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Two-category support vector machines (SVM) have been very popular in the machine learning community for classi� cation problems.
Solving multicategory problems by a series of binary classi� ers is quite common in the SVM paradigm; however, this approach may
fail under various circumstances. We propose the multicategory support vector machine (MSVM), which extends the binary SVM to the
multicategory case and has good theoretical properties. The proposed method provides a unifying framework when there are either equal
or unequal misclassi� cation costs. As a tuning criterion for the MSVM, an approximate leave-one-out cross-validation function, called
Generalized Approximate Cross Validation, is derived, analogous to the binary case. The effectiveness of the MSVM is demonstrated
through the applications to cancer classi� cation using microarray data and cloud classi� cation with satellite radiance pro� les.
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1. INTRODUCTION

The support vector machine (SVM) has exploded in popu-
larity within the machine learning literature and, more recently,
has received increasing attention from the statistics commu-
nity as well. (For a comprehensive list of references, see
http://www.kernel-machines.org.) This article concerns SVM’s
for classi� cation problems, particularly those involving more
than two classes. The SVM paradigm, originally designed for
the binary classi� cation problem, has a nice geometrical inter-
pretation of discriminating one class from another by a hyper-
plane with the maximum margin (for an overview, see Vapnik
1998). It is commonly known that the SVM paradigm can sit
comfortably in the regularization framework, where we have
a data � t component ensuring the model’s � delity to the data
and a penalty component enforcing the model simplicity (see
Wahba 1998; Evgeniou, Pontil, and Poggio 2000, for more de-
tails). Considering that regularized methods, such as the penal-
ized likelihood method and smoothing splines, have long been
studied in the statistics literature, it appears quite natural to
shed fresh light on the SVM and illuminate its properties in a
similar fashion.

From this statistical stand point, Lin (2002) argued that the
empirical success of the SVM can be attributed to the fact that
for appropriately chosen tuning parameters, the SVM imple-
ments the optimal classi� cation rule asymptotically in a very
ef� cient manner. To be precise, let X 2 Rd be covariates used
for classi� cation and let Y be the class label, either 1 or ¡1 in
the binary case. We de� ne .X;Y / as a random pair from the
underlyingdistribution Pr.x; y/. The theoretically optimal clas-
si� cation rule, the so-called “Bayes decision rule,” minimizes
the misclassi� cation error rate; it is given by sign.p1.x/¡ 1=2/,
where p1.x/ D Pr.Y D 1jX D x/, the conditional probability of

Yoonkyung Lee is Assistant Professor, Department of Statistics, The Ohio
State University, Columbus, OH 43210 (E-mail: yklee@stat.ohio-state.edu).
Yi Lin is Associate Professor (E-mail: yilin@stat.wisc.edu), Grace Wahba
is Bascom and I. J. Schoenberg Professor (E-mail: wahba@stat.wisc.edu),
Department of Statistics, University of Wisconsin, Madison, WI 53706. Lee’s
research was supported in part by National Science Foundation (NSF) grant
DMS 0072292 and National Aeronautic and Space Administration (NASA)
grant NAG5 10273. Lin’s research was supported in part by NSF grant DMS
0134987. Wahba’s research was supported in part by National Institutes of
Health grant EY09946, NSF grant DMS 0072292, and NASA grant NAG5
10273. The authors thank the editor, an associate editor, and referees for their
helpful comments and suggestions.

the positive class given X D x. Lin (2002) showed that the so-
lution of SVM’s, denoted by f .x/, directly targets the Bayes
decision rule sign.p1.x/ ¡ 1=2/ without estimating the condi-
tional probability function p1.x/.

We turn our attention to the multicategory classi� cation
problem. We assume the class label Y 2 f1; : : : ; kg without
loss of generality, where k is the number of classes. De� ne
pj .x/ D Pr.Y D j jX D x/. In this case the Bayes decision rule
assigns a new x to the class with the largest pj .x/. Two general
strategies are used to tackle the multicategory problem. One
strategy is to solve the multicategory problem by solving a se-
ries of binary problems; the other is to consider all of the classes
at once. (See Dietterich and Bakiri 1995 for a general scheme
to use binary classi� ers to solve multiclass problems.) Allwein,
Schapire, and Singer (2000) proposed a unifying framework to
study the solution of multiclass problems obtained by multi-
ple binary classi� ers of certain types (see also Crammer and
Singer 2000). Constructing pairwise classi� ers or one-versus-
rest classi� ers is a popular approach in the � rst strategy. The
pairwise approach has the disadvantage of potential variance
increase, because smaller observations are used to learn each
classi� er. Moreover, it allows only a simple cost structure when
different misclassi� cation costs are concerned (see Friedman
1996 for details). For SVM’s, the one-versus-rest approach has
been widely used to handle the multicategory problem. The
conventional recipe using the SVM scheme is to train k one-
versus-rest classi� ers and assign a new x to the class giving
the largest fj .x/ for j D 1; : : : ; k, where fj .x/ is the SVM so-
lution from training class j versus the rest. Even though the
method inherits the optimal property of SVM’s for discriminat-
ing one class from the rest, it does not necessarily imply the best
rule for the original k-category classi� cation problem. Lean-
ing on the insight that we have from the two-category SVM,
fj .x/ will approximate sign.pj .x/ ¡ 1=2/. If there is a class j

with pj .x/ > 1=2 given x, then we can easily pick the ma-
jority class j by comparing f`.x/’s for ` D 1; : : : ; k, because
fj .x/ would be near 1 and all of the other f`.x/ would be close
to ¡1, creating a big contrast. However, if there is no dom-
inating class, then all fj .x/’s would be close to ¡1, making
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the class prediction based on them very obscure. Apparently,
this is different from the Bayes decision rule. Thus there is
a demand for a true extension of SVM’s to the multicategory
case, which would inherit the optimal property of the binary
case and treat the problem in a simultaneous fashion. In fact,
some authors have proposed alternative multiclass formulations
of the SVM consideringall of the classes at once (Vapnik 1998;
Weston and Watkins 1999; Bredensteiner and Bennett 1999).
However, the relation of these formulations (which have been
shown to be equivalent) to the Bayes decision rule is not clear
from the literature, and we show that they do not always im-
plement the Bayes decision rule. So the motive is to design an
optimal MSVM that continues to deliver the ef� ciency of the
binary SVM. With this intent, we devise a loss function with
suitable class codes for the multicategory classi� cation prob-
lem and extend the SVM paradigm to the multiclass case. We
show that this extension ensures that the solution directly tar-
gets the Bayes decision rule in the same fashion as for the bi-
nary case. Its generalizationto handle unequal misclassi� cation
costs is quite straightforward and is carried out in a uni� ed way,
thereby encompassing the version of the binary SVM modi� ca-
tion for unequal costs of Lin, Lee, and Wahba (2002).

Section 2 brie� y states the Bayes decision rule for either
equal or unequal misclassi� cation costs. Section 3 reviews the
binary SVM. Section 4, the main part of the article, presents
a formulation of the MSVM, deriving the dual problem for the
proposed method as well as a data-adaptivetuning method anal-
ogous to the binary case. Section 5 presents a numerical study
for illustration.Then, Section 6 explores cancer diagnosisusing
gene expression pro� les and cloud classi� cation using satel-
lite radiance pro� les. Finally, Section 7 presents concludingre-
marks and discussion of future directions.

2. THE CLASSIFICATION PROBLEM AND
THE BAYES RULE

In this section we state the theoretically best classi� cation
rules derived under a decision-theoretic formulation of classi-
� cation problems. Their derivations are fairly straightforward
and can be found in any general reference to classi� cation
problems. In the classi� cation problem, we are given a train-
ing dataset comprising n observations .xi ; yi/ for i D 1; : : : ; n.
Here xi 2 Rd represents covariates, and yi 2 f1; : : : ; kg de-
notes a class label. The task is to learn a classi� cation rule,
Á.x/ :Rd ! f1; : : : ; kg, that closely matches attributes, xi , to
the class label, yi . We assume that each .xi ; yi/ is an indepen-
dent random observation from a target population with proba-
bility distribution Pr.x; y/. Let .X; Y / denote a generic pair of
a random realization from Pr.x; y/, and let pj .x/ D Pr.Y D j j
X D x/ for j D 1; : : : ; k. If the misclassi� cation costs are all
equal, then the loss by the classi� cation rule Á at .x; y/ is de-
� ned as

l
¡
y;Á.x/

¢
D I

¡
y 6D Á.x/

¢
; (1)

where I .¢/ is the indicator function, which is 1 if its argument
is true and 0 otherwise. The Bayes decision rule minimizing the
expected misclassi� cation rate is

ÁB .x/ D arg min
jD1;:::;k

[1 ¡ pj .x/] D arg max
jD1;:::;k

pj .x/: (2)

When the misclassi� cation costs are not equal, (as is commonly
the case when solving real-world problems), we change the
loss (1) to re� ect the cost structure. First, de� ne Cj ` for j , ` D
1; : : : ; k as the cost of misclassifying an example from class j

to class `. Cjj for j D 1; : : : ; k are all 0. The loss function for
the unequal costs is then

l
¡
y;Á.x/

¢
D CyÁ.x/: (3)

Analogous to the equal cost case, the best classi� cation rule is
given by

ÁB .x/ D arg min
j D1;:::;k

kX

`D1

C j̀p`.x/: (4)

Along with different misclassi� cation costs, sampling bias that
leads to distortion of the class proportions merits special at-
tention in the classi� cation problem. So far, we have assumed
that the training data are truly from the general population that
would generate future observations. However, it is often the
case that while collecting data, we tend to balance each class
by oversampling minor class examples and downsampling ma-
jor class examples. Let ¼j be the prior proportion of class j

in the general population, and let ¼ s
j be the prespeci� ed pro-

portion of class j examples in a training dataset; ¼ s
j may be

different from ¼j if sampling bias has occurred. Let .Xs; Y s/

be a random pair obtained by the sampling mechanism used in
the data collection stage, and let ps

j .x/ D Pr.Y s D j jXs D x/.
Then (4) can be rewritten in terms of the quantities for .Xs; Y s/

and ¼j ’s, which we assume are known a priori:

ÁB .x/ D arg min
jD1;:::;k

kX

`D1

¼`

¼ s
`

C`j ps
`.x/

D arg min
jD1;:::;k

kX

`D1

l`j ps
`.x/; (5)

where l`j is de� ned as .¼`=¼ s
` /C j̀ , which is a modi� ed cost

that takes into account the sampling bias together with the orig-
inal misclassi� cation cost. Following the usage of Lin et al.
(2002), we call the case when misclassi� cation costs are not
equal or a sampling bias exists nonstandard, as opposed to the
standard case, when misclassi� cation costs are equal and no
sampling bias exists.

