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Splines on Manifolds and Wahba 11 IntroductionThe subject of splines is an active area of mathematical research and there are many ref-erences on the subject as well as many di�erent points of view. In a functional analysisframework, a very powerful approach is to investigate splines through the theory of repro-ducing kernel Hilbert spaces (rkhs). A good survey, along with applications is summarizedsuccinctly in Wahba (1990); see also the references contained therein.In terms of developing splines from the rkhs approach, Wahba (1990) con�nes herdomain to a standard class, which, although is bene�cial for most practical applications,nevertheless, is restrictive. Indeed, in terms of the mathematical foundation that the rkhso�ers, it is possible that extensions of spline methods to compact Riemannian manifoldscan be made if one adheres to rkhs theory and use aspects of spectral geometry. In fact,Wahba (1981) successfully implements such a strategy for the 2{sphere and conjectures thatthe methods thus developed \can no doubt be generalized to establish splines associatedwith the Laplace-Beltrami operator on compact Riemannian manifolds", Wahba (1981, 9).We will understand the latter statement as Wahba's conjecture. A formal statement willlater be provided.It turns out that the 2{sphere is an excellent prototypical example that can provideinsights into compact Riemannian manifolds in general. The pursuit of this paper therefore,is to show that one can do such an analysis in the more general setting using methods fromspectral geometry. In particular, this paper a�rmatively answers Wahba's conjecture aswell as display the rich mathematical foundation that the rkhs framework provides in termsof practical spline methodology over more general domains.Since Wahba's paper on spline interpolation and smoothing on the 2{sphere, a gener-alization to the hypersphere is carried out in Taijeron, Gibson and Chandler (1994). Theyconsider more general operators of which the Laplace-Beltrami operator is a special case.Again, using methods from spectral geometry, one can accomodate the results of Taijeron,Gibson and Chandler (1994) in the more general setting, consequently, we will adopt thelatter's approach as the outline to the generalization to compact Riemannian manifolds.We now provide a summary of what is to follow.In Section 2, we briey review some notation and geometric preliminaries. Putting thisinto the rkhs framework then follows which includes a discussion of reproducing kernels.Some speci�c results for reproducing kernels can be made through a beautiful generalizationof the addition formula for spherical harmonics by Gin�e (1975b). In particular, one can



Splines on Manifolds and Wahba 2express the reproducing kernel in terms of zonal functions when the manifold is in additionhomogeneous. Even more can be said if the manifold in question is a Lie group. In thiscase we would use the representation theory for compact Lie groups.Once this is complete, the construction of the rkhs in a geometric setting basicallyanswers Wahba's conjecture. In particular, the characterizing minimization problems ofinterpolation and smoothing has a spline solution with respect to a general class of operatorswhich includes the Laplace-Beltrami operator. This is discussed in Section 3 along witha�rmatively answering Wahba's conjecture with respect to the Laplace-Beltrami operator.We also outline how one of the key conditions in providing a spline solution is intricatelyconnected to some classical results on the zeta function of the Laplace-Beltrami operator.Due to certain technical conditions, we will present the proofs to the results in Section 3,separately in Section 6. Here we go over the regularization procedure of Taijeron, Gibsonand Chandler (1994) for the hypersphere and extend it to compact Riemannian manifolds.At this point we explicitly use the Riemannian structure through the Riemannian metricto intrinsically regularize the problem.The basic examples of compact manifolds are the higher dimensional hyperspheres Sm�1and the group of N � N rotation matrices SO(N). Each of course have there explicitconstructions and this is presented as examples in Section 4. A brief discussion is providedin Section 5, highlighting the achievements of the paper as well as some comments onimplementation.2 Compact Manifolds PreliminariesWe will �rst present the notation and some preliminaries. Aspects of geometry and Liegroups that will be used come from standard sources, for example, Spivak (1970), Helgason(1978, 1984), Br�ocker and tom Dieck (1985) and Fegan(1991).LetM be an m�dimensional compact Riemannian manifold. Consider the Riemannianstructure fgp(�; �) : p 2 Mg and let dx be the normalized volume element of M associatedwith this structure. We will in addition assume that the manifold is connected and withoutboundary, @M = ;, although one could generalize the following arguments to certainboundary conditions, for example, von Neumann boundary conditions.Consider (t) a smooth curve inM, with t 2 [a; b] and let 0(t) denote it's �rst deriva-tive. Then the length of  is de�ned through the Riemannian structure asl() = Z ba g(t)(0(t); 0(t))1=2dt:



