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1 Introduction

The subject of splines is an active area of mathematical research and there are many ref-
erences on the subject as well as many different points of view. In a functional analysis
framework, a very powerful approach is to investigate splines through the theory of repro-
ducing kernel Hilbert spaces (rkhs). A good survey, along with applications is summarized
succinctly in Wahba (1990); see also the references contained therein.

In terms of developing splines from the rkhs approach, Wahba (1990) confines her
domain to a standard class, which, although is beneficial for most practical applications,
nevertheless, is restrictive. Indeed, in terms of the mathematical foundation that the rkhs
offers, it is possible that extensions of spline methods to compact Riemannian manifolds
can be made if one adheres to rkhs theory and use aspects of spectral geometry. In fact,
Wahba (1981) successfully implements such a strategy for the 2—sphere and conjectures that
the methods thus developed “can no doubt be generalized to establish splines associated
with the Laplace-Beltrami operator on compact Riemannian manifolds”, Wahba (1981, 9).
We will understand the latter statement as Wahba’s conjecture. A formal statement will
later be provided.

It turns out that the 2—sphere is an excellent prototypical example that can provide
insights into compact Riemannian manifolds in general. The pursuit of this paper therefore,
is to show that one can do such an analysis in the more general setting using methods from
spectral geometry. In particular, this paper affirmatively answers Wahba’s conjecture as
well as display the rich mathematical foundation that the rkhs framework provides in terms
of practical spline methodology over more general domains.

Since Wahba’s paper on spline interpolation and smoothing on the 2—sphere, a gener-
alization to the hypersphere is carried out in Taijeron, Gibson and Chandler (1994). They
consider more general operators of which the Laplace-Beltrami operator is a special case.
Again, using methods from spectral geometry, one can accomodate the results of Taijeron,
Gibson and Chandler (1994) in the more general setting, consequently, we will adopt the
latter’s approach as the outline to the generalization to compact Riemannian manifolds.

We now provide a summary of what is to follow.

In Section 2, we briefly review some notation and geometric preliminaries. Putting this
into the rkhs framework then follows which includes a discussion of reproducing kernels.
Some specific results for reproducing kernels can be made through a beautiful generalization

of the addition formula for spherical harmonics by Gine (1975b). In particular, one can
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express the reproducing kernel in terms of zonal functions when the manifold is in addition
homogeneous. Even more can be said if the manifold in question is a Lie group. In this
case we would use the representation theory for compact Lie groups.

Once this is complete, the construction of the rkhs in a geometric setting basically
answers Wahba’s conjecture. In particular, the characterizing minimization problems of
interpolation and smoothing has a spline solution with respect to a general class of operators
which includes the Laplace-Beltrami operator. This is discussed in Section 3 along with
affirmatively answering Wahba’s conjecture with respect to the Laplace-Beltrami operator.
We also outline how one of the key conditions in providing a spline solution is intricately
connected to some classical results on the zeta function of the Laplace-Beltrami operator.
Due to certain technical conditions, we will present the proofs to the results in Section 3,
separately in Section 6. Here we go over the regularization procedure of Taijeron, Gibson
and Chandler (1994) for the hypersphere and extend it to compact Riemannian manifolds.
At this point we explicitly use the Riemannian structure through the Riemannian metric
to intrinsically regularize the problem.

The basic examples of compact manifolds are the higher dimensional hyperspheres S~
and the group of N x N rotation matrices SO(N). Each of course have there explicit
constructions and this is presented as examples in Section 4. A brief discussion is provided
in Section 5, highlighting the achievements of the paper as well as some comments on

implementation.

2 Compact Manifolds Preliminaries

We will first present the notation and some preliminaries. Aspects of geometry and Lie
groups that will be used come from standard sources, for example, Spivak (1970), Helgason
(1978, 1984), Brocker and tom Dieck (1985) and Fegan(1991).

Let M be an m—dimensional compact Riemannian manifold. Consider the Riemannian
structure {g,(-,-) : p € M} and let dz be the normalized volume element of M associated
with this structure. We will in addition assume that the manifold is connected and without
boundary, OM = (), although one could generalize the following arguments to certain
boundary conditions, for example, von Neumann boundary conditions.

Consider v(t) a smooth curve in M, with ¢ € [a, b] and let '(¢) denote it’s first deriva-
tive. Then the length of 7 is defined through the Riemannian structure as

1) = [ 0000 (0, (0)) 2.
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Since we are assuming that M is connected, hence for any two points p,q € M we can find

a curve in M that joins them in M, we can define a metric on M by

p(p.q) = inf{l(7) : v joining p and ¢}, (2.1)

p,q € M. This metric is called the Riemannian metric which makes (M, p), a metric
space. This of course is the intuitive and classical definition. The more modern approach
is to view the Riemannian metric as an inner product on the tangent bundle of M. Spivak
(1970), provides a lively discussion on this matter in chapter 9.

