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We review smoothing spline analysis of variance (SS-ANOVA) methods for fitting
a function of several variables to scattered, noisy data. The fitted function is ob-
tained as a sum of functions of one variable (main effects) plus a sum of functions of
two variables (two-factor interactions), and so forth. The terms are found as solu-
tions to a variational problem in a reproducing kernel Hilbert space which is built
up from tensor sums and products of Hilbert spaces of functions of fewer variables.
These methods have found application in environmental and demographic data
analysis problems, and provide an intuitively interpretable technique for examin-
ing responses as (smooth) functions of several variables. Matrix decomposition
methods can be used to compute the SS-ANOVA fits while adaptively choosing
multiple smoothing parameters by generalized cross validation (GCV), provided
that matrix decompositions of size n x n can be carried out, where n is the sample
size. We review the randomized trace technique and the backfitting algorithm,
and remark that they can be combined to solve the variational problem while
choosing the smoothing parameters by GCV for data sets that are much too large
to use matrix decomposition methods directly. Some intermediate calculations to
speed up the backfitting algorithm are given which are useful when the data has
a tensor product structure. We describe an imputation procedure which can take
advantage of data with a (nearly) tensor product structure. As an illustration of
an application we discuss the algorithm in the context of fitting and smoothing
historical global winter mean surface temperature data and examining the main
effects and interactions for time and space.

Subject classification: AMS(MOS) 41A15, 62H11, 62G07, 65D07, 65D10,
65D15, 62M30, 65K 10, 62F15,49J55.
Keywords: smoothing spline ANOVA, Gauss-Seidel algorithm, backfitting algo-
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rithm, randomized trace estimates, generalized cross validation, RKPACK, large
environmental data sets.

1 The Smoothing Spline ANOVA Decomposition

Some of this section is reprised from [43]. Let 7(®) be a measurable space, t, €
T, =1, di(t, ,tg) =t € T=TH ... T, For f satisfying some
measurability conditions on 7 a unique ANOVA decomposition of f of the form

Flt, ot =p+ > falta) £ fapltarts) + -+ (1)
(o] af

can always be defined as follows: Let dug, be a probability measure on 7(® and
define the averaging operator £, on T by

= [ fl tdua(ta) @
T(@)
Then the identity is decomposed as

=[[(Ea+I—-E0) Hs +ZI Ea) [[ €6+ (I-E)T—-Ep) ] &+

a B a<p Y#a,B
+ [T - ). (3)

The components of this decomposition generate the ANOVA decomposition of f
of the form (1) by

p=I¢)f fa= o) T1 €)1 fas = (T = )T = &5) TI &0 ()
a B#a v#a,B
and so forth.

The idea behind SS-ANOVA is to construct a reproducing kernel Hilbert space
(RKHS) H of functions on 7 so that the components of the SS-ANOVA decom-
position represent an orthogonal decomposition of f in H, and, given noisy data,
to estimate (some of) these components.

We suppose there are observations y; generated according to the model

yl:f(tl(l)’atd(z))+ela =1, (5)

where € = (e1,---,€n) ~ N(0, 02I,xy) is a ‘Gaussian white noise’ vector. Some
(or all) of the components in the ANOVA decomposition of f will be estimated
by finding f in (an appropriate subspace of) H to minimize

> (yi — f(t( +Z>\ Ta(fa) + 3" NapTap(fas) + (6)
i=1 af
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where the J,, J,s are ‘roughness penalties’ and the series may be truncated at
some point. This is done as follows: Let H(® be an RKHS of (real valued)
functions on 7@ with [) fa(ta)dpa = 0 for fo(-) € H(®), and let [1(¥)] be the
one dimensional space of constant functions on 7(®. Construct H as

Y =

d
a=

() e () =1 e Y HD o YD o HO e, (7
1 o a<f

where [1(?)] is the constant functions on 7(®) and [1] is the constant functions on
7. With some abuse of notation, factors of the form [1(®)] are omitted whenever
they multiply a term of a different form. Thus #(®) is a shorthand for [1(M]®---®
(1D @ H@ @ [1et)]) @ ... @ [14)] (which is a subspace of H). By letting the
square norm on [1(®)] be ([ fduq)?, and using the induced tensor product norm,
the components of the ANOVA decomposition will be in mutually orthogonal
subspaces of H.

