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S

The support vector machine has been a popular choice of classification method for
many applications in machine learning. While it often outperforms other methods in terms
of classification accuracy, the implicit nature of its solution renders the support vector
machine less attractive in providing insights into the relationship between covariates and
classes. Use of structured kernels can remedy the drawback. Borrowing the flexible model-
building idea of functional analysis of variance decomposition, we consider multicategory
support vector machines with analysis of variance kernels in this paper. An additional
penalty is imposed on the sum of weights of functional subspaces, which encourages a
sparse representation of the solution. Incorporation of the additional penalty enhances
the interpretability of a resulting classifier with often improved accuracy. The proposed
method is demonstrated through simulation studies and an application to real data.

Some key words: Classification; Feature selection; Linear programming; l1-norm penalty; Quadratic
programming; Regularisation method; Reproducing kernel Hilbert space.

1. I

A classification rule that maps the attributes of an individual to a class label is
learned or estimated from a training dataset, a set of pairs of attributes and their known
class memberships of individuals. The foremost goal of classification is to learn the
prediction rule that attains the minimum error rate over novel cases. The support vector
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machine is a classification method which has been widely used recently in machine
learning; see Vapnik (1998, Ch. 10), Cristianini & Shawe-Taylor (2000, Ch. 6), Schölkopf
& Smola (2002, Ch. 7) and references therein. The popularity of the support vector
machine is in part ascribed to its versatility and competitive classification accuracy as
demonstrated in many applications. The main aspect of flexibility when estimating possibly
nonlinear classification boundaries is the embedding of attributes or variables into a high-
dimensional feature space, where hyperplanes may well separate instances from different
classes. However, such embeddings seldom need to be explicit in support vector machine
applications. Rather, the support vector machine solution is expressed as a linear com-
bination of the data representers determined by a chosen kernel function. Hence, for a
nonlinear kernel function, the resulting classifier is given as a black box function, which
does not allow for a clear interpretation of the importance of each variable to the final
classifier. Identification of the variables that are predictive of the response is often crucial.
It would be valuable to be able to achieve comparable classification accuracy, and at the
same time to choose relevant features, i.e. variables or their transformations, selectively.
To enhance the interpretability of the support vector machine, we propose structured

learning through functional analysis of variance decomposition. For a general treatment
of classification problems, we consider the multicategory support vector machine, an
extension of the binary support vector machine proposed by Lee et al. (2004). It is
important to note the distinction between hard and soft classification in order to illuminate
the connection between this work and the existing literature. Soft classification refers to
classification through estimation of the probability of each class, given attributes. For
example, logistic regression is a method of soft classification. In contrast, the support
vector machine provides hard classification, in which the probability estimation is not of
primary interest. For more discussion about soft and hard classification, see Wahba (2002).
In parallel to the work of Wahba et al. (1994), which addresses structured learning for
soft classification via smoothing-spline analysis of variance, this paper presents structured
learning for hard classification. As studied and suggested by Kohavi & John (1997),
filtering informative attributes marginally may not be as efficient as wrapping the selection
operation simultaneously in learning. In this paper, for feature selection we incorporate
an additional penalty of l1 nature on the sum of weights of functional components with
the multicategory support vector machine. Gunn & Kandola (2002) and, in a technical
report from the University of Wisconsin at Madison, Y. Lin and H. Zhang used the idea
of selecting features by this component penalty for regression, generalising the  to
nonlinear function space generated by the spline analysis of variance kernel. The extra
penalty makes the solution in the form of an expansion of functional components more
compact and lucid. Just as in the  of Tibshirani (1996) and the basis pursuit method
of Chen et al. (1999) for regression, the l1 penalty effects selection by shrinking the weights
of less predictive or redundant components to zero.
For the binary linear support vector machine, Bradley & Mangasarian (1998)

demonstrated the utility of the l1 penalty for feature selection, and Weston et al. (2003)
further introduced the l0 penalty. We also note that there are other feature selection
methods for the binary support vector machine, whose formulations are not based on
the l1 penalty; the recursive feature elimination method for the linear support vector
machine on the basis of sensitivity analysis by Guyon et al. (2002) is an example. To
handle nonlinear support vector machines, Weston et al. (2001) and Chapelle et al. (2002)
suggested an alternative approach of introducing a scale factor for each variable, keeping
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the embedding implicit through a choice of kernel function. They then treated the scale
factors as further tuning parameters, and chose them by minimising generalisation error
bounds as functions of a subset of variables via gradient descent. Grandvalet & Canu
(2003) further integrated variable rescaling into the support vector machine formulation
with some sparsity constraints. The optimisation problems involving scaling factors are
computationally more challenging than the original problem. In contrast, our formulation
with analysis of variance decomposition does not entail additional complexity except
that a linear programming problem needs to be solved at intermediate steps. Above all,
our proposed method is a structured approach for identifying a parsimonious subset
of features that are relevant to classification without compromising the classification
accuracy. It handles both linear and nonlinear features in a principled way for general
multiclass problems. As a result, it can be applied to a wide range of problems, and can
provide insights into the relationship between attributes and the response for a particular
classification problem.

2. F    

2·1. Functional analysis of variance

Here we review the functional analysis of variance decomposition as a structured
representation of a multivariate function for describing a relationship f between p
covariates x= (x1 , . . . , xp ) and the response y, where xµX=X1× . . .×X

p
with x

a
µX
a
.