Let C*(M) be the space of real valued infinitely differentiable continuous functions
on M. Denote by A, the Laplace-Beltrami operator on M. It is understood that A is
an elliptic self-adjoint second order differential operator on C*° (M), hence by the spectral
theorem for compact operators, the eigenfunctions of A is a complete orthonormal basis
for L*(M).

Let ¢, and A be an eigenvector and the corresponding eigenvalue of A, respectively.
For N = {0,1,2,...}, note that there are countably many A, > 0, k¥ € N with no upper
bound. This means that for each A\, we can denote a corresponding eigenfunction (which
in general will occur with multiplicity) by ¢, = ¢k, k¥ € N. Furthermore, we will use the
convention that A\g = 0 with ¢g = 1 and that Ay < A4 for k£ € N.

For functions f : M — R, let L?(M) denote the space of square integrable functions.
Let & C L*(M), k € N, denote the eigenspace associated with the eigenvalue \;, k € N.
The dimension of & will be denoted by dim & for £ € N. The multipicity of eigenvectors
whose eigenvalues are less than a certain constant is determined by Weyl’s formula

vol(M)
(2v/m) L (1 +m/2)’

where vol(M) denotes the m—dimensional volume of M and I'(-) is the gamma function,

: —m/2 _
lim T4\, < T} = (2.2)

see Minakshisundaram and Pleijel (1949). We note that if ¢, is an eigenfunction of A, then
s0 is ¢, where overbar denotes complex conjugation. Consequently, a real basis for L?(M)
can be chosen.

For h € L*(M), the eigenfunction expansion will be defined by
=Y hucr, where = [ g, (2.3)
k=0 & M

for £ € N. We note that summation over & means over all eigenfunctions ¢, in the

eigenspace &, k € N.
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2.1 Reproducing kernel Hilbert space

Let {ax : k € N} be a sequence of numbers. For h € L?(M), define the norm
1212 =323 laxl* Al (2.4)
k=0 &

Let H4(M) be the vector space completion of C(M) with respect to the norm (2.4).
This allows us to define the operator A : H (M) — L*(M)

k=0 gk

We note that if A = A2 then denote by Hp./2(M) = H,(M), the Sobolev space of
order s. Furthermore, A%/?y =S )\Z/%kqbk and

[ A2l = 35 Al (2.6)

k&,

see Lemma 4.1 Hendriks (1990).
Let Py : Ha(M) — &, k € N be the projection operator onto the k—th eigenspace and
denote by Ni' = {k € N : A(P;) = 0}. Then writing

HY (M) = @ & HAM) = @ & (2.7)

keng! kgNgt
we have the decomposition
Hy(M) = Hy(M) & Hi(M). (2.8)

Let u = up + uy and v = vy + vy with ug, vy € HY(M) and uy, vy, € H4(M). Then, let

(uo,v0)% = > > (ti0)k(W0)k, (ur, o)y = 3 3 lan|* () (1)n

keng' €k kgngt Ek

and <U, U>A = <U0, U0>?4 + <U'17 U1>}47

be the inner products of HY (M), HY(M) and H4(M), respectively.
For p,q € M, define

Ko(p,q) = ZA;d)k(p)ak(q), (2.9)
Ki(p,g) = Y > laxl0x(p) o1 (), (2.10)
kgng' Ex

and
K(p,q) = Ko(p, q) + K1(p, q). (2.11)
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Lemma 2.1 Let M be a compact connected Riemannian manifold. Suppose N64 s finite

and
sup Z Z|ak| 2lor(p)]? < o0,
ngNA &k
for k =0,1,.... Then, HY(M), HY(M) and Ha(M) are rkhs with reproducing kernels

Ky, Ky and K, respectively.
Proof. For each p € M, Ky(p,-) € HY(M). Furthermore, for uy € H%(M), we have
(Ko(p; Uo ,4 = Z Z¢k k = Uo(p)

keng' Ek

Hence, K| is a reproducing kernel and HY% (M) is an rkhs. For K;(p, ) we note that

(151" = X S lalenp)? < sup 3 3 loal~gu(r)

kgngt Ex keNA Ek

by assumption. Thus K;(p,-) € H4(M) and
(Kl(p, U ,4— Z Z¢k k—ul(P)

kgNg' Ek

for all u; € H4(M). Consequently, K; is a reproducing kernel and H%(M) is an rkhs.
Thus it follows that K is a reproducing kernel and that H4(M) is an rkhs. O