Splines on Manifolds and Wahba 3Since we are assuming thatM is connected, hence for any two points p; q 2 M we can �nda curve in M that joins them in M, we can de�ne a metric on M by�(p; q) = inffl() :  joining p and qg; (2.1)p; q 2 M. This metric is called the Riemannian metric which makes (M; �), a metricspace. This of course is the intuitive and classical de�nition. The more modern approachis to view the Riemannian metric as an inner product on the tangent bundle ofM. Spivak(1970), provides a lively discussion on this matter in chapter 9.Let C1(M) be the space of real valued in�nitely di�erentiable continuous functionson M. Denote by �, the Laplace-Beltrami operator on M. It is understood that � isan elliptic self-adjoint second order di�erential operator on C1(M), hence by the spectraltheorem for compact operators, the eigenfunctions of � is a complete orthonormal basisfor L2(M).Let �� and � be an eigenvector and the corresponding eigenvalue of �, respectively.For N = f0; 1; 2; : : :g, note that there are countably many �k � 0, k 2 N with no upperbound. This means that for each �k, we can denote a corresponding eigenfunction (whichin general will occur with multiplicity) by ��k = �k, k 2 N . Furthermore, we will use theconvention that �0 = 0 with �0 = 1 and that �k � �k+1 for k 2 N .For functions f : M! R , let L2(M) denote the space of square integrable functions.Let Ek � L2(M), k 2 N , denote the eigenspace associated with the eigenvalue �k, k 2 N .The dimension of Ek will be denoted by dimEk for k 2 N . The multipicity of eigenvectorswhose eigenvalues are less than a certain constant is determined by Weyl's formulalimT!1T�m=2#f�k < Tg = vol(M)(2p�)m�(1 +m=2) ; (2.2)where vol(M) denotes the m�dimensional volume of M and �(�) is the gamma function,see Minakshisundaram and Pleijel (1949). We note that if �k is an eigenfunction of �, thenso is �k where overbar denotes complex conjugation. Consequently, a real basis for L2(M)can be chosen.For h 2 L2(M), the eigenfunction expansion will be de�ned byh = 1Xk=0XEk ĥk�k; where ĥk = ZM h�k; (2.3)for k 2 N . We note that summation over Ek means over all eigenfunctions �k in theeigenspace Ek, k 2 N .



Splines on Manifolds and Wahba 42.1 Reproducing kernel Hilbert spaceLet fak : k 2 Ng be a sequence of numbers. For h 2 L2(M), de�ne the normkhk2A = 1Xk=0XEk jakj2jĥkj2: (2.4)Let HA(M) be the vector space completion of C1(M) with respect to the norm (2.4).This allows us to de�ne the operator A : HA(M)! L2(M)Ah = 1Xk=0XEk akĥk�k: (2.5)We note that if A = �s=2, then denote by H�s=2(M) = Hs(M), the Sobolev space oforder s. Furthermore, �s=2u = P�s=2k ĥk�k andZM j�s=2uj2 =Xk XEk �skjĥkj2; (2.6)see Lemma 4.1 Hendriks (1990).Let Pk : HA(M)! Ek, k 2 N be the projection operator onto the k�th eigenspace anddenote by NA0 = fk 2 N : A(Pk) = 0g. Then writingH0A(M) = Mk2NA0 Ek; H1A(M) = Mk 62NA0 Ek; (2.7)we have the decomposition HA(M) = H0A(M)�H1A(M): (2.8)Let u = u0 + u1 and v = v0 + v1 with u0; v0 2 H0A(M) and u1; v1 2 H1A(M). Then, lethu0; v0i0A = Xk2NA0 XEk (û0)k(v̂0)k; hu1; v1i1A = Xk 62NA0 XEk jakj2(û1)k(v̂1)kand hu; viA = hu0; v0i0A + hu1; v1i1A;be the inner products of H0A(M), H1A(M) and HA(M), respectively.For p; q 2 M, de�ne K0(p; q) = Xk2NA0 XEk �k(p)�k(q); (2.9)K1(p; q) = Xk 62NA0 XEk jakj�2�k(p)�k(q); (2.10)and K(p; q) = K0(p; q) +K1(p; q): (2.11)



Splines on Manifolds and Wahba 5Lemma 2.1 Let M be a compact connected Riemannian manifold. Suppose NA0 is �niteand supp2M Xk 62NA0 XEk jakj�2j�k(p)j2 <1;for k = 0; 1; : : :. Then, H0A(M), H1A(M) and HA(M) are rkhs with reproducing kernelsK0, K1 and K, respectively.Proof. For each p 2 M, K0(p; �) 2 H0A(M). Furthermore, for u0 2 H0A(M), we havehK0(p; �); u0i0A = Xk2NA0 XEk �k(p)(û0)k = u0(p):Hence, K0 is a reproducing kernel and H0A(M) is an rkhs. For K1(p; �) we note that�kK1k1A�2 = Xk 62NA0 XEk jakj�2j�k(p)j2 � supp2M Xk 62NA0 XEk jakj�2j�k(p)j2 <1;by assumption. Thus K1(p; �) 2 H1A(M) andhK1(p; �); u1i1A = Xk 62NA0 XEk �k(p)(û1)k = u1(p);for all u1 2 H1A(M). Consequently, K1 is a reproducing kernel and H1A(M) is an rkhs.Thus it follows that K is a reproducing kernel and that HA(M) is an rkhs. 22.2 Reproducing kernel on homogeneous spacesIn a practical setting, M is usually equipped with certain symmetries. In light of this aswell as a very beautiful addition formula available on manifolds with certain symmetries,we will at times impose an additional technical condition on M. A Riemannian manifoldis homogeneous if its group of isometries G, acts transitively on M, where by the latter,we mean that for every p; q 2 M, there exits a g 2 G such that p = g � q. For everyp0 2 M, let Gp0 = fg 2 G : g � p0 = p0g denote the isotropy subgroup of p0. It is wellknown that if M is a homogeneous compact connected Riemannian manifold, then forevery p 2 M, Gp is a closed subgroup of G and there exists a di�eomorphism of G=Gp 'M.The classical example is the di�eomorphism of the 2{sphere S2 with the quotient set of3 � 3 rotation matrices modulo 2 � 2 rotation matrices SO(3)=SO(2). A di�erentiablefunction f :M! R is called a zonal function with respect to p0 2 M if it is constant onthe isotropy subgroup Gp0.What is of practical importance is the evaluation of (2.10). For a homogeneous space,a beautiful generalization of the addition formula for spherical harmonics is available, seeGin�e (1975a, 1975b). The consequence is that the evaluation of (2.10) can be made interms of zonal functions on M. We have the following.