As a generalisation of the classical analysis of variance decomposition of a function
defined on a discrete domain, the analysis of variance decomposition of a function f is
given by

f (x)=b+ ∑
p

a=1
f
a
(x
a
)+ ∑
a<b
f
ab
(x
a
, x
b
)+ . . . , (1)

where b is a constant, and the functional components f
S
for Sk{1, . . . , p} satisfy side

conditions for identifiability. The component f
a
can be interpreted as the main effect of

x
a
, f
ab
as the two-factor interaction of x

a
and x

b
, and so on. For simplicity and elucidation

of f , the analysis of variance decomposition is truncated after lower-order interaction
terms in practice because, as the order of interaction terms increases, accurate estimation
of them becomes increasingly more difficult because of the curse of dimensionality
(Bellman, 1961, p. 94). For example, by restricting the effect of x to be additive, we have
additive models of the form f (x)=b+ f1 (x1 )+ . . .+ fp (xp ), as introduced by Hastie &
Tibshirani (1986). The smoothing-spline analysis of variance models (Wahba, 1990, Ch. 10;
Gu, 2002, Ch. 2) are another family of multivariate function estimation methods based on
functional analysis of variance decomposition. Wahba et al. (1994) and X. Lin, in a 1998
University of Wisconsin, Madison Ph.D. thesis, discussed the smoothing-spline analysis
of variance approach to logistic regression for soft classification in the dichotomous case
and the polytomous case, respectively. The method is a regularisation approach with
roughness penalty imposed on functions in a reproducing kernel Hilbert space. It is well
known that the support vector machine can be cast as a regularisation method in a
reproducing kernel Hilbert space (Wahba, 1998; Evgeniou et al., 2000). This connection
to the reproducing kernel Hilbert space method makes structured support vector machine
learning through the smoothing-spline analysis of variance a natural extension for hard
classification.
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2·2. Reproducing kernel Hilbert space and component selection

We briefly describe a smooth function space that facilitates the analysis of variance
decomposition in (1). The function f is assumed to be inH, a reproducing kernel Hilbert
space of functions defined on X. Details about reproducing kernel Hilbert spaces and
their general properties can be found in Aronszajn (1950). The spaceH is constructed as
a tensor product of functional subspaceH

a
, a reproducing kernel Hilbert space of functions

on X
a
for a=1, . . . , p. It is further decomposed as {1}CH9

a
, where H9

a
is the subspace

of H
a
orthogonal to {1}. The space H is given by

H=Ep

a=1
({1}CH9

a
)={1}C ∑p

a=1
H9
a
C ∑
a<b
(H9
a
EH9

b
)C . . . . (2)

Truncation of subspaces for higher-order interactions yields the corresponding simplifi-
cation of fµH. Relabel the remaining subspaces as F

n
, for n=1, . . . , d, after truncation

and let the resulting reproducing kernel Hilbert space be F={1}CF9 , where
F9 =Cd

n=1Fn . Suppose that fµF. Then f is represented as a sum of functional com-
ponents, each of which is an element of the corresponding subspace of F. Using F, we
sketch the regularisation approach in general terms. LetL denote a loss function and let
T={(x

i
, y
i
), i=1, . . . , n} be a training dataset of n observations. A regularisation method

finds f@µF so as to minimise

1

n
∑
n

i=1
L{y

i
, f (x
i
)}+l ∑

n

h−1
n
dPn f d2,

where d .d is the norm defined on the reproducing kernel Hilbert space F, Pn is the
orthogonal projection operator on to F

n
, and h

n
#0. If h

n
=0, the minimiser is taken to

satisfy dPn f d2=0. The scalar l is a tunable parameter which balances the empirical risk
and the penalty associated with f . The penalty functional J( f )=W

n
h−1
n
dPn f d2 with

rescaling parameters h
n
entails the following reproducing kernel for F9 (Wahba, 1990,

Ch. 10):

K(s, t)= ∑
d

n=1
h
n
K
n
(s, t) (3)

for s, tµX, where K
n
is the reproducing kernel ofF

n
. Tuning the h

n
’s amounts to rescaling

of the component spaces F
n
, and the model complexity is controlled through the set of

h
n
values as well as l.
The expression in (3) as a sum of component reproducing kernels weighted by h

n
values

allows a systematic way of selecting the most relevant components to y. By imposing an
additional penalty on the sum of these weights, we can further force those components
or features with negligible weights to be zero. Motivated by the  method in linear
models that produces sparse solutions, in their technical report Y. Lin and H. Zhang
proposed the following Component Selection and Smoothing Operator, , in
smoothing spline regression: find f@µF to minimise

1

n
∑
n

i=1
{y
i
− f (x

i
)}2+l ∑

n

h−1
n
dPn f d2+l

h
∑
n

h
n
, (4)
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subject to h
n
#0, for n=1, . . . , d. Here the h

n
’s are obtained as part of the minimiser of (4).

They showed that finding f@ to minimise (4) is equivalent to finding the minimiser of

1

n
∑
n

i=1
{y
i
− f (x

i
)}2+t ∑

n

dPn f d (5)

with t=2√(ll
h
), and the method reduces to the  in linear models. For a general

set-up, the squared error can be replaced by other proper loss functions L.
Two papers closely related to this formulation, namely Micchelli & Pontil (2005)
and Argyriou et al. (2005), as well as other references therein, were brought to our
attention by a referee. Although the main motivation of the regularisation problem (4) is
simultaneous function fitting and feature selection, it can be cast as a variational problem
of learning an optimal kernel configuration in the convex hull of prescribed kernels as
studied in the papers. Their general treatment allows for a broader perspective on this
sparse kernel approach to feature selection with the analysis of variance kernels, and they
provide rigorous characterisation of the optimal kernel as a solution to a saddlepoint
problem.