2.2 Reproducing kernel on homogeneous spaces

In a practical setting, M is usually equipped with certain symmetries. In light of this as
well as a very beautiful addition formula available on manifolds with certain symmetries,
we will at times impose an additional technical condition on M. A Riemannian manifold
is homogeneous if its group of isometries G, acts transitively on M, where by the latter,
we mean that for every p,q € M, there exits a ¢ € G such that p = ¢ - ¢. For every
po € M, let G,y = {9 € G: g po = po} denote the isotropy subgroup of py. It is well
known that if M is a homogeneous compact connected Riemannian manifold, then for
every p € M, G, is a closed subgroup of G and there exists a diffeomorphism of G / G, > M
The classical example is the diffeomorphism of the 2-sphere S? with the quotient set of
3 x 3 rotation matrices modulo 2 x 2 rotation matrices SO(3)/SO(2). A differentiable
function f : M — R is called a zonal function with respect to py € M if it is constant on
the isotropy subgroup G,,.

What is of practical importance is the evaluation of (2.10). For a homogeneous space,
a beautiful generalization of the addition formula for spherical harmonics is available, see
Giné (1975a, 1975b). The consequence is that the evaluation of (2.10) can be made in

terms of zonal functions on M. We have the following.



Splines on Manifolds and Wahba 6

Lemma 2.2 Let M be a compact connected homogeneous Riemannian manifold. For zy €
M fized, ¥V : M — M an isometry and f:,f‘g : & — R a zonal function with respect to
rg € M,

Ki(p,q) = Y lag| 7> (dim&) 2 [k (W00 (a)),

kgNgt
where p,q € M.

Proof. Fix an eigenspace &, say. Then in &, we have by Theorem 3.2 of Giné (1975b),
Z¢k = (dim & )1/2f P (Wp,20(a)),

where zy € M is fixed, ¥ : M — M is an isometry and f:?Ok : & — R is a zonal function
with respect to zy € M. Therefore,

Ki(pg) = D> > lawlu(p)di(a)

kgNgt Ex

= > Ja|? SZ br(p)dr(q)

kgngt

= 2 lar *(dimée) 2 2 Uy (q)). O

kgngt

Furthermore, we note that for M homogeneous,

Z |pr(p)]? = dim &, for all p € M, (2.12)

for k=0,1,..., see Theorem 3.2 Giné (1975b). Consequently, the condition
sup S akl” o (p) (2.13)
keNA Ek
for k =0,1,... in Lemma 2.1 can be replaced by
> Jag|?dim & < oo, (2.14)
kgng
for k=0,1,....

An even finer structure is to assume that for x;,y;, x2,y, € M, with p(z1,y1) =
p(xo,y2), there exists a g € G such that ¢ - xl = 2y and g -y; = ys. In such a case,
M is called two-point homogeneous. Then f2#(¥,,,(¢)) can be replaced by a uniquely
determined real valued function h* (p(p, ¢)) where h*(r) = f2¢ (¥, . (2)) for every x € M
with p(x,xz9) = r. Thus, for a two-point homogeneous space,

= > lax| 2 (dim&) 2 h* (p(p, 9)),
kgng
where p,q € M. Notice that in this case the reproducing kernel depends only on the

Riemannian distance between a pair of points.
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2.3 Reproducing kernel on Lie groups

If in addition the manifold has a group structure with the group action and inverse mapping
being continuous hence is a Lie group, additional refinements on (2.10) can be made.

Let G be a compact connected Lie group and fix once and for all, a maximal torus
T. Let g and t be the corresponding Lie algebras and denote by t* the dual space of t
possessing the Weyl group invariant inner product. Let J C t* be the fundamental Weyl
chamber and denote by ®, the set of real roots. Let &, = {a € ® : (o, ) > 0,8 € J}
be the set of positive roots. Finally denote by I* C t* the integral portion of t*. Thus
we can define J N I* which will be used below for indexing. We are using J to denote set
theoretic closure, however this conflicts with the notation for complex conjugation. This
is unfortunate however the set theoretic closure will only be used on J and the latter will
never be used to denote a complex quantity.

Consider an irreducible representation U : G — Aut(V'), where V' is some finite di-
mensional vector space and Aut(V') are the automorphisms of V. Then the collection of
inequivalent irreducible representations of G can be enumerated as {U, : v € J N I*}, see
Brocker and tom Dieck (1985, 242). The irreducible characters are defined by x, = trU,
and the dimension of the irreducible representations are d(v +p) = [laes, (o, v + p)/{(, p)
for v € J N I* where p = 27} >aca, @, the half sum of the positive roots and the inner
product is induced by the Killing form.