3. SUPPORT VECTOR MACHINES

We brie� y review the standard SVM’s for the binary case.
SVM’s have their roots in a geometrical interpretation of the
classi� cation problem as a problem of � nding a separating hy-
perplane in a multidimensional input space (see Boser, Guyon,
and Vapnik 1992; Vapnik 1998; Burges 1998; Cristianini and
Shawe-Taylor 2000; Schölkopf and Smola 2002; references
therein). The class labels yi are either 1 or ¡1 in the SVM set-
ting. Generalizing SVM classi� ers from hyperplanes to nonlin-
ear functions, the following SVM formulation has a tight link
to regularizationmethods. The SVM methodologyseeks a func-
tion f .x/ D h.x/Cb with h 2 HK , a reproducingkernel Hilbert
space (RKHS), and b, a constant minimizing

1
n

nX

iD1

¡
1 ¡ yif .xi/

¢
C C ¸khk2

HK
; (6)
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where .x/C D max.x; 0/, and khk2
HK

denotes the square norm
of the function h de� ned in the RKHS with the reproducing
kernel function K.¢; ¢/. If HK is the d-dimensional space of ho-
mogeneous linear functions h.x/ D w ¢ x with khk2

HK
D kwk2 ,

then (6) reduces to the linear SVM. (For more information
on RKHS, see Wahba 1990.) Here ¸ is a tuning parameter. The
classi� cation rule Á.x/ induced by f .x/ is Á.x/ D sign.f .x//.
Note that the hinge loss function, .1 ¡ yif .xi//C, is closely re-
lated to the misclassi� cation loss function, which can be reex-
pressed as [¡yiÁ.xi/]¤ D [¡yif .xi/]¤, where [x]¤ D I .x ¸ 0/.
Indeed, the hinge loss is the tightest upper bound to the mis-
classi� cation loss from the class of convex upper bounds, and
when the resulting f .xi/ is close to either 1 or ¡1, the hinge
loss function is close to two times the misclassi� cation loss.

Two types of theoretical explanations are available for the
observed good behavior of SVM’s. The � rst, and the origi-
nal, explanation is represented by theoretical justi� cation of
the SVM in Vapnik’s structural risk minimization approach
(Vapnik 1998). Vapnik’s arguments are based on upper bounds
of the generalizationerror in terms of the Vapnik–Chervonenkis
dimension. The second type of explanation was provided by
Lin (2002), who identi� ed the asymptotic target function of
the SVM formulation and associated it with the Bayes decision
rule. With the class label Y either 1 or ¡1, one can verify that
the Bayes decision rule in (2) is ÁB.x/ D sign.p1.x/¡1=2/. Lin
showed that if the RKHS is rich enough, then the decision rule
implemented by sign.f .x// approaches the Bayes decision rule
as the sample size n goes to 1 for appropriately chosen ¸. For
example, the Gaussian kernel is one of typically used kernels
for SVM’s, the RKHS induced by which is � exible enough to
approximate sign.p1.x/¡ 1=2/. Later, Zhang (2001) also noted
that the SVM is estimating the sign of p1.x/ ¡ 1=2, not the
probability itself.

Implementing the Bayes decision rule is not going to be the
unique property of the SVM of course. (See, e.g., Wahba 2002,
where penalized likelihood estimates of probabilities, which
could be used to generate a classi� er, are discussed in parallel
with SVM’s. See also Lin 2001 and Zhang 2001, which pro-
vide general treatments of various convex loss functions in re-
lation to the Bayes decision rule.) However, the ef� ciency of
the SVM’s in going straight for the classi� cation rule is valu-
able in a broad class of practical applications, including those
discussed in this article. It is worth noting that due to its ef� cient
mechanism, the SVM estimates the most likely class code, not
the posterior probability for classi� cation, and thus recovering
a real probability from the SVM function is inevitably limited.
As referee stated, “it would clearly be useful to output posterior
probabilities based on SVM outputs,” but we note here that the
SVM does not carry probability information. Illustrative exam-
ples have been given by Lin (2002) and Wahba (2002).

4. MULTICATEGORY SUPPORT VECTOR MACHINES

In this section we present the extension of the SVM’s to the
multicategory case. Beginning with the standard case, we gen-
eralize the hinge loss function and show that the generalized
formulationencompasses that of the two-category SVM, retain-
ing desirable properties of the binary SVM. After we state the
standard part of our new extension, we note its relationship to

some other MSVM’s that have been proposed. Then, straight-
forward modi� cation follows for the nonstandard case. Finally,
we derive the dual formulation through which we obtain the
solution, and address how to tune the model-controlling para-
meter(s) involved in the MSVM.

4.1 Standard Case

Assuming that all of the misclassi� cation costs are equal
and no sampling bias exists in the training dataset, consider
the k-category classi� cation problem. To carry over the sym-
metry of class label representation in the binary case, we
use the following vector-valued class codes, denoted by yi .
For notational convenience, we de� ne vj for j D 1; : : : ; k

as a k-dimensional vector with 1 in the j th coordinate and
¡1=.k ¡ 1/ elsewhere. Then yi is coded as vj if example i be-
longs to class j . For instance, if example i falls into class 1, then
yi D v1 D .1;¡1=.k ¡ 1/; : : : ;¡1=.k ¡ 1//; similarly, if it falls
into class k, then yi D vk D .¡1=.k ¡ 1/; : : : ; ¡1=.k ¡ 1/;1/.
Accordingly, we de� ne a k-tuple of separating functions
f.x/ D .f1.x/; : : : ; fk.x// with the sum-to-0 constraint,Pk

j D1 fj .x/ D 0, for any x 2 Rd . The k functions are con-

strained by the sum-to-0 constraint,
Pk

jD1 fj .x/ D 0 in this
particular setting, for the same reason that the pj .x/’s, the
conditional probabilities of k classes, are constrained by the
sum-to-1 condition,

Pk
jD1 pj .x/ D 1. These constraints re-

� ect the implicit nature of the response Y in classi� cation
problems that each yi takes one and only one class label
from f1; : : : ; kg. We justify the utility of the sum-to-0 con-
straint later as we illuminate propertiesof the proposed method.
Note that the constraint holds implicitly for coded class la-
bels yi . Analogous to the two-categorycase, we consider f.x/ D
.f1.x/; : : : ; fk .x// 2

Qk
j D1.f1g C HKj

/, the product space
of k RKHS’s HKj for j D 1; : : : ; k. In other words, each com-
ponent fj .x/ can be expressed as hj .x/ C bj with hj 2 HKj .
Unless there is compelling reason to believe that HKj should
be different for j D 1; : : : ; k, we assume that they are the
same RKHS denoted by HK . De� ne Q as the k £ k matrix
with 0 on the diagonal and 1 elsewhere. This represents the
cost matrix when all of the misclassi� cation costs are equal.
Let L.¢/ be a function that maps a class label yi to the j th
row of the matrix Q if yi indicates class j . So if yi repre-
sents class j , then L.yi/ is a k-dimensional vector with 0 in
the j th coordinate and 1 elsewhere. Now, we propose that
to � nd f.x/ D .f1.x/; : : : ; fk.x// 2

Qk
1.f1g C HK / with the

sum-to-0 constraint,minimizing the following quantity is a nat-
ural extension of SVM methodology:

1
n

nX

iD1

L.yi/ ¢
¡
f.xi/ ¡ yi

¢
C C 1

2
¸

kX

jD1

khj k2
HK

; (7)

where .f.xi/¡yi/C is de� ned as [.f1.xi/¡yi1/C; : : : ; .fk.xi/¡
yik/C] by taking the truncate function “.¢/C” componentwise;
and the “¢” operation in the data � t functional indicates the
Euclidean inner product.The classi� cation rule induced by f.x/

is naturally Á.x/ D argmaxj fj .x/.
As with the hinge loss function in the binary case, the pro-

posed loss function has an analogous relation to the misclassi-
� cation loss (1). If f.xi/ itself is one of the class codes, then
L.yi/ ¢ .f.xi/ ¡ yi/C is k=.k ¡ 1/ times the misclassi� cation
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loss. When k D 2, the generalized hinge loss function reduces
to the binary hinge loss. If yi D .1; ¡1/ (1 in the binary SVM
notation), then L.yi / ¢ .f.xi/ ¡ yi/C D .0; 1/ ¢ [.f1.xi/ ¡ 1/C;

.f2.xi/ C 1/C] D .f2.xi/ C 1/C D .1 ¡ f1.xi//C. Likewise,
if yi D .¡1; 1/ (¡1 in the binary SVM notation), then
L.yi/ ¢ .f.xi/ ¡ yi/C D .f1.xi/ C 1/C. Thereby the data � t fun-
ctionals in (6) and (7) are identical, with f1 playing the same
role as f in (6). Also, note that .¸=2/

P2
jD1 khj k2

HK
D .¸=2/£

.kh1k2
HK

C k¡h1k2
HK

/ D ¸kh1k2
HK

, by the fact that h1.x/ C
h2.x/ D 0 for any x, discussed later. So the penalties to the
model complexity in (6) and (7) are identical. These identities
verify that the binary SVM formulation (6) is a special case
of (7) when k D 2. An immediate justi� cation for this new for-
mulation is that it carries over the ef� ciency of implementing
the Bayes decision rule in the same fashion. We � rst identify
the asymptotic target function of (7) in this direction. The limit
of the data � t functional in (7) is E[L.Y/ ¢ .f.X/ ¡ Y/C].