3. S       

3·1. T he binary case

In the classification problem, the response y
i
denotes the class that the ith instance falls

into, where y
i
µ{1, . . . , k}, for prescribed k. Using the training sample T, we want to

construct a classification rule w :X& {1, . . . , k} that can generalise the relationship
between x

i
and the class label y

i
to novel instances.

In the binary case with k=2, the class labels y
i
are coded as either 1 or −1. Instead

of finding a category-valued mapping w directly, the support vector machine looks for a
real valued function f which will induce a classification rule via w(x)=sgn{ f (x)}.
For structured representation of f , we consider the analysis of variance decomposition

corresponding to functional subspaces in (2). As illustrated in § 2, a truncated sum of
subspaces is prespecified for f . Suppose that f=b+hµ{1}CF9 . Then h can be expressed
as Wd
n=1 hn with hnµF

n
. In addition to the decomposition, we prefer f to be only in terms

of informative covariates. This can be achieved by introducing the rescaling parameter h
n

for F
n
and imposing the l1 component penalty on the sum of the parameters as in (4).

The component penalty encourages elimination of irrelevant features, and hence provides
a sparse and succinct description. Modifying the standard support vector machine with
the component penalty, we seek to find f@ that minimises

1

n
∑
n

i=1
{1−y

i
f (x
i
)}++l ∑

d

n=1
h−1
n
dPnhd2+l

h
∑
d

n=1
h
n
, (6)

subject to h
n
#0, for n=1, . . . , d, where (z)+=max(z, 0) for zµR. The dependence of f@

on (l, l
h
) is suppressed for conciseness. Note that the tuning parameters (l, l

h
) and the

rescaling parameters h= (h1 , . . . , hd )T are not uniquely defined. Any l, lh and h with the
same values of l/h

n
and l

h
h
n
for n=1, . . . , d are equivalent. Thus, the h

n
’s can be scaled

arbitrarily. Without loss of generality, we will assume that they are bounded above by 1
when implementing the proposed method. The case h= (1, . . . , 1)T corresponds to no
change from the original set of features. The effect of feature selection and shrinkage will
be gauged in comparison to this benchmark. It was noted by a referee that the above
formulation can be simplified by using the constraint W

n
h
n
=1, which would result in
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only one tuning parameter l. This amounts to renormalisation of the h
n
’s by their sum,

so that h determines a convex combination of kernel functions just as in Micchelli &
Pontil (2005). Then, l simultaneously regularises both the coefficients and the rescaling
parameters. However, we will keep the above formulation to make use of l

h
for a more

direct handle on the magnitudes of the rescaling parameters after the overall complexity
of f@ is controlled by l.
Note that the support vector machine is an example of regularisation methods in a

reproducing kernel Hilbert space with the so-called hinge loss function L{y, f (x)}=
{1−y f (x)}+ . Thus, by the representer theorem (Wahba, 1990, p. 11), its solution admits
a finite-dimensional representation. For fixed h, substituting the rescaled reproducing
kernel (3) into the finite-dimensional representation of f@ gives

f@ (x)=b+ ∑n

i=1
c
i
∑
d

n=1
h
n
K
n
(x
i
, x), (7)

which yields h@
n
(x)=h

n
Wn
i=1 ciKn (xi , x) as the nth functional component. In connection

with (5), the same argument as in the report by Y. Lin and H. Zhang applies to verify that
the structured support vector machine in (6) is equivalent to the following regularisation
problem with an intermediate functional norm: find the minimiser of

1

n
∑
n

i=1
{1−y

i
f (x
i
)}++t ∑

d

n=1
dPnhd. (8)

Suppose that X=[0, 1]p, F is the direct sum of F
n
={x

n
−12}, for n=1, . . . , p, the sub-

spaces of additive linear models, and F
n
is equipped with the inner product ( f , g)=∆ fg.

Let f (x)=b
0
+Wp
n=1 bnxn . Then fµF and the penalty functional J( f )=Wp

n=1 dPnhd
is proportional to Wp

n=1 |bn |. Thus, the above general formulation (8) subsumes the
l1-norm-based feature selection for the linear support vector machine proposed by Bradley
& Mangasarian (1998).

3·2. Computation of the structured support vector machine

Let K
n
stand for the n by n matrix with the ( l, m)th entry K

n
(x
l
, x
m
) and set c=

(c1 , . . . , cn )T. By the reproducing property and (7), Wdn=1 h−1n dPnh@d2= cT (Wdn=1 hnKn )c.
Given h, let K

h
=Wd
n=1 hnKn . Then the structured support vector machine in (6) can be

rewritten as a finite-dimensional problem of finding h and (b, c) that minimise

W(h, b, c)=
1

n
eT{e−Y (be+K

h
c)}++lcTKhc+lh ∑

d

n=1
h
n
, (9)

subject to h
n
#0, for n=1, . . . , d, where e is the vector of n ones, Y=diag( y1 , . . . , yn ),