Splines on Manifolds and Wahba 6Lemma 2.2 Let M be a compact connected homogeneous Riemannian manifold. For x0 2M �xed, 	 : M ! M an isometry and f�kx0 : Ek ! R a zonal function with respect tox0 2 M, K1(p; q) = Xk 62NA0 jakj�2(dimEk)1=2f�kx0 (	p;x0(q));where p; q 2 M.Proof. Fix an eigenspace Ek, say. Then in Ek, we have by Theorem 3.2 of Gin�e (1975b),XEk �k(p)�k(q) = (dimEk)1=2f�0x0 (	p;x0(q));where x0 2 M is �xed, 	 : M!M is an isometry and f�kx0 : Ek ! R is a zonal functionwith respect to x0 2 M. Therefore,K1(p; q) = Xk 62NA0 XEk jakj�2�k(p)�k(q)= Xk 62NA0 jakj�2XEk �k(p)�k(q)= Xk 62NA0 jakj�2(dimEk)1=2f�kx0 (	p;x0(q)): 2Furthermore, we note that for M homogeneous,XEk j�k(p)j2 = dimEk; for all p 2 M; (2.12)for k = 0; 1; : : :, see Theorem 3.2 Gin�e (1975b). Consequently, the conditionsupp2M Xk 62NA0 XEk jakj�2j�k(p)j2 <1; (2.13)for k = 0; 1; : : : in Lemma 2.1 can be replaced byXk 62NA0 jakj�2dimEk <1; (2.14)for k = 0; 1; : : :.An even �ner structure is to assume that for x1; y1; x2; y2 2 M, with �(x1; y1) =�(x2; y2), there exists a g 2 G such that g � x1 = x2 and g � y1 = y2. In such a case,M is called two-point homogeneous. Then f�kx0 (	p;x0(q)) can be replaced by a uniquelydetermined real valued function h�k(�(p; q)) where h�k(r) = f�kx0 (	p;x0(x)) for every x 2 Mwith �(x; x0) = r. Thus, for a two-point homogeneous space,K1(p; q) = Xk 62NA0 jakj�2(dimEk)1=2h�k(�(p; q));where p; q 2 M. Notice that in this case the reproducing kernel depends only on theRiemannian distance between a pair of points.



Splines on Manifolds and Wahba 72.3 Reproducing kernel on Lie groupsIf in addition the manifold has a group structure with the group action and inverse mappingbeing continuous hence is a Lie group, additional re�nements on (2.10) can be made.Let G be a compact connected Lie group and �x once and for all, a maximal torusT. Let g and t be the corresponding Lie algebras and denote by t� the dual space of tpossessing the Weyl group invariant inner product. Let J � t� be the fundamental Weylchamber and denote by �, the set of real roots. Let �+ = f� 2 � : h�; �i > 0; � 2 Jgbe the set of positive roots. Finally denote by I� � t� the integral portion of t�. Thuswe can de�ne �J \ I� which will be used below for indexing. We are using �J to denote settheoretic closure, however this conicts with the notation for complex conjugation. Thisis unfortunate however the set theoretic closure will only be used on J and the latter willnever be used to denote a complex quantity.Consider an irreducible representation U : G ! Aut(V ), where V is some �nite di-mensional vector space and Aut(V ) are the automorphisms of V . Then the collection ofinequivalent irreducible representations of G can be enumerated as fU� : � 2 �J \ I�g; seeBr�ocker and tom Dieck (1985, 242). The irreducible characters are de�ned by �� = trU�and the dimension of the irreducible representations are d(�+�) = Q�2�+ h�; � + �i=h�; �ifor � 2 �J \ I� where � = 2�1P�2�+ �, the half sum of the positive roots and the innerproduct is induced by the Killing form.The Killing form also induces a Riemannian structure on G. Consequently, let � bethe Laplace-Beltrami operator on G. The components of the irreducible representationsare the eigenfunctions of � so that�qd(� + �)U� : � 2 �J \ I�� (2.15)is a complete orthonormal basis of L2(G). We note that the eigenvalues are�� = k� + �k2 � k�k2 (2.16)for � 2 �J \ I� where the norm is with respect to the Killing form. The multiplicity ofthe eigenfunctions with respect to a �xed eigenvalue is therefore d2(� + �) for � 2 �J \ I�.Weyl's formula (2.2) for G is thuslimT!1T�dimG=2 X��<T d2(� + �) = vol (G)(2p�)dimG�(1 + dimG=2) ; (2.17)see Minakshisundaram and Pleijel (1949), Gin�e (1975), or Hendriks (1990).The general formula for (2.10) for G is given in the following.



