒ exponential loss
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Example – Variational distance
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g = eu−1

g = u
g = u2

• Variational distance corresp. to an f -divergence with f(u) = −2 min{u, 1}

• Recover immediate function Ψ(β) = f∗(−β) =

(

(2 − β)+ when β > 0

+∞ otherwise.

• Choosing g(u) = u yields φ(α) = (1 − α)+ ⇒ hinge loss
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Example – Kullback-Leibler divergence
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φ(α) = e−α − α
φ(α) = 1(α < 0)

• There is no corresponding φ loss for either D(µ‖π) or D(π‖µ)

• But the symmetrized KL divergence D(µ‖π) + D(π‖µ)
is realized by

φ(α) = e−α − α
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Bayes Consistency for Choice of (Q,λ)

• Recall that from the 0-1 loss, we obtain the variational distance as the
corresponding f -divergence, where f(u) = min{u, 1}.

• Consider a broader class of f -divergences defined by:

f(u) = −c min{u, 1} + au + b

• And consider the set of (continuous, convex and classification-calibrated)
φ-losses that can be obtained (via Theorem 1) from these f -divergences

• We will provide conditions under which such φ-losses yield Bayes consistency
for procedures that jointly choose (Q, λ)

• (And later we will show that only such φ-losses yield Bayes consistency)
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Setup

• Consider sequences of increasing compact function classes C1 ⊆ . . . ⊆ Γ and
D1 ⊆ . . . ⊆ Q

• Assume there exists an oracle that outputs an optimal solution to:

min
(γ,Q)∈(Cn,Dn)

R̂φ(γ,Q) = min
(γ,Q)∈(Cn,Dn)

1

n

n
∑

i=1

∑

z∈Z

φ(Yiγ(z))Q(z|Xi)

and let (γ∗
n, Q∗

n) denote one such solution.

• Let R∗
Bayes denote the minimum Bayes risk:

R∗
Bayes := inf

(γ,Q)∈(Γ,Q)
RBayes(γ, Q).

• Excess Bayes risk: RBayes(γ∗
n, Q∗

n) − R∗
Bayes
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Setup

• Approximation error :

E0(Cn,Dn) = inf
(γ,Q)∈(Cn,Dn)

{Rφ(γ, Q)} − R∗
φ

where R∗
φ := inf(γ,Q)∈(Γ,Q) Rφ(γ, Q)

• Estimation error :

E1(Cn,Dn) = E sup
(γ,Q)∈(Cn,Dn)

∣

∣

∣

∣

R̂φ(γ, Q) − Rφ(γ,Q)

∣

∣

∣

∣

where the expectation is taken with respect to the measure Pn(X,Y )
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Bayes Consistency for Choice of (Q,λ)

Theorem 2.

Under the stated conditions:

RBayes(γ
∗
n, Q∗

n) − R∗
Bayes ≤ 2

c

{

2E1(Cn,Dn) + E0(Cn,Dn) + 2Mn

√

2
ln(2/δ)

n

}

• Thus, under the usual kinds of conditions that drive approximation and
estimation error to zero, and under the additional condition on φ:

Mn := max
y∈{−1,+1}

sup
(γ,Q)∈(Cn,Dn)

sup
z∈Z

|φ(yγ(z))| < +∞,

we obtain Bayes consistency (for the class of φ obtained from f(u) =
−cmin{u, 1} + au + b)
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Universal Equivalence of Loss Functions

• Consider two loss functions φ1 and φ2, corresponding to f -divergences
induced by f1 and f2

• φ1 and φ2 are universally equivalent, denoted by

φ1
u≈ φ2

if for any P (X,Y ) and quantization rules QA, QB, there holds:

Rφ1(QA) ≤ Rφ1(QB) ⇔ Rφ2(QA) ≤ Rφ2(QB).
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An Equivalence Theorem

Theorem 3.
φ1

u≈ φ2

if and only if
f1(u) = cf2(u) + au + b

for constants a, b ∈ R and c > 0.

• ⇐ is easy; ⇒ is not

• In particular, surrogate losses universally equivalent to 0-1 loss are those
whose induced f divergence has the form:

f(u) = −c min{u, 1} + au + b

• Thus we see that only such losses yield Bayes consistency for procedures
that jointly choose (Q,λ)
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Estimation of Divergences

• Given i.i.d. {x1, . . . , xn} ∼ Q, {y1, . . . , yn} ∼ P

– P, Q are unknown multivariate distributions with densities p0, q0 wrt
Lesbegue measure µ on Rd

• Consider the problem of estimating a divergence; e.g., KL divergence:

– Kullback-Leibler (KL) divergence functional

DK(P, Q) =

∫

p0 log
p0

q0
dµ
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Existing Work

• Relations to entropy estimation

– large body of work on functional of one density (Bickel & Ritov, 1988;
Donoho & Liu 1991; Birgé & Massart, 1993; Laurent, 1996 and so on)

• KL is a functional of two densities

• Very little work on nonparametric divergence estimation, especially for high-
dimensional data

• Little existing work on estimating density ratio per se
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Main Idea

• Variational representation of f -divergences:

Lemma 4. Letting F be any function class in X → R, there holds:

Dφ(P, Q) ≥ sup
f∈F

∫

f dQ − φ∗(f) dP,

with equality if F ∩ ∂φ(q0/p0) #= ∅.

φ∗ denotes the conjugate dual of φ

• Implications:

– obtain an M-estimation procedure for divergence functional
– also obtain the likelihood ratio function dP/dQ

– how to choose F
– how to implement the optimization efficiently
– convergence rate?
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Kullback-Leibler Divergence

• For the Kullback-Leibler divergence:

DK(P, Q) = sup
g>0

∫

log g dP −
∫

gdQ + 1.

• Furthermore, the supremum is attained at g = p0/q0.
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M-Estimation Procedure

• Let G be a function class: X → R+

•
∫

dPn and
∫

dQn denote the expectation under empirical measures Pn and
Qn, respectively

• One possible estimator has the following form:

D̂K = sup
g∈G

∫

log g dPn −
∫

gdQn + 1.

• Supremum is attained at ĝn, which estimates the likelihood ratio p0/q0
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Convex Empirical Risk with Penalty

• In practice, control the size of the function class G by using a penalty

• Let I(g) be a measure of complexity for g

• Decompose G as follows:

G = ∪1≤M≤∞GM ,

where GM is restricted to g for which I(g) ≤ M .

• The estimation procedure involves solving:

ĝn = argming∈G

∫

gdQn −
∫

log g dPn +
λn

2
I2(g).
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Convergence Rates

Theorem 5. When λn vanishes sufficiently slowly:

λ−1
n = OP (n2/(2+γ))(1 + I(g0)),

then under P:
hQ(g0, ĝn) = OP (λ1/2

n )(1 + I(g0))

I(ĝn) = OP (1 + I(g0)).
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Results
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Conclusions

• Formulated a precise link between f -divergences and surrogate loss functions

• Decision-theoretic perspective on f -divergences

• Equivalent classes of loss functions

• Can design new convex surrogate loss functions that are equivalent (in a
deep sense) to 0-1 loss

– Applications to the Bayes consistency of procedures that jointly choose
an experimental design and a classifier

– Applications to the estimation of divergences and entropy
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