Lemma 1. The minimizer of E[L.Y/ ¢ .f.X/ ¡ Y/C] under
the sum-to-0 constraint is f.x/ D .f1.x/; : : : ; fk.x// with

fj .x/ D

8
<

:

1 if j D arg max
lD1;:::;k

pl.x/

¡ 1
k ¡ 1

otherwise.
(8)

Proof of this lemma and other proofs are given in Appen-
dix A. The minimizer is exactly the code of the most proba-
ble class. The classi� cation rule induced by f.x/ in Lemma 1
is Á.x/ D arg maxj fj .x/ D argmaxj pj .x/ D ÁB.x/, the Bayes
decision rule (2) for the standard multicategory case.

Other extensions to the k class case have been given by
Vapnik (1998), Weston and Watkins (1999), and Bredensteiner
and Bennett (1999). Guermeur (2000) showed that these are
essentially equivalent and amount to using the following loss
function with the same regularization terms as in (7):

l
¡
yi; f.xi/

¢
D

kX

j D1;j 6Dyi

¡
fj .xi/ ¡ fyi

.xi/ C 2
¢
C; (9)

where the inducedclassi� er is Á.x/ D argmaxj fj .x/. Note that
the minimizer is not unique, because adding a constant to each
of the fj , j D 1;2; : : : ; k does not change the loss function.
Guermeur (2000) proposed adding sum-to-0 constraints to en-
sure the uniquenessof the optimal solution.The populationver-
sion of the loss at x is given by

E
£
l
¡
Y; f.X/

¢­­X D x
¤

D
kX

jD1

"
X

m 6Dj

¡
fm.x/ ¡ fj .x/ C 2

¢
C

#

pj .x/: (10)

The following lemma shows that the minimizer of (10) does
not always implement the Bayes decision rule through Á.x/ D
argmaxj fj .x/.

Lemma 2. Consider the case of k D 3 classes with p1 <

1=3 < p2 < p3 < 1=2 at a given point x. To ensure unique-
ness, without loss of generality we can � x f1.x/ D ¡1. Then
the unique minimizer of (10), .f1; f2; f3/ at x is .¡1;1; 1/.

4.2 Nonstandard Case

First, we consider different misclassi� cation costs only, as-
suming no sampling bias. Instead of the equal cost matrix Q
used in the de� nition of L.yi/, de� ne a k £ k cost matrix C with
entry Cj`, the cost of misclassifying an example from class j

to class `. Modify L.yi/ in (7) to the j th row of the cost ma-
trix C if yi indicates class j . When all of the misclassi� cation
costs, Cj` , are equal to 1, the cost matrix C becomes Q. So the
modi� ed map L.¢/ subsumes that for the standard case.

Now we consider the sampling bias concern together with
unequal costs. As illustrated in Section 2, we need a transition
from .X; Y / to .Xs; Y s/, to differentiate a “training example”
population from the general population. In this case, with lit-
tle abuse of notation we rede� ne a generalized cost matrix L
whose entry lj` is given by .¼j =¼ s

j /Cj` for j; ` D 1; : : : ; k.
Accordingly, de� ne L.yi/ to be the j th row of the matrix L
if yi indicates class j . When there is no sampling bias (i.e.,
¼j D ¼ s

j for all j ), the generalized cost matrix L reduces to
the ordinary cost matrix C. With the � nalized version of the
cost matrix L and the map L.yi/, the MSVM formulation (7)
still holds as the general scheme. The following lemma identi-
� es the minimizer of the limit of the data � t functional, which
is E[L.Ys/ ¢ .f.Xs/ ¡ Ys/C].

Lemma 3. The minimizer of E[L.Ys / ¢ .f.Xs/¡Ys/C] under
the sum-to-0 constraint is f.x/ D .f1.x/; : : : ; fk.x// with

fj .x/ D

8
>>><

>>>:

1 if j D arg min
`D1;:::;k

kX

mD1

lm`ps
m.x/

¡ 1
k ¡ 1

otherwise.

(11)

The classi� cation rule derived from the minimizer in Lem-
ma 3 is Á.x/ D argmaxj fj .x/ D argminjD1;:::;k

Pk
`D1 l j̀ £

ps
`
.x/ D ÁB .x/, the Bayes decision rule (5) for the nonstandard

multicategory case.

4.3 The Representer Theorem and Dual Formulation

Here we explain the computations to � nd the minimizer
of (7). The problemof � nding constrainedfunctions.f1.x/; : : : ;

fk.x// minimizing (7) is turned into that of � nding � nite-
dimensional coef� cients with the aid of a variant of the repre-
senter theorem. (For the representer theorem in a regularization
framework involving RKHS, see Kimeldorf and Wahba 1971,
Wahba 1998.) Theorem 1 says that we can still apply the rep-
resenter theorem to each component fj .x/, but with some
restrictions on the coef� cients due to the sum-to-0 constraint.

Theorem 1. To � nd .f1.x/; : : : ; fk.x// 2
Qk

1.f1gC HK/ with
the sum-to-0 constraint, minimizing (7) is equivalent to � nding
.f1.x/; : : : ; fk.x// of the form

fj .x/ D bj C
nX

iD1

cij K.xi;x/; for j D 1; : : : ; k; (12)

with the sum-to-0 constraint only at xi for i D 1; : : : ; n, mini-
mizing (7).

Switching to a Lagrangian formulation of the problem (7),
we introduce a vector of nonnegative slack variables, » i 2 Rk ,
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to take care of .f.xi/ ¡ yi/C. By Theorem 1, we can write the
primal problem in terms of bj and cij only. Let Lj 2 Rn for
j D 1; : : : ; k be the j th column of the n £ k matrix with the ith
row L.yi/ ´ .Li1; : : : ; Lik /. Let » ¢j 2 Rn for j D 1; : : : ; k be
the j th column of the n £ k matrix with the ith row » i . Sim-
ilarly, let y¢j denote the j th column of the n £ k matrix with
the ith row yi . With some abuse of notation, let K be the n £ n

matrix with ij th entry K.xi; xj /. Then the primal problem in
vector notation is

minLP .» ; c; b/ D
kX

jD1

Lt
j » ¢j C

1

2
n¸

kX

jD1

ct
¢j Kc¢j ; (13)

subject to

bj e C Kc¢j ¡ y¢j · » ¢j for j D 1; : : : ; k; (14)

» ¢j ¸ 0 for j D 1; : : : ; k; (15)

and
Á

kX

jD1

bj

!

e C K

Á
kX

jD1

c¢j

!
D 0: (16)

This is a quadratic optimization problem with some equality
and inequality constraints. We derive its Wolfe dual prob-
lem by introducing nonnegative Lagrange multipliers ®¢j D
.®1j ; : : : ; ®nj /t 2 Rn for (14), nonnegative Lagrange multipli-
ers ° j 2 Rn for (15), and unconstrained Lagrange multipli-
ers ±f 2 Rn for (16), the equality constraints. Then the dual
problem becomes a problem of maximizing

LD D
kX

jD1

Lt
j » ¢j C 1

2
n¸

kX

jD1

ct
¢j Kc¢j

C
kX

jD1

®t
¢j .bj e C Kc¢j ¡ y¢j ¡ » ¢j /

¡
kX
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j » ¢j C ±t
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kX

jD1
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e C K
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kX

jD1

c¢j

!!

(17)

subject to, for j D 1; : : : ; k,

@LD

@» ¢j
D Lj ¡ ®¢j ¡ ° j D 0; (18)

@LD

@c¢j
D n¸Kc¢j C K®¢j C K±f D 0; (19)

@LD

@bj
D .®¢j C ±f /t e D 0; (20)

®¢j ¸ 0; (21)

and

° j ¸ 0: (22)

Let N® be .
Pk

jD1 ®¢j /=k. Because ±f is unconstrained, we
may take ±f D ¡ N® from (20). Accordingly, (20) becomes
.®¢j ¡ N®/t e D 0. Eliminating all of the primal variables in LD

by the equality constraint (18) and using relations from (19)
and (20), we have the following dual problem:

minLD.®/ D 1

2

kX

jD1

.®¢j ¡ N®/t K.®¢j ¡ N®/ C n¸

kX

jD1

®t
¢j y¢j

(23)

subject to

0 · ®¢j · Lj for j D 1; : : : ; k (24)

and

.®¢j ¡ N®/te D 0 for j D 1; : : : ; k: (25)

Once the quadratic programming problem is solved, the coef� -
cients can be determined by the relation c¢j D ¡.®¢j ¡ N®/=.n¸/

from (19). Note that if the matrix K is not strictly positive de� -
nite, then c¢j is not uniquely determined. bj can be found from
any of the examples with 0 < ®ij < Lij . By the Karush–Kuhn–
Tucker complementarity conditions, the solution satis� es

®¢j ? .bj e C Kc¢j ¡ y¢j ¡ » ¢j / for j D 1; : : : ; k (26)

and

° j D .Lj ¡ ®¢j / ? » ¢j for j D 1; : : : ; k; (27)

where “?” means that the componentwise products are all 0.
If 0 < ®ij < Lij for some i , then »ij should be 0 from (27), and
this implies that bj C

Pn
lD1 clj K.xl;xi/ ¡ yij D 0 from (26).

It is worth noting that if .®i1; : : : ; ®ik/ D 0 for the ith exam-
ple, then .ci1; : : : ; cik/ D 0. Removing such an example .xi ;yi/

would have no effect on the solution. Carrying over the notion
of support vectors to the multicategory case, we de� ne sup-
port vectors as examples with ci D .ci1; : : : ; cik/ 6D 0. Hence,
depending on the number of support vectors, the MSVM so-
lution may have a sparse representation, which is also one of
the main characteristics of the binary SVM. In practice, solving
the quadratic programming problem can be done via available
optimization packages for moderate-sized problems. All of the
examples presented in this article were done via MATLAB 6.1
with an interface to PATH 3.0, an optimization package imple-
mented by Ferris and Munson (1999).