Splines on Manifolds and Wahba 8Lemma 2.3 Suppose G is a connected compact Lie group. ThenK1(p; q) = X� 62( �J\I�)0A ja�j�2d(� + �)��(pq�1);where p; q 2 G and ( �J \ I�)0A is in bijective correspondence with NA0 .Proof. We note thatK1(p; q) = X� 62( �J\I�)0A ja�j�2d(� + �)trU�(p)U t�(q) (2.18)= X� 62( �J\I�)0A ja�j�2d(� + �)trU�(p)U�(q�1)= X� 62( �J\I�)0A ja�j�2d(� + �)trU�(pq�1)= X� 62( �J\I�)0A ja�j�2d(� + �)��(pq�1);where superscript t denotes transposition, U t�(q) = U�(q�1), and one uses the fact that U�is a group homomorphism. 2We note that Lemma 2.3 will be true for all connected compact Lie groups. Thus theonly issues are the di�erences in the root structure of G which are classi�ed by the Dynkindiagrams, see Br�ocker and tom Dieck (1985, 212). In addition, the irreducible characterscan be calculated through the Weyl character formula, see Br�ocker and tom Dieck (1985,244).We can further re�ne Lemma 2.3 toK1(p; q) = X� 62( �J\I�)0A ja�j�2d(� + �) X��(e)=d(�+�)��(pq�1); (2.19)for p; q 2 G. Furthermore, because of the invariance of (2.19) with respect to the groupaction G � G ! G and because the irreducible characters of any compact Lie group G isde�ned on T, the number of variables that K(p; q) would depend on would be dimT. Inaddition, if A = �s=2, then by (2.16), we would set ja�j�2 = (k� + �k2 � k�k2)�s in (2.19).



Splines on Manifolds and Wahba 93 Splines on ManifoldsWe are now ready to state the main results of this paper. All proofs will be deferred toSection 6.De�nition 3.1 The interpolation problem is to �nd u 2 HA(M) that minimizes�kuk1A�2 = ZM jAuj2subject to the constraint u(pi) = zi; i = 1; : : : ; n;where A is the operator de�ned by (2.5), pi 2 M and zi 2 R for i = 1; : : : ; n.De�nition 3.2 The smoothing problem isminu2Hs(M) 1n nXi=1 (u(pi)� zi)2 + � �kuk1A�2 ;where � > 0, pi 2 M and zi 2 R for i = 1; : : : ; n.We will need the following notation. Let p1; : : : ; pn; q 2 M. De�ne the n� n matrixKn;� = [K(pi; pj)] + n�I; (3.1)where i; j = 1; : : : ; n, � � 0 and I is the n� n identity matrix. Letm0 = Xk2NA0 dim Ek: (3.2)Enumerate NA0 = fk1; : : : ; krg and de�ne the n�m0 matrixSm0 = [�ki(pj)]t ; (3.3)for �ki 2 Eki, i = 1; : : : ; r and j = 1; : : : ; n. Furthermore, de�ne the m0�dimensional vectorsm0(q) = [�ki(q)]t ; (3.4)for �ki 2 Eki, i = 1; : : : ; r, and letk(q) = [K1(p1; q); : : : ; K1(pn; q)]t : (3.5)We have the following.



Splines on Manifolds and Wahba 10Theorem 3.3 On a compact connected Riemannian manifold M consider the operatorA : HA(M) ! L2(M) de�ned by (2.5). Suppose NA0 is �nite, (2.13) holds and p1; : : : ; pnare distinct points on M, so that (i) fK0(pj; q)gnj=1 spans H0A(M), and (ii) fK1(pj; q)gnj=1is a linearly independent set in H1A(M), where n � m0 and q 2 M. De�neuA;n;�(q) = k(q) � c+ s(q) � d;where the n�dimensional vector c and the m0�dimensional vector d are de�ned byc = K�1n;�(I � Sm0X)z; d = Xz; X = �Stm0K�1n;�Sm0��1 Stm0K�1n;�;z = (z1; : : : ; zn)t, zj 2 R and the components of these quantities are de�ned in (3.1), (3.2),(3.3), (3.4) and (3.5). Then, uA;n;0(q) is the solution to the interpolation problem, anduA;n;�(q) for � > 0 is the solution to the smoothing problem. Furthermore, c and d areequivalent to Kn;�c+ Sm0d = z and Stm0c = 0:We once again note that if in addition M is homogeneous, just as we did in Lemma2.1, the condition (2.13) in Theorem 3.3 can be replaced by (2.14).3.1 Relationship to the Laplace-Beltrami operator and a proofof Wahba's conjectureThe conditions necessary for solving the interpolation and smoothing problems on Mappear somewhat excessive. This is partly due to the fact that we are looking for splinesolutions to general operators A. In the case where A is the Laplace-Beltrami operator,the conditions appear milder and more familiar. This however, is only apparent for in thecase of the Laplace-Beltrami operator, it is found that the conditions of Theorem 3.3 followfrom properties of the Laplace-Beltrami operator. Consequently, prior to stating the mainresult, let us see why this is so.Lemma 3.4 On a compact connected Riemannian manifold M consider the operator A :HA(M)! L2(M) de�ned by (2.5) and suppose NA0 is �nite. Assume p1; : : : ; pn are distinctpoints on M, q 2 M and suppose jakj � const�s=2k for some positive constant, s > m=2and k = 0; 1; : : :. Then fK(pj; q)gnj=1 is a linearly independent set in HA(M).