and (z)+ is the vector with ith coordinate (zi )+ for z= (z1 , . . . , zn )T. This finite-dimensional
problem associated with the optimisation criterion (6) involves (b, c) and h jointly.
However, its inherent structure renders it natural to carry out alternating minimisation
as proposed in Y. Lin and H. Zhang’s report for regression. The alternating approach
gives rise to two well-defined convex optimisation problems referred to below as the
c-step and the h-step. The more general problem of learning the optimal kernel in
Micchelli & Pontil (2005) is formulated by adding another layer of optimisation over h,
which amounts to the kernel configuration, to the c-step of regularisation based on a
given kernel. Consider the following iterative scheme for finding f@ . After initialising
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h(0)= (1, . . . , 1)T and (b(0), c(0) )=arg min W (h(0), b, c), we alternate evaluation of h and (b, c)
given l and l

h
, as follows. At the mth stage (m=1, 2, . . . ), carry out the following

double step:

in the h-step, find h(m) to minimise W (h, b(m−1), c(m−1) ) with (b(m−1), c(m−1) ) fixed;
in the c-step, find (b(m), c(m) ) to minimise W (h(m), b, c) with h(m) fixed.

When the rescaling parameters h are fixed, the nonnegativity constraint on h is irrelevant,
as is the last term in (9). Thus, the c-step problem reduces to the ordinary support vector
machine with the reproducing kernel rescaled by h. The h-step of shrinkage and selection
is reminiscent of the nonnegative garrote in a parametric setting by Breiman (1995), and
is essential for feature selection. For the optimisation problem defined by the h-step, we
introduce nonnegative slack variables denoted by j= (j1 , . . . , jn )T for the truncation
function (.)+ in (9). In terms of the slack variables, the h-step optimisation is to choose h
for fixed b and c, to minimise

W
b,c
(h, j)=

1

n
eTj+ ∑

d

n=1
h
n
(lcTK

n
c+l

h
),

subject to

e−Y Abe+ ∑d
n=1
h
n
K
n
cB∏j, j#0, hn#0 (n=1, . . . , d).

This is a linear programming problem in h and j. Denoting the minimiser at the mth step
by f@ (m), we observe that f@ (0) is the ordinary support vector machine solution with h(0).
We now mention some properties of f@ (m) as generated by the alternating algorithm.

T 1. Given l and l
h
, the algorithm yields a sequence of f@ (m) with feasible

(h(m), b(m), c(m) ) and nonincreasing W(h(m), b(m), c(m) ); that is, W(h(m+1), b(m+1), c(m+1) )∏
W(h(m), b(m), c(m) ). For strictly positive definite K

n
(n=1, . . . , d) and nonzero h(m+1), the

equality holds only if c(m)=c(m+1).
C 1. Given l and l

h
, the sequence of W(h(m), b(m), c(m) ) generated by the algorithm

converges as m&2.

Proofs are straightforward and can be found in an Ohio State University technical
report by the authors. A formal proof of convergence of the arguments (h(m), b(m), c(m) ) is
not pursued here. This would require strict conditions on K

h
and the uniqueness of

solutions to the h-step linear programming problem and determination of b. Numerical
studies showed that the iterative algorithm typically gives convergent solutions in a few
steps, and often taking a one-step update was in practice sufficient for reaching the final
approximate solution. A similar observation was made by Y. Lin and H. Zhang in their
report.

3·3. T he multicategory case

For the multicategory case, we adopt the extension in the paper by Lee et al.
(2004), which retains good theoretical properties of the binary support vector machine.
For a k-category problem, the multicategory support vector machine attempts to find
a k-tuple of separating functions f= ( f 1, . . . , f k ) with the zero-sum constraint,
Wk
j=1 f j (x)=0 for any xµX, which induces a classifier w(x)=arg max

j=1,...,k f j (x).

 by guest on O
ctober 13, 2010

biom
et.oxfordjournals.org

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


562 Y. L, Y. K, S. L  J.-Y. K

Throughout this paper, superscripts are used to indicate coordinates. A vector-valued
class code is introduced in place of the nominal class label, and, when appropriate,
y
i
= (y1
i
, . . . , yk

i
) denotes a vector with yj

i
=1 and −1/(k−1 ) elsewhere if the ith

observation falls into class j. Just as the class code vector y
i
contrasts the coordinate

of 1 to the rest that are −1/(k−1), f with the zero-sum constraint is designed to
contrast max

j
f j to the rest of the f j’s. Also, L (y

i
)= (L 1

yi
, . . . , L k

yi
) is a k-dimensional

misclassification cost vector, where L j∞
j
is the cost of misclassifying j as j∞. The

extended hinge loss functionL{y
i
, f (x
i
)}=L (y

i
){ f (x

i
)−y
i
}+ can be written explicitly as

L{y
i
, f (x
i
)}=Wk

j=1 L jyi{ f j (xi )−yji}+ . When the misclassification costs are equal, that isL j∞
j
=I( jN j∞), it is simplified to L{y

i
, f (x
i
)}=W

jNyi
{ f j (x

i
)+1/(k−1)}+ .