4.4 Data-Adaptive Tuning Criterion

As with other regularization methods, the effectiveness of
the proposed method depends on tuning parameters. Various
tuning methods have been proposed for the binary SVM’s
(see, e.g., Vapnik 1995; Jaakkola and Haussler 1999; Joachims
2000; Wahba, Lin, and Zhang 2000; Wahba, Lin, Lee, and
Zhang 2002). We derive an approximate leave-one-out cross-
validation function, called generalized approximate cross-
validation (GACV), for the MSVM. This is based on the
leave-one-out arguments reminiscent of GACV derivations for
penalized likelihood methods.

For concise notation, let J¸.f / D .¸=2/
Pk

j D1 khj k2
HK

and
y D .y1; : : : ; yn/. Denote the objective function of the MSVM
(7) by I¸.f;y/; that is, I¸.f;y/ D .1=n/

Pn
iD1 g.yi ; f.xi// C

J¸.f /, where g.yi ; f.xi// ´ L.yi/ ¢ .f.xi/ ¡ yi/C. Let f¸ be the
minimizer of I¸.f; y/. It would be ideal, but is only theoretically
possible, to choose tuning parameters that minimize the gen-
eralized comparative Kullback–Leibler distance (GCKL) with
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respect to the loss function, g.y; f.x//, averaged over a dataset
with the same covariates xi and unobserved Yi , i D 1; : : : ; n,

GCKL.¸/ D Etrue
1
n

nX

iD1

g
¡
Yi; f¸.xi/

¢

D Etrue
1
n

nX

iD1

L.Yi/ ¢
¡
f¸.xi/ ¡ Yi

¢
C:

To the extent that the estimate tends to the correct class code,
the convex multiclass loss function tends to k=.k ¡ 1/ times
the misclassi� cation loss, as discussed earlier. This also justi� es
using GCKL as an ideal tuning measure, and thus our strategy
is to develop a data-dependentcomputable proxy of GCKL and
choose tuning parameters that minimize the proxy of GCKL.

We use the leave-one-out cross-validation arguments to de-
rive a data-dependent proxy of the GCKL as follows. Let f [¡i]

¸

be the solution to the variational problem when the ith obser-
vation is left out, minimizing .1=n/

Pn
lD1;l 6Di g.yl; fl/ C J¸.f /.

Further, f¸.xi/ and f [¡i]
¸ .xi/ are abbreviated by f¸i and f [¡i]

¸i .

Let f¸j .xi/ and f
[¡i]

¸j .xi/ denote the j th components of f¸.xi/

and f [¡i]
¸ .xi/, respectively. Now, we de� ne the leave-one-out

cross-validation function that would be a reasonable proxy
of GCKL.¸/: V0.¸/ D .1=n/

Pn
iD1 g.yi; f [¡i]

¸i /. V0.¸/ can be
reexpressed as the sum of OBS.¸/, the observed � t to the
data measured as the average loss and D.¸/, where OBS.¸/ D
.1=n/

Pn
iD1 g.yi ; f¸i/ and D.¸/ D .1=n/

Pn
iD1.g.yi; f [¡i]

¸i / ¡
g.yi ; f¸i//. For an approximationof V0.¸/ without actually do-
ing the leave-one-out procedure, which may be prohibitive for
large datasets, we approximate D.¸/ further using the leave-
one-out lemma. As a necessary ingredient for this lemma,
we extend the domain of the function L.¢/ from a set of
k distinct class codes to allow argument y not necessarily
a class code. For any y 2 Rk satisfying the sum-to-0 con-
straint, we de� ne L : Rk ! Rk as L.y/ D .w1.y/[¡y1 ¡ 1=

.k¡1/]¤; : : : ;wk.y/[¡yk ¡1=.k¡1/]¤/, where [¿ ]¤ D I .¿ ¸ 0/

and .w1.y/; : : : ;wk.y// is the j th row of the extended mis-
classi� cation cost matrix L with the j l entry .¼j =¼ s

j /Cj l if
argmaxlD1;:::;k yl D j . If there are ties, then .w1.y/; : : : ; wk .y//

is de� ned as the average of the rows of the cost matrix L corre-
sponding to the maximal arguments. We can easily verify that
L.0; : : : ; 0/ D .0; : : : ;0/ and that the extended L.¢/ coincides
with the original L.¢/ over the domain of class codes. We de� ne
a class prediction, ¹.f /, given the SVM output f as a function
truncating any component fj < ¡1=.k ¡ 1/ to ¡1=.k ¡ 1/ and
replacing the rest by

Pk
jD1 I .fj < ¡1=.k ¡ 1//

k ¡
Pk

jD1 I .fj < ¡1=.k ¡ 1//

³
1

k ¡ 1

´

to satisfy the sum-to-0 constraint. If f has a maximum compo-
nent greater than 1, and all of the others less than ¡1=.k ¡ 1/,
then ¹.f / is a k-tuple with 1 on the maximum coordinate and
¡1=.k ¡ 1/ elsewhere. So the function ¹ maps f to its most
likely class code if a class is strongly predicted by f. In con-
trast, if none of the coordinates of f is less than ¡1=.k ¡ 1/,
then ¹ maps f to .0; : : : ; 0/. With this de� nition of ¹, the fol-
lowing can be shown.

Lemma 4 (Leave-one-out lemma). The minimizer of
I¸.f; y[¡i]/ is f [¡i]

¸ , where y[¡i] D .y1; : : : ;yi¡1;¹.f [¡i]
¸i /;

yiC1; : : : ; yn/.

For notational simplicity, we suppress the subscript “¸”
from f and f [¡i]. We approximate g.yi; f [¡i]

i / ¡ g.yi ; fi/,
the contribution of the ith example to D.¸/, using the fore-
going lemma. Details of this approximation are given in
Appendix B. Let .¹i1.f /; : : : ; ¹ik.f // D ¹.f.xi//. From the
approximation

g
¡
yi; f [¡i]

i

¢
¡ g.yi ; fi/ ¼ .k ¡ 1/K.xi; xi/

£
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Finally, we have

GACV.¸/ D 1
n

nX

iD1

L.yi/ ¢
¡
f.xi/ ¡ yi

¢
C

C 1
n

nX

iD1
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¡
yij ¡ ¹ij .f /
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:

(28)

From a numerical standpoint, the proposed GACV may be
vulnerable to small perturbations in the solution, because it
involves sensitive computations, such as checking the con-
dition fj .xi/ < ¡1=.k ¡ 1/ or evaluating the step func-
tion [fj .xi/ C 1=.k ¡ 1/]¤. To enhance the stability of the
GACV computation, we introduce a tolerance term, ² . The
nominal condition fj .xi/ < ¡1=.k ¡ 1/ is implemented as
fj .xi/ < ¡.1 C ²/=.k ¡ 1/, and likewise the step function
[fj .xi/C1=.k ¡1/]¤ is replaced by [fj .xi/C .1C²/=.k¡1/]¤.
The tolerance is set to be 10¡5, for which empirical studies
show that GACV becomes robust against slight perturbations
of the solutions up to a certain precision.

5. NUMERICAL STUDY

In this section we illustrate the MSVM through numeri-
cal examples. We consider various tuning criteria, some of
which are available only in simulation settings, and com-
pare the performance of GACV with those theoretical criteria.
Throughout this section, we use the Gaussian kernel function,
K.s; t/ D exp.¡ 1

2¾ 2 ks ¡ tk2/, and we searched ¸ and ¾ over
a grid.

We considered a simple three-class example on the unit
interval [0; 1] with p1.x/ D :97 exp.¡3x/, p3.x/ D exp.¡2:5£
.x ¡ 1:2/2/, and p2.x/ D 1 ¡ p1.x/ ¡ p3.x/. Class 1 is most
likely for small x , whereas class 3 is most likely for large x .
The in-between interval is a competing zone for three classes,
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(a) (b) (c)

Figure 1. MSVM Target Functions for the Three-Class Example: (a) f1(x); (b) f2(x); (c) f3(x). The dotted lines are the conditional probabilities of
three classes.

although class 2 is slightly dominant. Figure 1 depicts the ideal
target functions, f1.x/, f2.x/, and f3.x/, de� ned in Lemma 1,
for this example. Here fj .x/ assumes the value 1 when pj .x/

is larger than pl.x/, l 6D j , and ¡1=2 otherwise. In contrast,
the ordinary one-versus-rest scheme is actually implementing
the equivalent of fj .x/ D 1 if pj .x/ > 1=2 and fj .x/ D ¡1
otherwise; that is, for fj .x/ to be 1, class j must be preferred
over the union of the other classes. If no class dominates the
union of the others for some x , then the fj .x/’s from the
one-versus-rest scheme do not carry suf� cient information to
identify the most probable class at x . In this example, chosen
to illustrate how a one-versus-rest scheme may fail in some
cases, prediction of class 2 based on f2.x/ of the one-versus-
rest scheme would be theoretically dif� cult, because the max-
imum of p2.x/ is barely .5 across the interval. To compare
the MSVM and the one-versus-rest scheme, we applied both
methods to a dataset with sample size n D 200. We generated

the attribute xi ’s from the uniform distribution on [0; 1], and
given xi , randomlyassigned the correspondingclass label yi ac-
cording to the conditionalprobabilitiespj .x/. We jointly tuned
the tuning parameters ¸ and ¾ , to minimize the GCKL distance
of the estimate f¸;¾ from the true distribution.