The Killing form also induces a Riemannian structure on G. Consequently, let A be
the Laplace-Beltrami operator on . The components of the irreducible representations

are the eigenfunctions of A so that
{ d(V—I—p)U,,ZVEJ_ﬂI*} (2.15)
is a complete orthonormal basis of L?(G). We note that the eigenvalues are
A =l + pl* = [lp]l® (2.16)

for v € J N I* where the norm is with respect to the Killing form. The multiplicity of
the eigenfunctions with respect to a fixed eigenvalue is therefore d?(v + p) for v € J N I*.
Weyl’s formula (2.2) for G is thus

) 1
lim T—dlmg/2 Z d2(V+p) _ VO (g)

o A <T (2\/7_r)dimg1"(1 + dim g/2) ) (2.17)

see Minakshisundaram and Pleijel (1949), Giné (1975), or Hendriks (1990).
The general formula for (2.10) for G is given in the following.
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Lemma 2.3 Suppose G is a connected compact Lie group. Then

Kip.g)= > la|dv+p)xu(pg),
vg(JnI+)%

where p,q € G and (J N I*)% is in bijective correspondence with N64.
Proof. We note that

Kipa) = Y la|dw+p)trU,(p)T,(q) (2.18)

I/Q(J_ﬁl*)?‘t

= Y a| W+ p)tr U (p)U, (7Y

vg(JnI=)%

= Y al e+ p)trU(pg Y

vg(JnI=)%
= > el dr+p)xpdh),
vg(JInI)%
where superscript ¢ denotes transposition, U,t,(q) =U,(q7"), and one uses the fact that U,

is a group homomorphism. O

We note that Lemma 2.3 will be true for all connected compact Lie groups. Thus the
only issues are the differences in the root structure of G which are classified by the Dynkin
diagrams, see Brocker and tom Dieck (1985, 212). In addition, the irreducible characters
can be calculated through the Weyl character formula, see Brocker and tom Dieck (1985,
244).

We can further refine Lemma 2.3 to

Kipg= Y la|dr+p Y xpdh), (2.19)

vg(JnI+)% Xxv(e)=d(v+p)

for p,q € G. Furthermore, because of the invariance of (2.19) with respect to the group
action § X § — G and because the irreducible characters of any compact Lie group G is
defined on T, the number of variables that K(p,¢) would depend on would be dimT. In
addition, if A = A*/2 then by (2.16), we would set |a,|~? = (||v + p[|* — ||p||*) * in (2.19).
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3 Splines on Manifolds

We are now ready to state the main results of this paper. All proofs will be deferred to

Section 6.

Definition 3.1 The interpolation problem is to find u € H4(M) that minimizes

(lully)” = [ 14uf?

subject to the constraint

w(p:)) =2, 1=1,...,n,
where A is the operator defined by (2.5), p; € M and z; € R fori=1,... n.

Definition 3.2 The smoothing problem is
1 n

min — Z (u(p;) — Zi)2 +¢£ (“U”}ét)z )

ueHs(M) 1 o1
where £ >0, p; € M and z; €R fori=1,...,n.
We will need the following notation. Let py,...,p,,q € M. Define the n x n matrix
K = [K(pi,pj)] + n&l, (3.1)

where 7,7 =1,...,n, £ > 0 and [ is the n x n identity matrix. Let

mo = »_ dimé&. (3.2)
kengt
Enumerate N' = {ky, ..., &} and define the n x my matrix
Smo = [¢kz (pj)]tv (33)
for ¢y, € &, i =1,...,7and j = 1,...,n. Furthermore, define the my—dimensional vector
Smo (q) = [¢ki(q)]t7 (34)
for ¢, € &, i =1,...,7, and let
k(Q) = [Kl(th);---;Kl(me)]t- (35)

We have the following.
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Theorem 3.3 On a compact connected Riemannian manifold M consider the operator
A Hy(M) = L*(M) defined by (2.5). Suppose Ny is finite, (2.13) holds and py, ..., p,
are distinct points on M, so that (i) {Ko(p;, q)}j=, spans HY(M), and (ii) {Ki(p;, ¢)}j—,
is a linearly independent set in HY(M), where n > mgy and ¢ € M. Define

U/A,n,g(Q) = k(q) “C+ S(q) ' d7
where the n—dimensional vector ¢ and the my—dimensional vector d are defined by
¢= K M0~ Sy X)z, d=Xz, X = (80 K, 15m,)  ShoK, b

z=(21,...,2a)", z; € R and the components of these quantities are defined in (3.1), (3.2),
(3.3), (3.4) and (3.5). Then, uano(q) is the solution to the interpolation problem, and
Uane(q) for & > 0 is the solution to the smoothing problem. Furthermore, ¢ and d are

equivalent to

Kyec+ Smyd =z and S}, c=0.