In parallel to the binary case, structured representation of each f j of f is considered by
using the functional analysis of variance decomposition; that is, if f j=bj+hjµ{1}CF9 ,
then hj=Wd

n=1 hjn with hjnµF
n
. With the l1-type penalty on hn to encourage a sparse

representation of each f j in terms of its components, the multicategory support vector
machine is modified to find f@ , with the zero-sum constraint, to minimise

1

n
∑
n

i=1
L (y
i
){ f (x

i
)−y
i
}++

l

2
∑
k

j=1 A ∑dn=1 h−1n dPnhjd2B+lh ∑dn=1 hn , (10)

subject to h
n
#0, for n=1, . . . , d. The method will be referred to as the structured

multicategory support vector machine hereafter. When the reproducing kernel is rescaled
by h, by the multicategory version of the representer theorem proved in Lee et al. (2004),
each coordinate of f@ is given by

f@ j (x)=bj+ ∑n

i=1
cj
i
∑
d

n=1
h
n
K
n
(x
i
, x), (11)

with h@ j
n
(x)=h

n
Wn
i=1 cjiKn (xi , x) as its nth functional component. Note that the same

rescaling parameters h
n
are used for each hj. As a result, an equivalence between (10) and

its -type formulation given by

1

n
∑
n

i=1
L (y
i
){ f (x

i
)−y
i
}++t ∑

k

j=1
∑
d

n=1
dPnhjd (12)

may not be established in general, in contrast to the binary case. This can be explained
as follows. Following the arguments in Lemma 2 of Lin and Zhang’s report, we can verify
that, for each n,

(l/2)h−1
n
∑
k

j=1
dPnhjd2+l

h
h
n
# (l/2)h−1

n A ∑k
j=1
dPnhjdB2Nk+lhhn

#2√{(l/2)(l
h
/k)} ∑

k

j=1
dPnhjd.

Equality in the first inequality holds if and only if dPnh1d= . . .=dPnhkd, and therefore
the  interpretation of the penalty terms in (10) is possible only in rare cases when
these equality conditions are met for all n. If each hj is allowed to have different rescaling
parameters hj

n
in place of h

n
, say, and Wd

n=1 hn in (10) is replaced with Wkj=1 Wdn=1 hjn , then
the equivalence between the two formulations (10) and (12) can be shown analogously.
However, such generality in the rescaling parameters would seldom be necessary. Thus,
numerical studies in this paper are based on (10) using the same h

n
’s for each hj.
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To describe the necessary computation, let L j denote the jth coordinates of the n mis-
classification cost vectors, (L j

y1
, . . . , L j

yn
)T, and define yj= (yj

1
, . . . , yj

n
)T. Let the coefficient

vector be cj= (cj
1
, . . . , cj

n
)T, for j=1, . . . , k, let b= (b1, . . . , bk )T, and let C= (c1, . . . , ck ).

By the same argument as in the binary case, we can rewrite the structured multicategory
support vector machine in (10) as a finite-dimensional problem of finding h and (b, C)
that minimise

W(h, b, C)=
1

n
∑
k

j=1
(L j )T (bje+K

h
cj−yj )++

l

2
∑
k

j=1
(cj )TK

h
cj+l

h
∑
d

n=1
h
n
, (13)

subject to

∑
k

j=1
(bje+K

h
cj )=0, h

n
#0 (n=1, . . . , d). (14)

Analogously, the solution is obtained by alternating the c-step and h-step of the redefined
objective function W (h, b, C). Given h, the c-step is simply that for the ordinary multi-
category support vector machine with the rescaled kernel K

h
, whose dual formulation

leads to a quadratic programming problem with n(k−1) unknowns. To derive the h-step
optimisation problem, let jj= (jj

1
, . . . , jj

n
)T, for j=1, . . . , k, denote nonnegative slack

variables and let j= (j1, . . . , jk ). Then the h-step is given by a linear programming problem
of finding h, for fixed b and C, to minimise

W
b,C
(h, j)=

1

n
∑
k

j=1
(L j )Tjj+ ∑

d

n=1
h
nql2 ∑k

j=1
(cj )TK

n
cj+l

hr , (15)

subject to

bje+ ∑
d

n=1
h
n
K
n
cj−yj∏jj ( j=1, . . . , k),

jj#0 ( j=1, . . . , k), h
n
#0 (n=1, . . . , d).

Note that the zero-sum constraint (14) is satisfied by any h once the c-step is carried out,
so it becomes irrelevant at the h-step. This additional linear programming problem for
the h-step involves n(k−1)+d unknowns. Our current implementation of the h-step is
based on a simplex method, whose computational complexity in practice is approximately
polynomial in the number of unknowns. The h-step computing time relative to that of
the c-step depends on the ratio of the number of features to the sample size in general.
Theorem 1 and Corollary 1 hold true also for the structured multicategory support vector
machine with b and c replaced with their multicategory counterparts. The re-expression
of the c-step and h-step optimisation problems in the standard form of quadratic and
linear programmes, respectively, can be found in our technical report.

3·4. Reproducing kernels and choice of tuning parameters

The choice of a reproducing kernel determines basis functions in which the solution
is expanded as in (11). In principle, any positive definite function K can be chosen as
a reproducing kernel. However, we consider only flexible and structured kernels that
facilitate the analysis of variance decomposition. Since reproducing kernels are closed
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under tensor summation and multiplication, it is often sufficient to define a univariate
reproducing kernel as a building block of the basis functions. For example, the spline
kernel on the unit interval [0, 1] is K(s, t)=k1 (s)k1 (t)+k2 (s)k2 (t)−k4 (|s−t|) for s and
tµ[0, 1], where k1 (t)=t−12 , k2 (t)={k21 (t)− 112}/2 and k4 (t)={k41 (t)−k21 (t)/2+ 7240}/24;
see Wahba (1990, Ch. 10) for more details of the spline kernel. Whenever necessary,
one can transform a covariate so that it lies in [0, 1] via

x∞
a
={x

a
−min(x

a
)}/{max (x

a
)−min (x

a
)},

where min(x
a
) and max{x

a
) are the minimum and the maximum values of the covariate

in the training dataset. Relaxing the mathematical formality of the orthogonal decom-
position in (2), we can also use the univariate versions of popular kernels in machine
learning such as the Gaussian kernel in practice for an analogous decomposition. However,
some modification is necessary to ensure the identifiability of the functional components
through empirical averaging operators in this case.
We choose the values of the tuning parameters l and l

h
so as to minimise the

prediction error determined by a loss function. In simulation settings, the average
expected loss can be taken as a tuning criterion, where the expectation is taken over the
distribution of unobserved Y

i
conditional on the observed covariates x

i
, for i=1, . . . , n.