Next, H(®) is decomposed into a parametric part and a smooth part, by letting
H(@) = ’nga) @Hga), where ’nga) is finite dimensional (the “parametric” part) and
71 (the “smooth” part) is the orthocomplement of # in H(®. Elements of
H® are not penalized through the device of letting J,(fq) = ||Ps(0‘)foé|\2 where

)

(a

s~ is the orthogonal projector onto ”Hga). [H(a) ® ’H(B)] is now a direct sum of
four orthogonal subspaces: [H(®) @ H(#)] = [Hy(ra) ® ’H;ﬂ)] ® [’nga) ® ’Hgﬂ)] ® [’HE,“) ®
H;ﬁ)] & [Hga) ® ’Hgﬂ)]. By convention the elements of the finite dimensional space
[”nga) ® H;ﬂ)] will not be penalized. Continuing this way results in an orthogonal
decomposition of H into sums of products of unpenalized finite dimensional sub-
spaces, plus main effects ‘smooth’ subspaces, plus two factor interaction spaces of
the form parametric ® smooth [’H;a) ® Hgﬂ)], smooth ® parametric [”Hga) ® ’H;ﬁ)]
and smooth ® smooth [Hﬁ”‘) ® ’Hgﬁ)] and similarly for the three and higher factor
subspaces.

Now suppose that we have selected the model M, that is, we have decided
which subspaces will be included. Collect all of the included unpenalized subspaces
into a subspace, call it H°, of dimension M, and relabel the other subspaces as
HP, B =1,2,---,p. HP may stand for a subspace Hga), or one of the three sub-
spaces in the decomposition of [H(® @ H(#)] which contains at least one ‘smooth’
component, or, a higher order subspace with at least one ‘smooth’ component.
Collecting these subspaces as M = H° S HP, the estimation problem becomes:
Find fin M=H’® >3 #% to minimize

n

p
> (yi = FE@))? + D 05 1P I, (8)

i=1 B=1
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where P? is the orthogonal projector in M onto H?, and 951 = Ag. The mini-
mizer, call it fy (A = (A1,---,Ap)) of (8) is known to have a representation [40],
Chapter 10 in terms of a basis {¢,} for H° and the reproducing kernels (RK’s)
{Rp(s,t)} for the HP. Letting

Qﬂ(sa t) = Z eﬂRﬂ(sa t)a (9)
B=1
it is
M n
folt) = dudu(t) + D ciQo(t(i),t) = d(t)'d + £(t)'c, (10)
v=1 =1
where

¢t) = ((t), -, dm(t)),
) = (Qu(t(1),1),---. Qo(t(n),1)).

cnx1 and dprx1 are vectors of coefficients which satisfy

(Qop+DNe+Sd = vy
S'c =0 (11)

where here and below we are letting (Jy be the n X n matrix with ¢jth entry
Qy(t(i),t(j)), and S be the n x M matrix with ivth entry ¢, (¢(:)). This system
will have a unique solution for any set of positive {Ag} provided S is of full
column rank, which we will always assume. This condition on S is equivalent
to the uniqueness of least squares regression onto span {¢,}. Since the RK of
a tensor product space is the product of the RK’s of the component spaces, the
computation of the Rg’s is straightforward. For example, the RK corresponding to

the subspace ’nga)®7-[gﬁ) is (in an obvious notation), R, @ (Sas ta)RH(g) (sg,tg). Of
course any positive definite function may in principle plgy the role of a reproducing
kernel here. Conditionally positive definite functions [32] as in thin plate splines
[44] may also be used. The point evaluation functionals f — f(¢(i)) may be
replaced by bounded linear functionals on H, and other functions can be added
to H" subject just to the uniqueness conditions, making this class of function
estimates broadly useful in many applications. See [4] [5] [6] [7] [15] [16] [17] [18]
[19] [20] [21] [22] [23] [24][25] [29] [33] [34] [35] [37] [38] [39] [40] [41] [44] .