Splines on Manifolds and Wahba 11Thus the importance of this lemma is the positive de�niteness of K when A = �s=2.Consider, the zeta functionZ(x; ~s) = 1Xk=1XEk ��~sk j�k(x)j2; (3.6)for ~s 2 C , the complex plane. It is known that the series is absolutely convergent in thecomplex plane when Re(~s) > m=2, see Minakshisundaram and Pleijel (1949), Duistermaatand Guillemin (1975), or Hendriks (1990). In fact, de�neD(x; s; T ) = (2p�)m�(m=2 + 1)vol (M)m=2 (s�m=2)T s�m=2 1Xk=T XEk ��sk j�k(x)j2;for x 2 M and s > m=2. Then it is known thatlimT!1 supx2M sups>m=2 �����D(x; s; T )� 1s ����� = 0;hence the asymptotic behaviour for real s of the zeta function is known, see Theorem 3.1,Hendriks (1990).For us, the behaviour of the zeta function implies that when the operator in questionis the Laplace-Beltrami operator, then condition (2.13) is automatically satis�ed whenevers > m=2. In the case where M = S1, the circle, (3.6) would be ��1�(2~s), where �(�) isthe Riemann zeta function whose location of zeros is a famous open problem in analyticnumber theory. In fact, the role of the Riemann zeta function for univariate splines havebeen noticed in the literature, see Messer (1991, 825).We therefore summarize the above discussion of the zeta function with the following.Lemma 3.5 On a compact connected Riemannian manifoldM, consider �s=2 : Hs(M)!L2(M), where s > m=2. Then, (2.13) is satis�ed. 2This lays the ground work for the main result involving the Laplace-Beltrami operator.Indeed, for A = �s=2, s > m=2, de�ne h�; �i�s=2 = h�; �is, uA;n;� = us;n;� and as noted earlier,let Hs(M) denote the Sobolev space of order s. We now state the main result which is theformal statement of Wahba's conjecture which of course is now Wahba's theorem.



Splines on Manifolds and Wahba 12Theorem 3.6 (Wahba) On a compact connected Riemannian manifold M consider theoperator �s=2 : Hs(M) ! L2(M), where s > m=2. Assume p1; : : : ; pn are distinct pointson M and q 2 M. De�ne us;n;�(q) = k(q) � c+ s(q) � d;where the n�dimensional vector c and the scalar d are de�ned byc = K�1n;�(I � S1)z; d = Xz; X = �St1K�1n;�S1��1 St1K�1n;�and the components of these quantities are de�ned in (3.1), (3.2), (3.3), (3.4) and (3.5)with m0 = 1. Then us;n;0(q) is the solution to the interpolation problem, and us;n;�(q) for� > 0 is the solution to the smoothing problem. Furthermore, c and d are equivalent toKn;�c+ S1d = z and St1c = 0:4 ApplicationsIn this section we will discuss speci�c applications to higher dimensional spheres Sm�1as well as N � N rotation matrices SO(N). Both are examples of homogeneous compactconnected Riemannian manifolds. The latter has in addition a group structure which makesit a compact Lie group. The task therefore is to derive the reproducing kernel (2.10) forthese two cases whereby Theorem 3.3 can be applied.4.1 Sm�1 Higher Dimensional SpheresAlthough Wahba (1981) looks exclusively at S2, all of Wahba's arguments extends to Sm�1,for m � 3. This is accompolished in Taijeron, Gibson and Chandler (1994). We will brieyoutline the general case with concrete expressions for higher dimensional spheres along withthe addition formula which can be found for example in Vilenkin (1968), M�uller (1998), orXu (1997).Indeed, for some ! = (!1; : : : ; !m)t 2 Sm�1, the m � 1 spherical coordinates can berepresented by: !1 = sin �m�1 � � � sin �2 sin �1 (4.1)!2 = sin �m�1 � � � sin �2 cos �1...!m�1 = sin �m�1 cos �m�2!m = cos �m�1