The misclassification rate is an example of the prediction error under the 0–1 loss
L{y, f (x)}=I{yNarg max

j=1,...,k f j (x)}, and the generalised comparative Kullback–
Leibler distance with respect to the hinge loss (Lee et al., 2004) is another theoretically
possible criterion. In practice, data-based estimation of the prediction error is necessary.
Five- or ten-fold crossvalidation with either the 0–1 loss or the hinge loss is considered
in this paper.
Here we summarise a one-step update procedure that alternates tuning of l at the c-step
and of l

h
at the h-step. When there is a tunable parameter in the kernel functions, we need

to tune it jointly with l in the c-step. Let EC denote a generic estimate of prediction error
as a function of l and l

h
. It could be a theoretically available timing measure in simulation,

or a data-dependent tuning measure EC
T
in practice, emphasising its dependence on the

training dataset T. The procedure consists of the following steps.

Step 1. Initialise as follows:
for the h-step, initialise h@ (0)= (1, . . . , 1)T ;
for the c-step, find the initial multicategory support vector machine solution (b@ (0), CC (0) )
that minimises W (h@ (0), b, C) in (13) at l@ (0), which is a minimiser of EC (l).

Step 2. The first update is as follows:
for the h-step, find the rescaling parameters h@ (1) to minimise W (h, b@ (0), CC (0) ) at l@ (1)

h
, a

minimiser of EC (l
h
);

for the c-step, find the one-step updated solution (b@ (1), CC (1) ) to minimise W (h@ (1), b, C)
at l@ (1), a new minimiser of EC (l).

Tuning in the above procedure is myopic in the sense that we choose the optimal value
of one parameter at each step assuming that all the other parameters estimated from the
previous step are fixed. For crossvalidated EC , tuning at the first h-step needs a bit more
clarification. Suppose that we use five-fold crossvalidation. For a random split of the
training dataset T into five disjoint subsets, let T(−j) denote the complement of the jth
subset in T ( j=1, . . . , 5). Then l@

h
is a minimiser of EC (l

h
)=15 W5j=1 ECT(−j) (lh ), where
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EC
T(−j) (lh ) requires the fitted (b@ (0), CC (0) ) based on T(−j) only at l@ (0). Then h@ (1) is obtained
by using the entire training data at the chosen l@

h
. One may use the same split of the

training dataset at each c-step and h-step for crossvalidation.
A variation of the above one-step procedure is to simplify the first update by merging
the tuning of l and l

h
. The idea is to tune l

h
only by looking one step further from the

first h-step and fixing l at the same l@ (0) as that of the initial c-step. This modified procedure
with combined tuning has the following update scheme after initialisation: for each l

h
,

compute h@ (1) and (b@ (1), CC (1) ) corresponding to h@ (1) at the subsequent c-step with l fixed
at l@ (0), and choose l@ (1)

h
so that it minimises EC (l

h
) as a function of (b@1), CC (1) ).

4. N 

4·1. A two-dimensional three-class example

All the analyses in § 4 used the R packages quadprog and lpSolve. The
alternating algorithm has been implemented and is available at Yoonkyung Lee’s
webpage http://www.stat.osu.edu/~yklee. To demonstrate feature selection, we consider
a three-class toy example in which two covariates x= (x1 , x2 ) are uniformly distributed
on the unit square [0, 1]×[0, 1], and only x1 is relevant to the response ( y=1, 2, 3).
Let the conditional probabilities of each class given x be p1 (x)=0·97 exp(−3x1 ),
p3 (x)=exp{−2·5(x1−1·2)2} and p2 (x)=1−p1 (x)−p3 (x) as a function of x1 only. The
Bayes error rate for this example is approximately 0·3941. A random sample of size
n=400 was simulated. First, {x

i
; i=1, . . . , n} were generated from the uniform distri-

bution and class labels {y
i
} were generated according to the specified multinomial

distribution at each x
i
. Simulating the presence of redundant components, we consider the

two-way interaction spline kernelK
h
(s, t)=h1K(s1 , t1 )+h2K(s2 , t2 )+h12K(s1 , t1 )K(s2 , t2 )

for this example. The h-step tuning of l
h
with l@ (0) fixed at the Kullback–Leibler distance

minimiser, 2−17, shows that the Kullback–Leibler distance curve is rather flat when the
penalty induced by l

h
is not too large. This is a typical trend observed in tuning plots at

the h-step, implying that classifiers with the necessary features or more may not be
distinguishable in terms of prediction error once the overall complexity is appropriately
controlled at the preceding c-step. Whenever there are multiple minimisers l

h
of a chosen

tuning criterion, we choose the largest of these for reasons of parsimony.
Figure 1 shows the paths of the rescaling parameters h1 , h2 and h12 as the component

penalty l
h
changes. The larger the penalty, the smaller are the magnitudes of the parameters

and the fewer are the nonzero parameters. At l@ (1)
h
=2−6, the largest minimiser of the