Figure 2 shows the estimated functions for both the MSVM
and the one-versus-rest methods with both tuned via GCKL.
The estimated f2.x/ in the one-versus-rest scheme is almost ¡1
at any x in the unit interval, meaning that it could not learn a
classi� cation rule associating the attribute x with the class dis-
tinction (class 2 vs. the rest, 1 or 3). In contrast, the MSVM
was able to capture the relative dominance of class 2 for mid-
dle values of x . Presence of such an indeterminate region would
amplify the effectiveness of the proposed MSVM. Table 1 gives
the tuning parameters chosen by other tuning criteria along-
side GCKL and highlights their inef� ciencies for this example.
When we treat all of the misclassi� cations equally, the true tar-

(a) (b)

Figure 2. Comparison of the (a) MSVM and (b) One-Versus-Rest Methods. The Gaussian kernel function was used, and the tuning parameters
¸ and ¾ were chosen simultaneously via GCKL (——, f1; ¢ ¢ ¢ ¢ ¢ ¢, f2; - - - - -, f3).
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Table 1. Tuning Criteria and Their Inef� ciencies

Criterion (log2 ¸, log2 ¾ ) Inef� ciency

MISRATE (¡11,¡4) ¤
GCKL (¡9, ¡4) .4001=.3980 D 1.0051
TUNE (¡5, ¡3) .4038=.3980 D 1.0145
GACV (¡4, ¡3) .4171=.3980 D 1.0480
Ten-fold cross-validation (¡10,¡1) .4112=.3980 D 1.0331

(¡13,0) .4129=.3980 D 1.0374

NOTE: “¤” indicates that the inef� ciency is de� ned relative to the minimum MISRATE (.3980)
at (¡11, ¡4).

get GCKL is given by

Etrue
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More directly, the misclassi� cation rate (MISRATE) is avail-
able in simulation settings, which is de� ned as

Etrue
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In addition, to see what we could expect from data-adaptivetun-
ing procedures,we generated a tuningset of the same size as the
training set and used the misclassi� cation rate over the tuning
set (TUNE) as a yardstick. The inef� ciency of each tuning cri-
terion is de� ned as the ratio of MISRATE at its minimizer to
the minimum MISRATE; thus it suggests how much misclassi-
� cation would be incurred relative to the smallest possible error
rate by the MSVM if we know the underlying probabilities. As
it is often observed in the binary case, GACV tends to pick
larger ¸ than does GCKL. However, we observe that TUNE,
the other data-adaptive criterion when a tuning set is available,
gave a similar outcome. The inef� ciency of GACV is 1.048,
yielding a misclassi� cation rate of .4171, slightly larger than

the optimal rate .3980. As expected, this rate is a little worse
than having an extra tuning set, but almost as good as 10-fold
cross-validation,which requires about 10 times more computa-
tions than GACV. Ten-fold cross-validation has two minimiz-
ers, which suggests the compromising role between ¸ and ¾ for
the Gaussian kernel function.

To demonstrate that the estimated functions indeed affect the
test error rate, we generated 100 replicate datasets of sample
size 200 and applied the MSVM and one-versus-rest SVM clas-
si� ers, combined with GCKL tuning, to each dataset. Based
on the estimated classi� cation rules, we evaluated the test er-
ror rates for both methods over a test dataset of size 10,000.
For the test dataset, the Bayes misclassi� cation rate was .3841,
whereas the average test error rate of the MSVM over 100
replicates was .3951 with standard deviation .0099 and that of
the one-versus-rest classi� ers was .4307 with standard devia-
tion .0132. The MSVM yielded a smaller test error rate than the
one-versus-rest scheme across all of the 100 replicates.

Other simulation studies in various settings showed that
MSVM outputs approximatecoded classes when the tuning pa-
rameters are appropriately chosen, and that often GACV and
TUNE tend to oversmooth in comparison with the theoretical
tuning measures GCKL and MISRATE.

For comparison with the alternative extension using the loss
function in (9), three scenarios with k D 3 were considered;
the domain of x was set to be [¡1; 1], and pj .x/ denotes the
conditionalprobability of class j given x :

1. p1.x/ D :7 ¡ :6x4, p2.x/ D :1 C :6x4, and p3.x/ D :2.
In this case there is a dominant class (class with the con-
ditional probability greater than 1=2) for most part of the
domain. The dominant class is 1 when x4 · 1=3 and 2
when x4 ¸ 2=3.

2. p1.x/ D :45 ¡ :4x4, p2.x/ D :3 C :4x4, and p3.x/ D :25.
In this case, there is no dominant class over a large subset
of the domain, but one class is clearly more likely than the
other two classes.

3. p1.x/ D :45 ¡ :3x4, p2.x/ D :35 C :3x4, and p3.x/ D :2.
Again, there is no dominant class over a large subset of
the domain, and two classes are competitive.

Figure 3 depicts the three scenarios. In each scenario, xi ’s

(a) (b) (c)

Figure 3. Underlying True Conditional Probabilities in Three Situations. (a) Scenario 1, dominant class; (b) scenario 2, the lowest two classes
compete; (c) scenario 3, the highest two classes compete. Class 1, solid; class 2, dotted; class 3, dashed.
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Table 2. Approximated Classi�cation Error Rates

Scenario Bayes rule MSVM Other extension One-versus-rest

1 .3763 .3817(.0021) .3784(.0005) .3811(.0017)
2 .5408 .5495(.0040) .5547(.0056) .6133(.0072)
3 .5387 .5517(.0045) .5708(.0089) .5972(.0071)

NOTE: The numbers in parentheses are the standard errors of the estimated classi� cation error
rates for each case.

of size 200 were generated from the uniform distribution
on [¡1; 1], and the tuning parameters were chosen by GCKL.
Table 2 gives the misclassi� cation rates of the MSVM and
the other extension averaged over 10 replicates. For reference,
table also gives the one-versus-rest classi� cation error rates.
The error rates were numerically approximated, with the true
conditional probabilities and the estimated classi� cation rules
evaluated on a � ne grid. In scenario 1, the three methods are
almost indistinguishabledue to the presenceof a dominant class
mostly over the region. When the lowest two classes compete
without a dominant class in scenario 2, the MSVM and the
other extension perform similarly, with clearly lower error rates
than the one-versus-rest approach. But when the highest two
classes compete, the MSVM gives smaller error rates than the
alternative extension, as expected by Lemma 2. The two-sided
Wilcoxon test for the equality of test error rates of the two
methods (MSVM/other extension) shows a signi� cant differ-
ence with the p value of .0137 using the paired 10 replicates in
this case.

We carried out a small-scale empirical study over four
datasets (wine, waveform, vehicle, and glass) from the UCI
data repository. As a tuning method, we compared GACV with
10-fold cross-validation, which is one of the popular choices.
When the problem is almost separable, GACV seems to be ef-
fective as a tuning criterion with a unique minimizer, which
is typically a part of the multiple minima of 10-fold cross-
validation. However, with considerable overlap among classes,
we empirically observed that GACV tends to oversmooth and
result in a little larger error rate compared with 10-fold cross-
validation. It is of some research interest to understand why
the GACV for the SVM formulation tends to overestimate ¸.
We compared the performance of MSVM with 10-fold CV with
that of the linear discriminant analysis (LDA), the quadratic dis-
criminant analysis (QDA), the nearest-neighbor (NN) method,
the one-versus-rest binary SVM (OVR), and the alternative
multiclass extension (AltMSVM). For the one-versus-rest SVM
and the alternative extension, we used 10-fold cross-validation
for tuning. Table 3 summarizes the comparison results in terms
of the classi� cation error rates. For wine and glass, the er-
ror rates represent the average of the misclassi� cation rates
cross-validated over 10 splits. For waveform and vehicle, we
evaluated the error rates over test sets of size 4,700 and 346,

Table 3. Classi�cation Error Rates

Dataset MSVM QDA LDA NN OVR AltMSVM

Wine .0169 .0169 .0112 .0506 .0169 .0169
Glass .3645 NA .4065 .2991 .3458 .3170
Waveform .1564 .1917 .1757 .2534 .1753 .1696
Vehicle .0694 .1185 .1908 .1214 .0809 .0925

NOTE: NA indicates that QDA is not applicable, because one class has fewer observations
than the number of variables, so the covariance matrix is not invertible.

which were held out. MSVM performed the best over the wave-
form and vehicle datasets. Over the wine dataset, the perfor-
mance of MSVM was about the same as that of QDA, OVR,
and AltMSVM, slightly worse than LDA, and better than NN.
Over the glass data, MSVM was better than LDA but not
as good as NN, which performed the best on this dataset.
AltMSVM performed better than our MSVM in this case. It is
clear that the relative performance of different classi� cation
methods depends on the problem at hand, and that no single
classi� cation method dominates all other methods. In practice,
simple methods, such as LDA, often outperform more sophis-
ticated methods. The MSVM is a general purpose classi� ca-
tion method that is a useful new addition to the toolbox of the
data analyst.

6. APPLICATIONS

Here we present two applications to problems arising in on-
cology, (cancer classi� cation using microarray data) and mete-
orology (cloud detection and classi� cation via satellite radiance
pro� les). Complete details of the cancer classi� cation applica-
tion have been given by Lee and Lee (2003), and details of the
cloud detection and classi� cation application by Lee, Wahba,
and Ackerman (2004), (see also Lee 2002).

6.1 Cancer Classi� cation With Microarray Data

Gene expression pro� les are the measurements of rela-
tive abundance of mRNA corresponding to the genes. Under
the premise of gene expression patterns as “� ngerprints” at the
molecular level, systematic methods of classifying tumor types
using gene expression data have been studied. Typical microar-
ray training datasets (a set of pairs of a gene expression pro-
� le xi and the tumor type yi into which it falls) have a fairly
small sample size, usually less than 100, whereas the number
of genes involved is on the order of thousands. This poses an
unprecedented challenge to some classi� cation methodologies.
The SVM is one of the methods that was successfully applied
to the cancer diagnosis problems in previous studies. Because
in principle SVM can handle input variables much larger than
the sample size through its dual formulation, it may be well
suited to the microarray data structure.