Splines on Manifolds and Wahba 13where �1 2 [0; 2�) and �j 2 [0; �) for j = 2; : : : ; m� 1. The invariant measure isd! = �(m=2)2�m=2 sinm�2 �m�1 � � � sin �2d�1 � � �d�m�1:Let C�r (t), t 2 [�1; 1] be a polynomial of degree r determined by the power series(1� 2t� + �2)�� = 1Xr=0C�r (t)�r: (4.2)One notices that C1=2r (t) are the classical Legendre polynomials. Thus for general �, thesepolynomials are generalizations of the classical Legendre polynomials and are called theGegenbauer (ultraspherical) polynomials.For k = (k1; k2; : : : ; km�2), let K` = f` � k1 � k2 � � � � � km�2 � 0g. De�neY `;ik = Ak̀ m�2Yj=1 Ckj+(m�j�1)=2kj�1�kj (cos �m�j)(sin �m�j)kjY km�2i (sin �1; cos �1); (4.3)where Y h1 (sin ; cos ) = C0h(cos ); Y h2 (sin ; cos ) = p2 sin C1h�1(cos );Y 02 (sin ; cos ) = 0 and [Ak̀]2 = 1�(m=2) m�2Yj=1 �(kj + (m� j + 1)=2)�(kj + (m� j)=2) :The collection nY `;ik : k 2 K`; ` � 0; i = 1; 2o ; (4.4)are the eigenfunctions of �, the Laplace-Beltrami operator on Sm�1, m � 3 and�Y `;ik = �`Y `;ik ;where �` = `(`+m� 2); (4.5)` > 0. Thus each ` � 0, determines the eigenspace E`, wheredim E` = (2`+m� 2)(l +m� 3)!`!(m� 2)! : (4.6)Collectively, (4.4) is called the spherical harmonics for L2(Sm�1) and by virtue of thespectral theorem for compact operators, (4.4) forms a complete orthonormal basis.The corresponding addition formula for functions on Sm�1 is as follows. For !; � 2 Sm�1Xk2K` hY `;1k (!)Y `;1k (�) + Y `;2k (!)Y `;2k (�)i = `+ (m� 2)=2(m� 2)=2 C(m�2)=2` (!t�): (4.7)



Splines on Manifolds and Wahba 14Consequently, K1(!; �) = X` 62NA0 ja`j�2 `+ (m� 2)=2(m� 2)=2 C(m�2)=2` (!t�): (4.8)We note that with regard to Lemma 2.2, (4.7) does not identify the zonal function whenm � 4. We can do so by a renormalization.Consider the Legendre polynomials P`(m; t), t 2 [�1; 1] as coe�cients in the powerseries expansion (1� �2)(1 + �2 � 2�t)3=2 = 1Xr=0dimE`�rP`(m; t);for m � 2. Note that P`(3; t), t 2 [�1; 1] are the classical Legendre polynomials. Therelationship between the Legendre and Gegenbauer polynomials isC(m�2)=2` (t) =  `+m� 3` !P`(m; t);for t 2 [�1; 1] and m � 2, see M�uller (1998, 45). Consequently, we can re-express (4.7) asXk2K` hY `;1k (!)Y `;1k (�) + Y `;2k (!)Y `;2k (�)i = dimE`P`(m;!t�); (4.9)hence we can re-express (4.8) asK1(!; �) = X` 62NA0 ja`j�2dimE`P`(m;!t�); (4.10)for !; � 2 Sm�1 and m � 2. Since (4.10) is invariant under orthogonal transformations, wecan set ! = (0; : : : ; 0; 1)t so that (4.10) only depends on the radial coordinate �m�1.Consequently, the zonal function on Sm�1 isqdimE`P`(m; z); (4.11)for z 2 [�1; 1] and m � 2.4.2 SO(N) Rotation MatricesFor N = 2k + 1 odd, let�J \ I� = nj 2 Zk : j1 � j2 � � � � � jk � 0o ; (4.12)for N = 2k even, let �J \ I� = nj 2 Zk : j1 � j2 � � � � � jjkj � 0o ; (4.13)