Kullback–Leibler distance, (h@1 , h
@
2 , h
@
12 )= (1, 0, 0) with h

@
1 being the only positive com-

ponent. This h-step lowered the Kullback–Leibler distance from 0·6176 to 0·6143 and
the misclassification rate from 0·3970 to 0·3967, suggesting that it does not degrade the
prediction accuracy.
We note here that carrying out a few more iterations at l@ (0)=2−17 and l@ (1)

h
=2−6 did not

make any noticeable changes to the h estimates, and the solutions from further iterations
were virtually the same for this example. Table 1 shows how the optimal pairs (l@

h
, l@ )

changed and stabilised as we tuned l at each c-step and l
h
at each h-step in the subsequent

iterations. After the relevant component was correctly chosen at the first h-step, l and l
h

at the following steps needed to be retuned just once more, and they remained the same
thereafter. Differences in Kullback–Leibler distance values after the first iteration were
of the order of 10−6, and thus negligible. Presumably this observation is a general charac-
teristic of the proposed computational procedure according to the following heuristic
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log2(lh)

Fig. 1: Two-dimensional three-class example. The
trajectory of h@ as a function of l

h
with the two-way

interaction spline. The trajectory for h1 is denoted
by #, that for h2 by + and that for h12 by ×. The
overlap of + and × indicates that the trajectories
for h2 and h12 are almost indistinguishable. The value
of (h@1 , h

@
2 , h
@
12 )= (1, 0, 0) at the Kullback–Leibler dis-

tance minimiser l@
h
=2−6 is indicated by the dashed
vertical line.

Table 1: Two-dimensional three-class example. Kullback–
L eibler distance minimising values of l

h
at the h-step and l

at the c-step. In the table, 0* denotes values that are not
exactly zero but less than 10−5

Optimal parameters h estimates
Iteration log2 (l

@
h
) ( ) log2 (l

@ ) ( ) h@1 h@2 h@12
0 −17 (0·6176) 1 1 1
1 −6 (0·6143) −19 (0·6016) 1 0 0
2 −2 (0·6016) −19 (0·6016) 1 0 0*
3 −2 (0·6016) −19 (0·6016) 1 0 0*

, value of generalised comparative Kullback–Leibler distance.

argument. The first h-step eliminates irrelevant components, and this change, if substantial,
would result in change of l@ at the first c-step that completes the first iteration. As a result
of the corresponding change in CC (1), the second h-step might need retuning. However, h@ (2)
would change little from h@ (1) because the second h-step virtually reapplies the component-
selection procedure to the data with relevant features only, rendering the subsequent
iterations almost redundant. This empirically justifies the one-step update procedure with
sequential tuning as described in § 3·4.
To demonstrate that data-adaptive tuning can be carried out without losing much
efficiency, we did five-fold crossvalidation with the hinge loss. The results are shown in
Table 2, which is an empirical version of Table 1. It is qualitatively in good agreement
with Table 1 confirming in particular that a one-step update would be sufficient. The
curve of five-fold crossvalidated hinge loss and the path of h@ values at the h-step were quite
similar to those obtained before. At the chosen tuning parameters, (h@1 , h

@
2 , h
@
12 )= (1, 0, 0)

gives the correct feature selection.
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Table 2: Two-dimensional three-class example. Five-fold cross-
validated minimising values of l

h
at the h-step and l at the c-step

with the hinge loss

Optimal parameters h estimates
Iteration log2 (l

@
h
) (: hinge) log2 (l

@ ) (: hinge) h@1 h@2 h@12
0 −16 (0·5953) 1 1 1
1 −6 (0·5937) −20 (0·5805) 1 0 0
2 −2 (0·5807) −20 (0·5807) 0·9842 0 0
3 −4 (0·5771) −20 (0·5805) 1 0 0

, crossvalidation.

4·2. Medical diagnosis with microarray data

We revisited the child cancer data from Khan et al. (2001). The dataset is available
from http://www.nhgri.nih.gov/DIR/Microarray/Supplement/. They classified the small
round blue cell tumours of childhood into four classes based on the expression levels
of 2308 genes. The data consist of 63 training cases and 20 test cases. In the presence of
a much larger number of variables, i.e. genes, than the sample size, filtering has been a
very common and tractable approach for gene selection, where we measure the marginal
association between each gene and the tumour types, and incorporate those genes with
the strongest marginal association in a classifier. However, there is arbitrariness in the
choice of the number of genes to be included in the classifier. Also, the fact that genes are
mostly corregulated suggests that joint association could be more informative in revealing
the functional relationship between gene expression levels and the tumour types.
Before the application of the method to the data, its effectiveness was tested on a
miniature dataset synthesised from the original data as a working proof of the method.
The miniature dataset of 100 genes, with 63 training cases and 20 test cases, was con-
structed as follows. First, using the F-ratio as a measure of marginal association from the
training cases only, we ranked the genes and selected the top 20 genes as variables truly
associated with the class. For the validity of this asssumption, it is noted that rather more
than 1000 genes had F-ratios greater than the 95 percentiles of F-ratios from randomly
permuted data. As irrelevant variables, we included the bottom 80 genes with the class
labels corresponding to the covariate vectors of 80 genes randomly jumbled, so that they
are genuinely unrelated to the class, but potential correlations between those genes are
intact. One hundred replicates of synthetic training data were obtained by bootstrapping
samples from this miniature dataset, keeping the class proportions the same as the original
data in each sample. We applied the structured multicategory support vector machine to
the 100 replicates using the additive spline kernel. The combined one-step update with
five-fold crossvalidation was used with either 0–1 loss or the hinge loss. To guard against
the potential bias caused by the presence of duplicate observations in the bootstrap
samples, the five-fold crossvalidation procedure needs to be adjusted so that, for each split
of a training set and a validation set, the observations that fall in both sets are not counted
for validation. This adjustment resulted in the effective size of the validation set of 28 out
of 63 on average for this example. The boxplots in Fig. 2(a) show the distributions of
the number of genes selected by the method in 100 runs. The ideal number of relevant
genes is 20 by construction. Both distributions have a sample median of 19. However, the
distribution for the hinge loss is much less dispersed. A similar comparison between the
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Fig. 2: Miniature child cancer dataset. (a) Boxplots of the number of genes with nonzero
rescaling parameters in 100 runs for the 0–1 loss and hinge loss. (b) The proportion of
inclusion (%) of each gene in the final classifiers over 100 runs when the hinge loss was used
for tuning. The dashed line separates informative variables from noninformative ones.