We revisited the dataset of Khan et al. (2001), who classi-
� ed the small round blue cell tumors (SRBCT’s) of childhood
into four classes—neuroblastoma (NB), rhabdomyosarcoma
(RMS), non-Hodgkin’s lymphoma (NHL), and the Ewing fam-
ily of tumors (EWS)—using cDNA gene expression pro� les.
(The dataset is available from http://www.nhgri.nih.gov/DIR/
Microarray/Supplement/.) A total of 2,308 gene pro� les out
of 6,567 genes are given in the dataset after � ltering for a mini-
mal level of expression. The training set comprises 63 SRBCT
cases (NB, 12; RMS, 20; BL, 8; EWS, 23), and the test set
comprises 20 SRBCT cases (NB, 6; RMS, 5; BL, 3; EWS, 6)
and � ve non-SRBCT’s. Note that Burkitt’s lymphoma (BL) is a
subset of NHL. Khan et al. (2001) successfully classi� ed the tu-
mor types into four categories using arti� cial neural networks.
Also, Yeo and Poggio (2001) applied k nearest-neighbor (NN),
weighted voting, and linear SVM in one-versus-rest fashion to
this four-class problem, and compared the performance of these
methodswhen combinedwith several feature selectionmethods
for each binary classi� cation problem. Yeo and Poggio reported

http://www.nhgri.nih.gov/DIR/Microarray/Supplement/
http://www.nhgri.nih.gov/DIR/Microarray/Supplement/


76 Journal of the American Statistical Association, March 2004

that mostly SVM classi� ers achieved the smallest test error and
leave-one-out cross-validation error when 5 to 100 genes (fea-
tures) were used. For the best results shown, perfect classi� -
cation was possible in testing the blind 20 cases as well as in
cross-validating 63 training cases.

For comparison, we applied the MSVM to the problem af-
ter taking the logarithm base 10 of the expression levels and
standardizing arrays. Following a simple criterion of Dudoit,
Fridlyand, and Speed (2002), the marginal relevance measure
of gene l in class separation is de� ned as the ratio

BSS.l/

WSS.l/
D

Pn
iD1

Pk
jD1 I .yi D j/. Nx .j /

¢l ¡ Nx¢l/2

Pn
iD1

Pk
j D1 I .yi D j/.xil ¡ Nx .j /

¢l /2
; (29)

where Nx .j /
¢l indicates the average expression level of gene l for

class j and Nx¢l is the overall mean expression levels of gene l in
the training set of size n. We selected genes with the largest ra-
tios. Table 4 summarizes the classi� cation results by MSVM’s
with the Gaussian kernel function.The proposed MSVM’s were
cross-validated for the training set in leave-one-out fashion,
with zero error attained for 20, 60, and 100 genes, as shown in
the second column. The last column gives the � nal test results.
Using the top-ranked 20, 60, and 100 genes, the MSVM’s cor-
rectly classify 20 test examples. With all of the genes included,
one error occurs in leave-one-out cross-validation. The mis-
classi� ed example is identi� ed as EWS-T13, which report-
edly occurs frequently as a leave-one-outcross-validation error
(Khan et al. 2001; Yeo and Poggio 2001). The test error using
all genes varies from zero to three, depending on tuning mea-
sures used. GACV tuning gave three test errors, leave-one-out
cross-validation, zero to three test errors. This range of test er-
rors is due to the fact that multiple pairs of .¸; ¾/ gave the same
minimum in leave-one-outcross-validationtuning, and all were
evaluated in the test phase, with varying results. Perfect classi-
� cation in cross-validation and testing with high-dimensional
inputs suggests the possibility of a compact representation of
the classi� er in a low dimension. (See Lee and Lee 2003, � g. 3,
for a principal components analysis of the top 100 genes in the
training set.) Together, the three principal components provide
66.5% (individualcontributions,27.52%,23.12%,and 15.89%)
of the variation of the 100 genes in the training set. The fourth
component, not included in the analysis, explains only 3.48%
of the variation in the training dataset. With the three principal
components only, we applied the MSVM. Again, we achieved
perfect classi� cation in cross-validation and testing.

Figure 4 shows the predicteddecision vectors .f1; f2; f3; f4/

at the test examples. With the class codes and the color scheme
described in the caption, we can see that all the 20 test exam-

Table 4. Leave-One-Out Cross-Validation Error and
Test Error for the SRBCT Dataset

Number of genes
Leave-one-out

cross-validation error Test error

20 0 0
60 0 0

100 0 0
All 1 0¡3
3 Principal

components (100) 0 0

ples from 4 classes are classi� ed correctly. Note that the test
examples are rearranged in the order EWS, BL, NB, RMS, and
non-SRBCT. The test dataset includes � ve non-SRBCT cases.

In medical diagnosis, attaching a con� dence statement to
each prediction may be useful in identifying such borderline
cases. For classi� cation methods whose ultimate output is the
estimated conditional probability of each class at x, one can
simply set a threshold such that the classi� cation is made
only when the estimated probability of the predicted class
exceeds the threshold. There have been attempts to map outputs
of classi� ers to conditional probabilities for various classi� -
cation methods, including the SVM, in multiclass problems
(see Zadrozny and Elkan 2002; Passerini, Pontil, and Frasconi
2002; Price, Knerr, Personnaz, and Dreyfus 1995; Hastie and
Tibshirani 1998). However, these attempts treated multiclass
problems as a series of binary class problems. Although these
previous methods may be sound in producing the class proba-
bility estimate based on the outputsof binary classi� ers, they do
not apply to any method that handles all of the classes at once.
Moreover, the SVM in particular is not designed to convey the
information of class probabilities. In contrast to the conditional
probability estimate of each class based on the SVM outputs,
we propose a simple measure that quanti� es empirically how
close a new covariate vector is to the estimated class bound-
aries. The measure proves useful in identifying borderline ob-
servations in relatively separable cases.

We discuss some heuristics to reject weak predictions using
the measure, analogous to the prediction strength for the
binary SVM of Mukherjee et al. (1999). The MSVM de-
cision vector .f1; : : : ; fk/ at x, close to a class code, may
mean strong prediction away from the classi� cation boundary.
The multiclass hinge loss with the standard cost function L.¢/,
g.y; f.x// ´ L.y/ ¢ .f.x/ ¡ y/C sensibly measures the proxim-
ity between an MSVM decision vector f.x/ and a coded class y,
re� ecting how strong their association is in the classi� cation
context. For the time being, we use a class label and its vector-
valued class code interchangeably as an input argument of the
hinge loss g and other occasions; that is, we let g.j; f.x//

represent g.vj ; f.x//. We assume that the probability of a cor-
rect prediction given f.x/, Pr.Y D argmaxj fj .x/jf.x//, de-
pends on f.x/ only through g.argmaxj fj .x/; f.x//, the loss
for the predicted class. The smaller the hinge loss, the stronger
the prediction. Then the strength of the MSVM prediction,
Pr.Y D argmaxj fj .x/jf.x//, can be inferred from the training
data by cross-validation. For example, leaving out .xi; yi/,
we get the MSVM decision vector f.xi/ based on the re-
maining observations. From this, we get a pair of the loss,
g.argmaxj fj .xi/; f.xi//, and the indicatorof a correct decision,
I .yi D argmaxj fj .xi//. If we further assume the complete
symmetry of k classes, that is, Pr.Y D 1/ D ¢ ¢ ¢ DPr.Y D k/

and Pr.f.x/jY D y/ D Pr.¼.f.x//jY D ¼.y// for any permu-
tation operator ¼ of f1; : : : ; kg, then it follows that Pr.Y D
argmaxj fj .x/jf.x// D Pr.Y D ¼.argmaxj fj .x//j¼.f.x///.
Consequently, under these symmetry and invariance assump-
tions with respect to k classes, we can pool the pairs of the
hinge loss and the indicator for all of the classes and estimate
the invariant prediction strength function in terms of the loss,
regardless of the predicted class. In almost-separable classi� ca-
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(a)

(b)

(c)

(d)

(e)

Figure 4. The Predicted Decision Vectors [(a) f1 , (b) f2, (c) f3, (d) f4] for the Test Examples. The four class labels are coded according as EWS
in blue: (1,¡1=3, ¡1=3, ¡1=3), BL in purple: (¡1=3,1, ¡1=3, ¡1=3), NB in red: (¡1/3, ¡1/3, 1, ¡1/3), and RMS in green: (¡1/3, ¡1/3, ¡1/3, 1). The
colors indicate the true class identities of the test examples. All the 20 test examples from four classes are classi�ed correctly and the estimated
decision vectors are pretty close to their ideal class representation. The � tted MSVM decision vectors for the � ve non-SRBCT examples are plotted
in cyan. (e) The loss for the predicted decision vector at each test example. The last � ve losses corresponding to the predictions of non-SRBCT’s
all exceed the threshold (the dotted line) below which indicates a strong prediction. Three test examples falling into the known four classes cannot
be classi�ed con�dently by the same threshold. (Reproduced with permission from Lee and Lee 2003. Copyright 2003, Oxford University Press.)

tion problems, we might see the loss values for the correct clas-
si� cations only, impeding estimation of the prediction strength.
We can apply the heuristics of predicting a class only when
its corresponding loss is less than, say, the 95th percentile of
the empirical loss distribution.This cautiousmeasure was exer-
cised in identifying the � ve non-SRBCT’s. Figure 4(e) depicts
the loss for the predictedMSVM decisionvector at each test ex-
ample, including � ve non-SRBCT’s. The dotted line indicates
the threshold of rejecting a prediction given the loss; that is,
any prediction with loss above the dotted line will be rejected.
This threshold was set at .2171, which is a jackknife estimate
of the 95th percentile of the loss distribution from 63 correct
predictions in the training dataset. The losses corresponding to
the predictions of the � ve non-SRBCT’s all exceed the thresh-
old, whereas 3 test examples out of 20 can not be classi� ed
con� dently by thresholding.