Splines on Manifolds and Wahba 15where Z denotes the set of all integers. One notices that in the even case, an extra setof indices come from the relation jjkj. The particular form of �J \ I�, as classi�ed by theDynkin diagrams, for SO(N) when N = 2k + 1 reects the Bk root structure k � 2, whileN = 2k reects the Dk root structure k � 3; see for example Br�ocker and tom Dieck (1985).Consider � the Laplace-Beltrami operator on SO(N). For N = 2k+1, the correspond-ing eigenvalue is �j = j21 + � � �+ j2k + (2k � 1)j1 + (2k � 3)j2 + � � �+ jk (4.14)while for N = 2k�j = j21 + � � �+ j2k + (2k � 2)j1 + (2k � 4)j2 + � � �+ 2jk�1: (4.15)Further details of the eigenstructure of SO(N) are provided in Appendix B in Kim (1998).The characters of SO(N) can be evaluated through the Weyl character formula and istaken from Gong (1991) pages 122-123, where `1 = j1 + k � 1; `2 = j2 + k � 2; : : : ; `k = jkand 0 � �1; : : : ; �k < �. For N = 2k + 1, the irreducible character for j = (j1; : : : ; jk) is������� sin(`1 + 1=2)�1 � � � sin(`1 + 1=2)�k� � � � � � � � �sin(`k + 1=2)�1 � � � sin(`k + 1=2)�k �������������� sin(k � 1=2)�1 � � � sin(k � 1=2)�k� � � � � � � � �sin(1=2)�1 � � � sin(1=2)�k ������� (4.16)where k � 1.For N = 2k, we have to take cases. For j = (j1; : : : ; jk), �rst assume that jk = 0. Thenthe irreducible character is ��������� cos `1�1 � � � cos `1�k� � � � � � � � �cos `k�1�1 � � � cos `k�1�k1 � � � 1 ������������������ cos(k � 1)�1 � � � cos(k � 1)�k� � � � � � � � �cos �1 � � � cos �k1 � � � 1 ��������� (4.17)
where k � 3. For j = (j1; : : : ; jk), assume that jk > 0. Then the irreducible character is������� cos `1�1 � � � cos `1�k� � � � � � � � �cos `k�1 � � � cos `k�k �������+ ik ������� sin `1�1 � � � sin `1�k� � � � � � � � �sin `k�1 � � � sin `k�k ���������������� cos(k � 1)�1 � � � cos(k � 1)�k� � � � � � � � �cos �1 � � � cos �k1 � � � 1 ��������� (4.18)



Splines on Manifolds and Wahba 16where k � 3. For j = (j1; : : : ; jk), assume that jk < 0. Then the irreducible character is������� cos `1�1 � � � cos `1�k� � � � � � � � �cos `k�1 � � � cos `k�k �������� ik ������� sin `1�1 � � � sin `1�k� � � � � � � � �sin `k�1 � � � sin `k�k ���������������� cos(k � 1)�1 � � � cos(k � 1)�k� � � � � � � � �cos �1 � � � cos �k1 � � � 1 ��������� (4.19)
where k � 3.The specialization to SO(N) therefore comes down to the evaluation of Lemma 2.3.Indeed, for N = 2k+1, one would substitute (4.16) into Lemma 2.3 along with using (4.14)for the eigenvalues. For N = 2k when k � 3, one would use (4.15) for the eigenvalues andproceed in cases. Thus for j 2 �J \ I� with jk = 0, one would substitute (4.17) into Lemma2.3. For j 2 �J \ I� with jk 6= 0, one would substitute the sum of (4.18) and (4.19) intoLemma 2.3. Notice that the second terms in (4.18) and (4.19) are of opposite sign so thatthey would o�set each other regardless of whether the group character has an imaginarycomponent or not. Consequently, in light of (2.19), K(p; q) is real valued and one canapply Theorem 3.3 to SO(N). As mentioned previously, because the irreducible charactersare de�ned on the maximal torus of the group G, on SO(N), K(p; q) would depend on kvariables where dimSO(N) = k(2k + 1) when N is odd and dimSO(N) = k(2k � 1) whenN is even.5 DiscussionAt a theoretical level, spline interpolation and smoothing is now possible over compactRiemannian manifolds. This generalizes the 2{sphere case of Wahba (1981), as well as thehypersphere case of Taijeron, Gibson and Chandler (1994).Although Theorem 3.3 achieves this generalization for a general class of operators,while Theorem 3.6 uses the Laplace-Beltrami operator on compact Riemannian manifolds,nevertheless, one is still confronted with the problem of evaluating (2.11), if one wants tonumerically implement this procedure for a speci�c compact Riemannian manifold. Justas in the spherical cases examined in Wahba (1981) and Taijeron, Gibson and Chandler(1994), whatever M happens to be, aside from the simple case of the circleM = S1, if onewants to practically implement this spline procedure, one must evaluate the in�nite seriesin question! At this point, such is a formidable challenge and investigations into expressing(2.11) into a numerically convenient form remains to be worked out!