We once again note that if in addition M is homogeneous, just as we did in Lemma

2.1, the condition (2.13) in Theorem 3.3 can be replaced by (2.14).

3.1 Relationship to the Laplace-Beltrami operator and a proof
of Wahba’s conjecture

The conditions necessary for solving the interpolation and smoothing problems on M
appear somewhat excessive. This is partly due to the fact that we are looking for spline
solutions to general operators A. In the case where A is the Laplace-Beltrami operator,
the conditions appear milder and more familiar. This however, is only apparent for in the
case of the Laplace-Beltrami operator, it is found that the conditions of Theorem 3.3 follow
from properties of the Laplace-Beltrami operator. Consequently, prior to stating the main

result, let us see why this is so.

Lemma 3.4 On a compact connected Riemannian manifold M consider the operator A :
H (M) — L*(M) defined by (2.5) and suppose N3' is finite. Assume py, ..., p, are distinct
points on M, g € M and suppose |ay| < const)\}i/2 for some positive constant, s > m/2

and k =0,1,.... Then {K(pj,q)}}-, is a linearly independent set in H4(M).
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Thus the importance of this lemma is the positive definiteness of X when A = A*/2.
Consider, the zeta function

2(0.5) = 3 5 A (o) P, (3.6)

k=1 &
for s € C, the complex plane. It is known that the series is absolutely convergent in the
complex plane when Re(5) > m/2, see Minakshisundaram and Pleijel (1949), Duistermaat
and Guillemin (1975), or Hendriks (1990). In fact, define

@YmLUn/2ED) ( oypsmiz 5 A ()P

D(w,s,T) = vol (M) m/2 s

for x € M and s > m/2. Then it is known that

D(x,s,T)—1
s

lim sup sup
T—00 ge M s>m/2

-

hence the asymptotic behaviour for real s of the zeta function is known, see Theorem 3.1,
Hendriks (1990).

For us, the behaviour of the zeta function implies that when the operator in question
is the Laplace-Beltrami operator, then condition (2.13) is automatically satisfied whenever
s > m/2. In the case where M = S, the circle, (3.6) would be 77¢((25), where (() is
the Riemann zeta function whose location of zeros is a famous open problem in analytic
number theory. In fact, the role of the Riemann zeta function for univariate splines have
been noticed in the literature, see Messer (1991, 825).

We therefore summarize the above discussion of the zeta function with the following.

Lemma 3.5 On a compact connected Riemannian manifold M, consider A*/? : Hy(M) —

L*(M), where s > m/2. Then, (2.13) is satisfied. O

This lays the ground work for the main result involving the Laplace-Beltrami operator.
Indeed, for A = A*/2, s > m/2, define (-, ) par2 = (, )5, Ugne = Usne and as noted earlier,
let Hy(M) denote the Sobolev space of order s. We now state the main result which is the

formal statement of Wahba’s conjecture which of course is now Wahba’s theorem.
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Theorem 3.6 (Wahba) On a compact connected Riemannian manifold M consider the
operator A*/% 1 H (M) — L*(M), where s > m/2. Assume p,...,p, are distinct points
on M and g € M. Define

usng(q) = k(q) - ¢+ s(q) - d,

where the n—dimensional vector ¢ and the scalar d are defined by

c=K i I-5)z d=Xz X=(SIK;Ls) S

L

and the components of these quantities are defined in (3.1), (3.2), (3.3), (3.4) and (3.5)
with mo = 1. Then us,0(q) is the solution to the interpolation problem, and us, ¢(q) for

& > 0 s the solution to the smoothing problem. Furthermore, ¢ and d are equivalent to

Kuec+ Sid=2 and Sic=0.

4 Applications

In this section we will discuss specific applications to higher dimensional spheres S™ !
as well as N x N rotation matrices SO(N). Both are examples of homogeneous compact
connected Riemannian manifolds. The latter has in addition a group structure which makes
it a compact Lie group. The task therefore is to derive the reproducing kernel (2.10) for

these two cases whereby Theorem 3.3 can be applied.

4.1 S™ ! Higher Dimensional Spheres

Although Wahba (1981) looks exclusively at S?, all of Wahba’s arguments extends to S™ !,
for m > 3. This is accompolished in Taijeron, Gibson and Chandler (1994). We will briefly
outline the general case with concrete expressions for higher dimensional spheres along with
the addition formula which can be found for example in Vilenkin (1968), Miiller (1998), or
Xu (1997).