6.2 Cloud Classi� cation With Radiance Pro� les

The moderate resolution imaging spectroradiometer
(MODIS) is a key instrument of the earth observing system
(EOS). It measures radiances at 36 wavelengths including in-
frared and visible bands every 1 to 2 days with a spatial resolu-
tion of 250 m to 1 km. (For more informationabout the MODIS
instrument, see http://modis.gsfc.nasa.gov/.) EOS models re-
quire knowledge of whether a radiance pro� le is cloud-free or
not. If the pro� le is not cloud-free, then information concerning
the types of clouds is valuable. (For more information on the
MODIS cloud mask algorithm with a simple threshold tech-
nique, see Ackerman et al. 1998.) We applied the MSVM to
simulated MODIS-type channel data to classify the radiance
pro� les as clear, liquid clouds, or ice clouds. Satellite obser-
vations at 12 wavelengths (.66, .86, .46, .55, 1.2, 1.6, 2.1, 6.6,
7.3, 8.6, 11, and 12 microns, or MODIS channels 1, 2, 3, 4, 5,

http://modis.gsfc.nasa.gov/
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6, 7, 27, 28, 29, 31, and 32) were simulated using DISORT,
driven by STREAMER (Key and Schweiger 1998). Setting
atmospheric conditions as simulation parameters, we selected
atmospheric temperature and moisture pro� les from the 3I ther-
modynamic initial guess retrieval (TIGR) database, and set the
surface to be water. A total of 744 radiance pro� les over the
ocean (81 clear scenes, 202 liquid clouds, and 461 ice clouds)
are included in the dataset. Each simulated radiance pro� le
consists of seven re� ectances (R), at .66, .86, .46, .55, 1.2,
1.6, and 2.1 microns, and � ve brightness temperatures (BT), at
6.6, 7.3, 8.6, 11, and 12 microns. No single channel seemed
to give a clear separation of the three categories. The two
variables Rchannel2 and log10.Rchannel5=Rchannel6/ were initially
used for classi� cation based on an understanding of the under-
lying physics and an examination of several other scatterplots.
To test how predictive Rchannel2 and log10.Rchannel5=Rchannel6/

are, we split the dataset into a training set and a test set, and
applied the MSVM with two features only to the training data.
We randomly selected 370 examples, almost half of the original
data, as the training set. We used the Gaussian kernel and tuned
the tuning parameters by � ve-fold cross-validation.The test er-
ror rate of the SVM rule over 374 test examples was 11.5%
(43 of 374). Figure 5(a) shows the classi� cation boundariesde-
termined by the training dataset in this case. Note that many
ice cloud examples are hidden underneath the clear-sky exam-
ples in the plot. Most of the misclassi� cations in testing oc-
curred due to the considerable overlap between ice clouds and
clear-sky examples at the lower left corner of the plot. It turned
out that adding three more promising variables to the MSVM
did not signi� cantly improve the classi� cation accuracy. These
variables are given in the second row of Table 5; again the
choice was based on knowledge of the underlying physics and
pairwise scatterplots. We could classify correctly just � ve more
examples than in the two-features-only case with a misclassi� -
cation rate of 10.16% (38 of 374). Assuming no such domain
knowledge regarding which features to examine, we applied

Table 5. Test Error Rates for the Combinations of Variables
and Classi�ers

Number of
variables

Test error rates (%)

Variable descriptions MSVM TREE 1-NN

2 (a) R2, log10(R5=R6) 11.50 14.97 16.58
5 (a)CR1=R2, BT 31, BT 32 ¡ BT 29 10.16 15.24 12.30

12 (b) original 12 variables 12.03 16.84 20.86
12 log-transformed (b) 9.89 16.84 18.98

the MSVM to the original 12 radiance channels without any
transformations or variable selections. This yielded 12.03% test
error rate, slightly larger than the MSVM’s with two or � ve fea-
tures. Interestingly, when all of the variables were transformed
by the logarithm function, the MSVM achieved its minimum
error rate. We compared the MSVM with the tree-structured
classi� cation method, because it is somewhat similar to, albeit
much more sophisticated than, the MODIS cloud mask algo-
rithm. We used the library “tree” in the R package. For each
combination of the variables, we determined the size of the
� tted tree by 10-fold cross validation of the training set and es-
timated its error rate over the test set. The results are given in
the column “TREE” in Table 5. The MSVM gives smaller test
error rates than the tree method over all of the combinations of
the variables considered. This suggests the possibility that the
proposed MSVM improves the accuracy of the current cloud
detection algorithm. To roughly measure the dif� culty of the
classi� cation problem due to the intrinsic overlap between class
distributions, we applied the NN method; the results, given in
the last column of Table 5, suggest that the dataset is not triv-
ially separable. It would be interesting to investigate further
whether any sophisticated variable (feature) selection method
may substantially improve the accuracy.

So far, we have treated different types of misclassi� cation
equally.However, a misclassi� cation of cloudsas clear could be
more serious than other kinds of misclassi� cations in practice,
because essentially this cloud detection algorithm will be used

(a) (b)

Figure 5. The Classi�cation Boundaries of the MSVM. They are determined by the MSVM using 370 training examples randomly selected from
the dataset in (a) the standard case and (b) the nonstandard case, where the cost of misclassifying clouds as clear is 1.5 times higher than the
cost of other types of misclassi�cations. Clear sky, blue; water clouds, green; ice clouds, purple. (Reproduced with permission from Lee et al. 2004.
Copyright 2004, American Meteorological Society.)
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as cloud mask. We considered a cost structure that penalizes
misclassifying clouds as clear 1.5 times more than misclassi� -
cations of other kinds; its corresponding classi� cation bound-
aries are shown in Figure 5(b). We observed that if the cost 1.5
is changed to 2, then no region at all remains for the clear-sky
category within the square range of the two features consid-
ered here. The approach to estimating the prediction strength
given in Section 6.1 can be generalized to the nonstandardcase,
if desired.

7. CONCLUDING REMARKS

We have proposed a loss function deliberately tailored to
target the coded class with the maximum conditional prob-
ability for multicategory classi� cation problems. Using the
loss function, we have extended the classi� cation paradigm
of SVM’s to the multicategory case so that the resulting
classi� er approximates the optimal classi� cation rule. The
nonstandard MSVM that we have proposed allows a unifying
formulation when there are possibly nonrepresentative training
sets and either equal or unequal misclassi� cation costs. We de-
rived an approximate leave-one-out cross-validation function
for tuning the method, and compared this with conventional
k-fold cross-validation methods. The comparisons, through
several numerical examples, suggested that the proposed tun-
ing measure is sharper near its minimizer than the k-fold cross-
validation method, but tends to slightly oversmooth. Then we
demonstrated the usefulness of the MSVM through applica-
tions to a cancer classi� cation problem with microarray data
and cloud classi� cation problems with radiance pro� les.

Although the high dimensionality of data is tractable in the
SVM paradigm, its original formulation does not accommodate
variable selection. Rather, it provides observationwise data re-
duction through support vectors. Depending on applications, it
is of great importance not only to achieve the smallest error
rate by a classi� er, but also to have its compact representa-
tion for better interpretation. For instance, classi� cation prob-
lems in data mining and bioinformatics often pose a question
as to which subsets of the variables are most responsible for the
class separation. A valuable exercise would be to further gen-
eralize some variable selection methods for binary SVM’s to
the MSVM. Another direction of future work includes estab-
lishing the MSVM’s advantages theoretically, such as its con-
vergence rates to the optimal error rate, compared with those
indirect methodsof classifying via estimation of the conditional
probability or density functions.

The MSVM is a generic approach to multiclass problems
treating all of the classes simultaneously. We believe that it is
a useful addition to the class of nonparametric multicategory
classi� cation methods.

APPENDIX A: PROOFS

Proof of Lemma 1

Because E[L.Y/ ¢.f.X/¡Y/C] D E.E[L.Y/ ¢.f.X/¡Y/CjX]/, we
can minimize E[L.Y/ ¢ .f.X/ ¡ Y/C] by minimizing E[L.Y/ ¢ .f.X/ ¡
Y/CjX D x] for every x. If we write out the functional for each x, then
we have
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¡
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fj .x/ C 1

k ¡ 1

´

C
: (A.1)

Here we claim that it is suf� cient to search over f.x/ with
fj .x/ ¸ ¡1=.k ¡ 1/ for all j D 1; : : : ; k , to minimize (A.1). If any
fj .x/ < ¡1=.k ¡ 1/, then we can always � nd another f ¤.x/ that
is better than or as good as f.x/ in reducing the expected loss,
as follows. Set f ¤

j .x/ to be ¡1=.k ¡ 1/ and subtract the surplus
¡1=.k ¡ 1/ ¡ fj .x/ from other component fl .x/’s that are greater
than ¡1=.k ¡ 1/. The existence of such other components is always
guaranteedby the sum-to-0 constraint.Determine f ¤

i .x/ in accordance
with the modi� cations. By doing so, we get f¤.x/ such that .f ¤

j .x/ C
1=.k ¡ 1//C · .fj .x/ C 1=.k ¡ 1//C for each j . Because the expected
loss is a nonnegativelyweighted sum of .fj .x/C1=.k ¡1//C , it is suf-
� cient to consider f.x/ with fj .x/ ¸ ¡1=.k ¡ 1/ for all j D 1; : : : ; k.
Dropping the truncate functions from (A.1), and rearranging, we get
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Without loss of generality, we may assume that k D
argmaxjD1;:::;k pj .x/ by the symmetry in the class labels. This im-
plies that to minimize the expected loss, fj .x/ should be ¡1=.k ¡ 1/

for j D 1; : : : ; k ¡ 1 because of the nonnegativity of pk.x/ ¡ pj .x/.
Finally, we have fk .x/ D 1 by the sum-to-0 constraint.