Splines on Manifolds and Wahba 176 Proofs to main resultsThe key to proving the results of Section 3 are contained in Kimeldorf and Wahba (1971)as well as the adaptation of the latter to hyperspheres by Taijeron, Gibson and Chandler(1994).Proof of Theorem 3.3. Assumption (ii) implies the n�n matrix [K1(pj; pi)] is positivede�nite and invertible. Thus the n�n matrix Kn;�, is invertible for all � � 0. Also, (n�)�1Iis positive de�nite, when � > 0. By assumption (i) and (2.9), the image of Sm0 is H0A(M),and therefore the rank of Sm0 is m0. Furthermore, if we de�ne �0 and �1 as the orthogonalprojections of HA(M) onto H0A(M) and H1A(M), respectively, then for j = 1; : : : ; n � m0,�0K(pj; q) = K0(pj; q) and �1K(pj; q) = K1(pj; q).For � > 0, apply Lemma 5.1 from Kimmeldorf and Wahba (1971), or Theorem 1.3.1from Wahba (1990). The result is the solution uA;n;� for the smoothing problem and uA;n;0for the interpolation problem.The relationship among the vectors and matrices are also easy consequences of Kim-meldorf and Wahba (1971). 2In order to prove Lemma 3.4, we need to regularize the problem as in Lemma 2.3 inTaijeron, Gibson and Chandler (1994). For p 2 M, let (Op;  p) be a chart, i.e., Op �M isan open set with p 2 Op and  p : Op !  p(Op) is a di�eomorphism, where  p(Op) � Rmis an open subset. Now de�nef�;p(q) = 8><>: exp f��(p; q)=[�� �(p; q)]g if �(p; q) � �, f�(p; q) � �g � Op0 otherwise. (6.20)Notice that we can shrink the compact support of f�;p around the compact closure of asmall open neighbourhood around p 2M just as we would do in the Euclidean case. Thiswill enable us to regularize the data points p1; : : : ; pn. We take note of the fact that ourde�nition (6.20) is intrinsic since it is de�ned through the Riemannian metric. This isslightly di�erent in Taijeron, Gibson and Chandler (1994), for they use the fact that Sm�1is embedded in Rm. We are now ready to prove the lemma.Proof of Lemma 3.4. As in the hypothesis, assume p1; : : : ; pn are distinct points inM. Let �(�; �) be the Riemannian metric, (2.1) on M and choose � such that0 < � < mini 6=j �(pi; qj)=2;



Splines on Manifolds and Wahba 18for i; j = 1; : : : ; n.De�ne ui(q) = f�;pi(q); (6.21)where ui 2 C1(M) and Aui 2 L2(M) for i = 1; : : : ; n and q 2 M . We note thatui(pj) = �ij, where �ij denotes the Kronecker delta for i; j = 1; : : : ; n.Consider the linear combination nXj=1�jK(pj; �) = 0: (6.22)Using the fact that Hs(M) is an rkhs with reproducing kernel K, we note thathK(pj; �); ui(�)is = ui(pj); (6.23)for i; j = 1; : : : ; n. By applying (6.23) to (6.22), we get0 = nXj=1�jhK(pj; �); ui(�)is = nXj=1�jui(pj) = �i;for i = 1; : : : ; n. Thus the lemma follows. 2Proof of Theorem 3.6. In the situation where the operator is �s=2, s > m=2, most ofthe conditions that are being assumed in Theorem 3.3 automatically follow. In particular,the only eigenspace annihilated by �s=2 is E0, hence NA0 = f0g and therefore m0 = 1.Consequently, fK0(pj; q) = 1 : j = 1; : : : ; ng clearly spans H0s (M) = E0. Furthermore,by Lemma 3.5, (2.13) is ful�lled. As an aside, if M is homogeneous, then (2.13) is (2.14)and the latter follows from (2.2) if and only if s > m=2, see Gin�e (1975b). By Lemma 3.4,fK(pj; �)gnj=1 is linearly independent in Hs(M), so the only thing remaining is to show thatfK1(pj; �)gnj=1 is a linearly independent set in H1s (M). The theorem will then follow as aconsequence of Theorem 3.3.Thus, assume nXj=1�jK1(pj; �) = 0: (6.24)Then nXj=1�jK(pj; �) = nXj=1�jK0(pj; �) + nXj=1�jK1(pj; �) (6.25)= nXj=1�j= an;



Splines on Manifolds and Wahba 19say, because K0(pj; �) = 1 for j = 1; : : : ; n and by (6.24).Using the fact that Hs(M) is an rkhs with reproducing kernel K, along with (6.23), ifwe apply h�; ui(�)is to the beginning and the end of (6.25), we have that �i = anh1; uiis fori = 1; : : : ; n. Therefore, an0@1� nXj=1�jh1; ujis1A = 0: (6.26)Now according to (6.20), by continuity and compactness, we know that there exists aconstant Mi � 0 so thatexp( ��(pi; q)�� �(pi; q)) �Mi; for �(pi; q) � �;i = 1; : : : ; n.Therefore, Zf�(pi;q)��g\Opi ui(q)dq �Mi vol (f�(pi; q) � �g \ Opi) ;for i = 1; : : : ; n. Consequently,nXi=1 �ih1; uiis = nXi=1 Zf�(pi;q)��g\Opi ui(q)dq� nmaxi Mivol (f�(pi; q) � �g \ Opi) :Furthermore, 1� nXj=1�jh1; ujis � 1� nmaxi Mi vol (f�(pi; q) � �g \ Opi) ;and so by letting � ! 0, we can make the second of the above expression as close to 1as possible. The consequence is that the term in the parentheses of (6.26) can be madearbitrary close to 1 by choosing � > 0 arbitrarily small. Therefore in order for (6.26) tohold, an = 0. But if that's the case, then (6.25) would be 0, hence �j = 0 for j = 1; : : : ; nby Lemma 3.4. 2Acknowledgements. The author would like to acknowledge Harrie Hendriks for helpfulconversations on spectral geometry over the years. He would also like to acknowledge GraceWahba's contributions to the subject along with some personal communication.
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