Indeed, for some w = (wy,...,w,)" € S™ ! the m — 1 spherical coordinates can be

represented by:

w; = sin6,, ;---sinfysin b, (4.1)
we = s8inf,,_;---sinf,cosb;
W1 = Sin6,,_1cosb,,_s

Wy, = coSl,_1
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where 6, € [0,27) and 6, € [0,7) for j = 2,...,m — 1. The invariant measure is

r 2
dw = (m/ ) Sinm72 Hmf]_ ---sin 92d91 T damfl'

27rm/2

Let CH(t), t € [-1, 1] be a polynomial of degree r determined by the power series

(1= 2ta+a®) "= i CH(t)a". (4.2)

One notices that C'/2(¢) are the classical Legendre polynomials. Thus for general p, these
polynomials are generalizations of the classical Legendre polynomials and are called the

Gegenbauer (ultraspherical) polynomials.
For k = (kl,kQ, e ]{I ) let K:g {E > kl > kg v Z km_g Z 0} Define

v = Al H C’,’; +1mk 7=1) /2(cos On—j ) (sin 9m,j)ka~km’2(sin 6,,cos0,), (4.3)

7

where

Y (sin 1), cos ) = CP(cos ), YJ(sin1h, cos ) = V2sinpCr | (cos ),

=Sy —j+1)/2)
Y (sin, costp) = 0 and AE -
! ) A = g 1L Tt G 7%
The collection
{Y,f’i k€Kl >0,i=1, 2}, (4.4)

are the eigenfunctions of A, the Laplace-Beltrami operator on S™ %, m > 3 and
AYkZ’Z = )\g}/,f’i,
where
A =Ll +m —2), (4.5)
¢ > 0. Thus each ¢ > 0, determines the eigenspace &£, where
(20+m —2)(l+m — 3)!
(m — 2)!

Collectively, (4.4) is called the spherical harmonics for L*(S™~') and by virtue of the

dim gg =

(4.6)

spectral theorem for compact operators, (4.4) forms a complete orthonormal basis.

The corresponding addition formula for functions on S™ ! is as follows. For w,v € S™ !

2 [V @) ) + V)V v)] = %qm—w (Wv). (47
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Consequently,

14 ( )/2 (m=2)/2/
ZgZNA| | ( )/ CE ( ) (48)

We note that with regard to Lemma 2.2, (4.7) does not identify the zonal function when
m > 4. We can do so by a renormalization.
Consider the Legendre polynomials Py(m;t), t € [—1,1] as coefficients in the power

series expansion
(1—o?)

(1+ a? —2at)3/?
for m > 2. Note that Py(3;t), t € [—1,1] are the classical Legendre polynomials. The

=Y dim & Py(m; t),
r=0

relationship between the Legendre and Gegenbauer polynomials is

m— €+ _3
e = () i

for t € [—1,1] and m > 2, see Miiller (1998, 45). Consequently, we can re-express (4.7) as

kZ’C Yo @)Yt () + YVeAw)Ye (v)] = dim £ Pi(m; w'v), (4.9)

hence we can re-express (4.8) as

Ki(w,v) = Y |ap|*dim EPo(m; w'y), (4.10)
£gNg

for w,v € S™ ! and m > 2. Since (4.10) is invariant under orthogonal transformations, we
can set w = (0,...,0,1)" so that (4.10) only depends on the radial coordinate 6, .

Consequently, the zonal function on S™ ! is
dim & Py(m; z), (4.11)
for z € [-1,1] and m > 2.
4.2 SO(N) Rotation Matrices
For N =2k + 1 odd, let
Jnr={jez:jizj 22520}, (412)
for N = 2k even, let

Jnr={jezt ji>j>-->jl 20}, (4.13)
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where Z denotes the set of all integers. One notices that in the even case, an extra set
of indices come from the relation |j,|. The particular form of J N I*, as classified by the
Dynkin diagrams, for SO(N) when N = 2k + 1 reflects the By, root structure k& > 2, while
N = 2k reflects the Dy root structure k£ > 3; see for example Brocker and tom Dieck (1985).