Proof of Lemma 2

For brevity, we omit the argument x for fj and pj throughout the
proof, and refer to (10) as R.f.x//. Because we � x f1 D ¡1, R can be
seen as a function of .f2;f3/,

R.f2; f3/ D .3 C f2/Cp1 C .3 C f3/Cp1 C .1 ¡ f2/Cp2

C .2 C f3 ¡ f2/Cp2 C .1 ¡ f3/Cp3 C .2 C f2 ¡ f3/Cp3:

Now consider .f2; f3/ in the neighborhood of .1;1/: 0 < f2 < 2
and 0 < f3 < 2. In this neighborhood we have R.f2; f3/ D 4p1 C 2 C
[f2.1 ¡ 2p2/ C .1 ¡ f2/Cp2] C [f3.1 ¡ 2p3/ C .1 ¡ f3/Cp3] and
R.1; 1/ D 4p1 C2 C .1 ¡ 2p2/ C .1 ¡ 2p3/. Because 1=3 < p2 < 1=2,
if f2 > 1, then f2.1 ¡ 2p2/ C .1 ¡ f2/Cp2 D f2.1 ¡ 2p2/ > 1 ¡ 2p2 ,
and if f2 < 1, then f2.1 ¡ 2p2/ C .1 ¡ f2/Cp2 D f2.1 ¡ 2p2/ C
.1 ¡ f2/p2 D .1 ¡ f2/.3p2 ¡ 1/ C .1 ¡ 2p2/ > 1 ¡ 2p2. Therefore,
f2.1 ¡ 2p2/ C .1 ¡ f2/Cp2 ¸ 1 ¡ 2p2, with the equality holding only
when f2 D 1. Similarly, f3.1 ¡ 2p3/ C .1 ¡ f3/Cp3 ¸ 1 ¡ 2p3, with
the equality holding only when f3 D 1. Hence, for any f2 2 .0; 2/ and
f3 2 .0; 2/, we have that R.f2;f3/ ¸ R.1;1/, with the equality hold-
ing only if .f2;f3/ D .1; 1/. Because R is convex, we see that .1; 1/ is
the unique global minimizer of R.f2; f3/. The lemma is proved.

In the foregoing, we used the constraint f1 D ¡1. Other con-
straints certainly can be used. For example, if we use the constraint
f1 C f2 C f3 D 0 instead of f1 D ¡1, then the global minimizer un-
der the constraint is .¡4=3; 2=3; 2=3/. This is easily seen from the fact
that R.f1;f2; f3/ D R.f1 Cc; f2 C c;f3 C c/ for any .f1; f2;f3/ and
any constant c.
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Proof of Lemma 3

Parallel to all of the arguments used for the proof of Lemma 1, it
can be shown that
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We can immediately eliminate from considerationthe � rst term, which
does not involve any fj .x/. To make the equation simpler, let Wj .x/

be
Pk

`D1 l j̀ ps
`.x/ for j D 1; : : : ; k . Then the whole equation reduces

to the following up to a constant:
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Without loss of generality, we may assume that k D
argminjD1;:::;k Wj .x/. To minimize the expected quantity, fj .x/

should be ¡1=.k ¡ 1/ for j D 1; : : : ; k ¡ 1 because of the nonnegativ-
ity of Wj .x/ ¡ Wk.x/ and fj .x/ ¸ ¡1=.k ¡ 1/ for all j D 1; : : : ; k.
Finally, we have fk.x/ D 1 by the sum-to-0 constraint.

Proof of Theorem 1

Consider fj .x/ D bj C hj .x/ with hj 2 HK . Decompose
hj .¢/ D

Pn
lD1 clj K.xl; ¢/ C ½j .¢/ for j D 1; : : : ; k , where cij ’s are

some constants and ½j .¢/ is the element in the RKHS orthogonal to the
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Thus the data � t functional in (7) does not depend on ½j .¢/ at

all for j D 1; : : : ; k. On the other hand, we have khj k2
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obviously ½j .¢/ should vanish. It remains to show that minimizing (7)
under the sum-to-0 constraint at the data points only is equivalent
to minimizing (7) under the constraint for every x. Now let K be
the n £ n matrix with il entry K.xi ;xl/. Let e be the column vec-
tor with n 1’s and let c¢j D .c1j ; : : : ; cnj /t . Given the representa-

tion (12), consider the problem of minimizing (7) under .
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Because the equalityholds only when KNc D 0 [i.e., K.
Pk

jD1 c¢j / D 0],

we know that at the minimizer, K.
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This means that
Pk

j D1
Pn

iD1 cij K.xi ;x/ D 0 for every x. Hence, min-
imizing (7) under the sum-to-0 constraint at the data points is equiva-
lent to minimizing (7) under

Pk
jD1 bj C

Pk
j D1

Pn
iD1 cij K.xi;x/ D 0

for every x.

Proof of Lemma 4 (Leave-One-Out Lemma)

Observe that

I¸

¡
f [¡i]
¸ ;y[¡i]¢

D 1

n
g

¡
¹

¡
f [¡i]
¸i

¢
; f [¡i]

¸i

¢
C 1

n

nX

lD1;l 6Di

g
¡
yl ; f [¡i]

¸l

¢
C J¸

¡
f [¡i]
¸

¢

· 1
n

g
¡
¹

¡
f [¡i]
¸i

¢
; f [¡i]

¸i

¢
C 1

n

nX

lD1;l 6Di

g.yl; fl/ C J¸.f /

· 1
n

g
¡
¹

¡
f [¡i]
¸i

¢
; fi

¢
C 1

n

nX

lD1;l 6Di

g.yl; fl/ C J¸.f / D I¸

¡
f;y[¡i]¢:

The � rst inequality holds by the de� nition of f [¡i]
¸ . Note that

the j th coordinate of L.¹.f [¡i]
¸i // is positive only when ¹j .f [¡i]

¸i / D
¡1=.k ¡ 1/, whereas the corresponding j th coordinate of .f [¡i]

¸i ¡
¹.f [¡i]

¸i //C will be 0 because f
[¡i]
¸j .xi / < ¡1=.k ¡1/ for ¹j .f [¡i]

¸i / D

¡1=.k ¡ 1/. As a result, g.¹.f [¡i]
¸i /; f [¡i]

¸i / D L.¹.f [¡i]
¸i // ¢ .f [¡i]

¸i ¡
¹.f [¡i]

¸i //C D 0. Thus the second inequality follows by the nonnega-
tivity of the function g. This completes the proof.

APPENDIX B: APPROXIMATION OF g(yi , fi
[¡i ])¡g(yi , fi)

Due to the sum-to-0 constraint, it suf� ces to consider k ¡ 1 coordi-
nates of yi and fi as arguments of g, which correspond to non-0 com-
ponents of L.yi /. Suppose that yi D .¡1=.k ¡ 1/; : : : ;¡1=.k ¡ 1/; 1/;
all of the arguments will hold analogously for other class examples.
By the � rst-order Taylor expansion, we have

g
¡
yi ; f [¡i]

i

¢
¡ g.yi ; fi / ¼ ¡

k¡1X

jD1

@

@fj
g.yi ; fi /

¡
fj .xi / ¡ f

[¡i]
j .xi /

¢
:

(B.1)

Ignoring nondifferentiable points of g for a moment, we have, for
j D 1; : : : ; k ¡ 1,

@

@fj
g.yi; fi / D L.yi/ ¢

³
0; : : : ;0;

µ
fj .xi/ C 1

k ¡ 1

¶

¤
;0; : : : ;0

´

D Lij

µ
fj .xi / C 1

k ¡ 1

¶

¤
:

Let .¹i1.f /; : : : ;¹ik.f // D ¹.f.xi // and, similarly, .¹i1.f [¡i]/; : : : ;

¹ik.f [¡i]// D ¹.f [¡i].xi //. Using the leave-one-out lemma for
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j D 1; : : : ; k ¡ 1 and the Taylor expansion,

fj .xi / ¡ f
[¡i]
j .xi /

¼
³

@fj .xi/

@yi1
; : : : ;

@fj .xi/

@yi;k¡1

´
0

B@
yi1 ¡ ¹i1.f [¡i]/

:::

yi;k¡1 ¡ ¹i;k¡1.f [¡i]/

1

CA : (B.2)

The solution for the MSVM is given by fj .xi / D
Pn

i0D1 ci0j K.xi ;

xi 0 / C bj D ¡
Pn

i 0D1.®i0j ¡ N®i 0 /=.n¸/K.xi; xi 0 / C bj . Parallel to the
binary case, we rewrite ci 0j D ¡.k ¡ 1/yi 0j ci0j if the i 0th example

is not from class j , and ci0j D .k ¡ 1/
Pk

lD1; l 6Dj yi 0lci 0l otherwise.
Hence,
0

BB@

@f1.xi /
@yi1

¢ ¢ ¢ @f1.xi /
@yi;k¡1

:::
: : :

:::
@fk¡1.xi/

@yi1
¢ ¢ ¢ @fk¡1.xi /

@yi;k¡1

1

CCA

D ¡.k ¡ 1/K.xi ;xi/

0

BB@

ci1 0 ¢ ¢ ¢ 0
0 ci2 ¢ ¢ ¢ 0
:::

:::
: : :

:::

0 0 ¢ ¢ ¢ ci;k¡1

1

CCA :

From (B.1), (B.2), and .yi1 ¡ ¹i1.f [¡i]/; : : : ; yi;k¡1 ¡
¹i;k¡1.f [¡i]// ¼ .yi1 ¡ ¹i1.f /; : : : ; yi;k¡1 ¡ ¹i;k¡1.f //, we have

g.yi; f [¡i]
i / ¡ g.yi; fi / ¼ .k ¡ 1/K.xi ;xi /

Pk¡1
jD1 Lij [fj .xi / C

1=.k ¡ 1/]¤cij .yij ¡ ¹ij .f //. Noting that Lik D 0 in this case, and
that the approximations are de� ned analogously for other class exam-
ples, we have g.yi ; f [¡i]

i / ¡ g.yi; fi / ¼ .k ¡ 1/K.xi ; xi /
Pk

jD1 Lij £

[fj .xi / C 1=.k ¡ 1/]¤cij .yij ¡ ¹ij .f //.

[Received October 2002. Revised September 2003.]
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