two losses was made in another simulation example, which is not shown here. Figure 2(b)
shows the proportion of runs in 100 bootstrap samples that included each gene in the
final classifiers when the hinge loss was used for tuning. Here genes are conveniently
labelled as 1–20 for the top 20 genes and 21–100 for the bottom 80 genes. The plot clearly
shows that the 20 informative genes were consistently picked up over the repeated runs.
Thirteen informative genes out of the 20 were selected in more than 90% of the runs while
72 noninformative genes were picked up in fewer than 5% of the runs. Improvement in
classification accuracy by gene selection was also inspected based on the error rate over
the 20 test cases. Use of the 0–1 loss for tuning gave a decrease of 0·007, from 0·065 to
0·058, in the test error rate on average, with standard error 0·00333, and the hinge loss
gave an average decrease of 0·003, from 0·0555 to 0·0525, with standard error 0·00563. In
summary, this numerical study confirms that the l1-norm-based gene selection method
can be used effectively when the sample size is smaller than the number of variables.
The method was then applied to the original data with 2308 genes to detect important
genes for classifying the child cancer, and at the same time to gauge the inherent
uncertainty in estimating the effects of 2308 covariates on the response with only 63
observations. To assess variability, 100 bootstrap samples were drawn from the training
data, again with the class proportions the same as for the original sample. The hinge loss
was used for five-fold crossvalidation. The empirical distribution of the number of genes
included in one-step updates out of 2308 had a sample median of 222, sample quartiles
of 209 and 235 and a long right-hand tail. Figure 3 shows the proportion of selection of
each gene in 100 replicated structured multicategory support vector machines based on
the bootstrap samples. Genes are ordered by their marginal ranks in the original sample.
In general, genes with high selection proportions were ranked highly by the F-ratio of
marginal association. Inspection of the genes that appeared in the classifiers for more than
90% of runs showed that the joint and the marginal relevances exhibit a strong agreement
up to the gene ranked 30, beyond which their agreement becomes rather weak. A total of
1812 genes were selected on fewer than 20% of the runs, while 58 genes were consistently
selected on more than 95% of the runs. We observed that the proportion of inclusion of
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Fig. 3: Child cancer dataset. The proportion of selection of each gene in one-step
updated structured multicategory support vector machines for 100 bootstrap samples.

Genes are presented in the order of marginal rank in the original sample.

each gene was a good proxy for the average shrinkage factor of the gene in this case.
Gene selection led to reduction in test error rates by 0·0255 on average, from 0·0525 to
0·0270, with standard error of 0·00609, and it also reduced the variance of test error rates.

5. D

As a result of the characteristics of the support vector machine, a caveat may be
necessary for proper interpretation of selected features and their functional forms. Since
support vector machines directly target class codes asymptotically, the selected features
are for the approximation of indicator-like functions. Although they identify covariates
on which y depends, generally they are not of the simplest possible functional form for
describing the relationship between x and y. For instance, polynomial approximation of
I(x1>a) requires higher-order terms than a linear term x1 despite its simple functional
relationship to x1 . This is an intrinsic aspect of set estimation via function estimation.
The l1-type component penalty in the structured multicategory support vector machine

treats all of the components alike. In statistical modelling, a hierarchical structure of
covariates is often desired. For example, one may restrict two-way interactions to appear-
ing only with the corresponding main effects. It would be useful to tailor the component
penalty by imposing hierarchy within the model or by reflecting any a priori information
about the relevance of covariates on scaling parameters for refined selection.
When the number of covariates is much higher than the sample size, it is quite common
to filter covariates based on a measure of marginal association and use a subset of most
highly associated covariates for model fitting. The proposed method chooses relevant
features by taking into account their joint effects. It is important to understand the effect
of the high dimensionality of covariates on the stability and generalisation ability of the
resulting classifiers. Therefore, it would be worthwhile to investigate further the merits
of this joint approach relative to the marginal feature selection approach in terms of
prediction accuracy and computational complexity.
Recent developments in methods either involving l1 penalty or l1 loss (Efron et al.,

2004; Hastie et al., 2004) suggest that it is feasible to characterise the entire solution path
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as a function of a tuning parameter in a constructive fashion. It would be attractive to
devise a similar algorithm for the c-step and h-step, thereby shortcutting the fitting and
tuning procedures. Recent work in an Ohio State University technical report by Y. Lee
and Z. Cui shows how the entire c-step solution path can be constructed sequentially.
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