Consider A the Laplace-Beltrami operator on SO(N). For N = 2k +1, the correspond-

ing eigenvalue is
A=A (2k — 1)y + (2k — 3)ja + - -+ ik (4.14)

while for N = 2k
No=Ji 4 e+ (2k = 2)j1 4+ 2k — 4)ja + - 4 2jk1. (4.15)

Further details of the eigenstructure of SO(N) are provided in Appendix B in Kim (1998).
The characters of SO(N) can be evaluated through the Weyl character formula and is

taken from Gong (1991) pages 122-123, where {1 = j1 +k — 1,lo = jo + k — 2,..., lx = Ji

and 0 < 0y,...,0, <m. For N =2k + 1, the irreducible character for j = (ji, ..., ji) is

sin(ﬁl + 1/2)01 v sin(él + 1/2)919

sin(€p +1/2)0;, --- sin(ly + 1/2)0y

sin(k —1/2)0; --- sin(k — 1/2)6y (4.16)
s1n(1/2)91 sm(1/2)9k

where k£ > 1.
For N = 2k, we have to take cases. For j = (ji, ..., jk), first assume that j, = 0. Then

the irreducible character is

cosl10, .- costi0,
coslp_10y --- cosly_,04
L - L (4.17)
cos(k —1)0;, --- cos(k —1)0 '
cos 0, ce cos 0,
1 . 1
where k > 3. For j = (j1,...,Jk), assume that j, > 0. Then the irreducible character is
cosl10y --- cost,0; sinf;0; --- sin/{,0,
+ i*
coslpf; -+ cosll sin .0, --- sinf,0; (4.18)
cos(k —1)0; --- cos(k —1)0; '
cos 0, ce cos 0,

1 1
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where k > 3. For j = (j1,...,Jk), assume that j, < 0. Then the irreducible character is

cosfl10, --- cost,0; sinfl;60; --- sint,0;
ke
—1
cos iy - cosiio, sinfp0, --- sin/{.0, (4.19)
cos(k —1)0; --- cos(k —1)6y
cos 0, ce cos 0,
1 e 1

where k£ > 3.

The specialization to SO(N) therefore comes down to the evaluation of Lemma 2.3.
Indeed, for N = 2k+1, one would substitute (4.16) into Lemma 2.3 along with using (4.14)
for the eigenvalues. For N = 2k when k£ > 3, one would use (4.15) for the eigenvalues and
proceed in cases. Thus for j € JNI* with j; = 0, one would substitute (4.17) into Lemma
2.3. For j € JNI* with j;, # 0, one would substitute the sum of (4.18) and (4.19) into
Lemma 2.3. Notice that the second terms in (4.18) and (4.19) are of opposite sign so that
they would offset each other regardless of whether the group character has an imaginary
component or not. Consequently, in light of (2.19), K(p,q) is real valued and one can
apply Theorem 3.3 to SO(N). As mentioned previously, because the irreducible characters
are defined on the maximal torus of the group G, on SO(N), K(p,q) would depend on k
variables where dimSO(N) = k(2k + 1) when N is odd and dimSO(N) = k(2k — 1) when

N is even.

5 Discussion

At a theoretical level, spline interpolation and smoothing is now possible over compact
Riemannian manifolds. This generalizes the 2—sphere case of Wahba (1981), as well as the
hypersphere case of Taijeron, Gibson and Chandler (1994).

Although Theorem 3.3 achieves this generalization for a general class of operators,
while Theorem 3.6 uses the Laplace-Beltrami operator on compact Riemannian manifolds,
nevertheless, one is still confronted with the problem of evaluating (2.11), if one wants to
numerically implement this procedure for a specific compact Riemannian manifold. Just
as in the spherical cases examined in Wahba (1981) and Taijeron, Gibson and Chandler
(1994), whatever M happens to be, aside from the simple case of the circle M = S, if one
wants to practically implement this spline procedure, one must evaluate the infinite series
in question! At this point, such is a formidable challenge and investigations into expressing

(2.11) into a numerically convenient form remains to be worked out!
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6 Proofs to main results

The key to proving the results of Section 3 are contained in Kimeldorf and Wahba (1971)
as well as the adaptation of the latter to hyperspheres by Taijeron, Gibson and Chandler
(1994).

Proof of Theorem 3.3. Assumption (ii) implies the n xn matrix [K (p;, p;)] is positive
definite and invertible. Thus the n x n matrix K, ¢, is invertible for all £ > 0. Also, (n§) I
is positive definite, when £ > 0. By assumption (i) and (2.9), the image of S, is H%(M),
and therefore the rank of S,,, is my. Furthermore, if we define 7y and m; as the orthogonal
projections of H4(M) onto HY(M) and HY (M), respectively, then for j =1,...,n > my,
moK (pj, q) = Ko(pj, q) and m K (p;, q) = K1(pj, q)-

For £ > 0, apply Lemma 5.1 from Kimmeldorf and Wahba (1971), or Theorem 1.3.1
from Wahba (1990). The result is the solution w4, ¢ for the smoothing problem and w4,
for the interpolation problem.

The relationship among the vectors and matrices are also easy consequences of Kim-
meldorf and Wahba (1971). O

In order to prove Lemma 3.4, we need to regularize the problem as in Lemma 2.3 in
Taijeron, Gibson and Chandler (1994). For p € M, let (O,, ;) be a chart, i.e., O, C M is
an open set with p € O, and ¢, : O, — 1,(0,) is a diffeomorphism, where 1,(0,) C R™
is an open subset. Now define

exp {—p(p,q)/[e — p(p, )]} if p(p,q) <€ {p(p,q) <€} CO,
feplq) = (6.20)

0 otherwise.

Notice that we can shrink the compact support of f., around the compact closure of a
small open neighbourhood around p € M just as we would do in the Euclidean case. This
will enable us to regularize the data points py,...,p,. We take note of the fact that our
definition (6.20) is intrinsic since it is defined through the Riemannian metric. This is
slightly different in Taijeron, Gibson and Chandler (1994), for they use the fact that S™!

is embedded in R™. We are now ready to prove the lemma.

Proof of Lemma 3.4. As in the hypothesis, assume py,...,p, are distinct points in
M. Let p(-,-) be the Riemannian metric, (2.1) on M and choose € such that

7]



Splines on Manifolds and Wahba 18

fore,7=1,...,n
Define
ui(q) = fep,(0), (6.21)
where u; € C*(M) and Au; € L* (M) for i = 1,...,n and ¢ € M. We note that
u;(pj) = 0;;, where §;; denotes the Kronecker delta for ¢, =1,...,n.
Consider the linear combination
Zaj (pj,-) = 0. (6.22)

Using the fact that Hy(M) is an rkhs with reproducing kernel K, we note that

(K(pjs ), uil))s = wilpy), (6.23)

fori,j =1,...,n. By applying (6.23) to (6.22), we get

O—Zay py:' z Zajul p])_a“

j=1

fori=1,...,n. Thus the lemma follows. O

Proof of Theorem 3.6. In the situation where the operator is A%/2, s > m/2, most of
the conditions that are being assumed in Theorem 3.3 automatically follow. In particular,
the only eigenspace annihilated by A*/? is &, hence Nj' = {0} and therefore my = 1.
Consequently, {Ky(pj,q) = 1:j = 1,...,n} clearly spans H)(M) = &,. Furthermore,
by Lemma 3.5, (2.13) is fulfilled. As an aside, if M is homogeneous, then (2.13) is (2.14)
and the latter follows from (2.2) if and only if s > m/2, see Giné (1975b). By Lemma 3.4,
{K(pj,-)}}-, is linearly independent in H,;(M), so the only thing remaining is to show that
{K1(pj,-)}j= is a linearly independent set in Hj(M). The theorem will then follow as a
consequence of Theorem 3.3.

Thus, assume
> oy Ki(py,-) = 0. (6.24)
j=1
Then

n

Za, i) = S aiKolpy )+ Y aKi(py, ) (6.25)

Jj=1 Jj=1

I
NE
£

Il

g .
s |l
- —_
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say, because Ky(p;,-) =1for j=1,...,n and by (6.24).
Using the fact that Hy (M) is an rkhs with reproducing kernel K, along with (6.23), if
we apply (-, u;(-))s to the beginning and the end of (6.25), we have that «; = a, (1, u;), for

t=1,...,n. Therefore,
an (1 — > ay(1, uj>s) = 0. (6.26)
7=1

Now according to (6.20), by continuity and compactness, we know that there exists a

constant M; > 0 so that

%p{jﬁﬂi}éM@%rMmméa

e — p(pi, q)
1=1,...,n.
Therefore,
/ ui()dq < Mivol ({p(ping) < } N 0,),
{p(pi,9)<e}NOp;
for i =1,...,n. Consequently,
a;(l,u)s = / u;(g)dg
; < > i1 Y 1p(pi,g) <IN Oy, ( )
< nmax M;vol ({p(pi,q) < e} NO,,).
Furthermore,

1- Za]<17u]>s >1- nma‘XM’L vol ({p(plaq) < 6} N Opi)a
i=1 '

and so by letting ¢ — 0, we can make the second of the above expression as close to 1
as possible. The consequence is that the term in the parentheses of (6.26) can be made
arbitrary close to 1 by choosing € > 0 arbitrarily small. Therefore in order for (6.26) to
hold, a,, = 0. But if that’s the case, then (6.25) would be 0, hence o; =0 for j =1,...,n
by Lemma 3.4. O
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