2 Backfitting

Hastie and Tibshirani [26] Section 5.2.3, discuss the backfitting (a. k. a. Gauss-
Seidel) algorithm in the context of the general setup of SS-ANOVA problems
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as was described by [6]. Further discussion of the backfitting algorithm can be
found in [3] and elsewhere. Referring to (8)-(11), let fo(t) = M | d,é,(t) and
let fﬁ(t) = Z?:l CiHBRB(t(i),t). Then fy(-) = fo(-) + 2%21 fﬁ() with ¢ and d
satisfying (11) is the minimizer over f in M of
n p
> (yi = F(#0)* + D AsllPPfIP, (12)
i=1 B=1
where we have set \g = Hﬁ_l. Now, define fo(-) = fo(-) and f3(-) =~Z?:1 cqu(t(i), ),
for arbitrary ¢;5. In what follows it will be useful to recall that || f5]? = | P2 f|? =
cgRpes where ¢z = (ci-+-cnp)’ and Rg is the n X n matrix with 4jth entry
Rp(t(i),t(5)), see [40]. In [26] the authors consider minimizing (12) in the span of
all functions of the form f(-) = fo(-) + f1(-) +--- + f,(-) and they discuss finding
d and cg,3 =1,---,p to minimize

p p
ly —Sd — ZR565H2+ ZA,BCI/}RQCQ- (13)
p=1 p=1
They note that the (vector) smooths corresponding to the minimizers, defined as
fo = Sd and f3 = Rgcg, 8 =1, -+, p, satisfy the backfitting equations

f"yz’s”y(y_Zf‘ﬁ)a’}/zoala"'apa (14)
B#Y

with the smoother matrix Sy given by Sy = S(5'S)1S" and the other smoother
matrices Sg given by Sg = Rﬂ(Rg—i-)\ﬂI)_l, B =1,---p. The backfitting algorithm
solves for f; and fg,ﬁ = 1,---,p by cycling through f,y = Sy(Y — Xazy f'a),'y =
0,1,---,p. The backfitting algorithm is known to converge if the Frobenius norm
of each product 5,953 is less than 1.

Since the minimizer of (12) is in the M + n dimensional space spanned
by {¢,(:),v = 1,---, M} U {Zf;:l 0sRs(t(i),-),i = 1,---n}, minimizing (12)
in the larger space spanned by the M + np functions {¢,(:),v = 1,---, M} U
{Rgs(t(i),-),8 = 1,---p;n = 1,---,n} will result in a solution in the n + M di-
mensional space.

Setting f'g = Rgcg, the last p backfitting equations become

p
Rﬁ(Aﬁcﬁ—FZRQCG):Rﬁ(y_Sd)a /6:15"'31)3 (15)

a=1
although cg will not be uniquely determined if Rg is not of full rank. However,
suppose A\qRocq = Rqc for some ¢, a = 1,---,p. Recalling that A, = 6!, this
would give

p
Rﬁ(‘[+ZGO&RQ)C:Rﬂ(y_Sd)aﬁ:]-a7p7 (16)

a=1
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so that if ¢ satisfies (I + 2%21 0sRs)c = y — Sd, then ¢cg = fgc, B =1,---,p
satisfies the backfitting equations. Thus, despite the apparently larger number
np + M of unknowns in (14) compared to the n + M unknowns in (11), the
backfitting solutions f,,v = 0,1,---p are, at convergence, equivalent to solving

(Qp+IDc+Sd = y (17)
S'e = 0 (18)

for ¢ and d and setting f; = Sd, f'ﬁ = f3Rzc. Equation (18) follows by observing
that the first backfitting equation becomes Sd = Sy(y — Qgc). Substituting this
into (I + Qg)c = (y — Sd) results in ¢ = (I — Sp)(y — Qgc) which entails (18).
Substituting back into (17) results in ¢ = y — Z%:o f',y, which may then be used
to compute fg(t) for general ¢ via fg(t) = ;i cifgRa(t(i),1).

Ansley and Kohn [1] have a nice discussion of the backfitting algorithm in the
context of von Neuman’s alternating projection method.

3 Choosing the Smoothing Parameters

Probably the most popular method for choosing A = (Aq,-+,Ap) = (91_1, RN
is the GCV method,[7] [14] which chooses A as the minimizer of

_ I =AMyl

V) = G anp

where A(A) is the n x n matrix satisfying

ANy = (AA(Q)), - falt(n))'. (20)
The matrix I — A()) is known to have a representation

I — A(\) = To(TH(Z + I)Ty) T, (21)

where T'y is any n x (n — M) orthogonal matrix satisfying I',S = 0 and ¥ is the
n X n matrix with i, jth entry Qg(¢(i),¢(j)), see, for example [40], p. 13. A(A) is
a so-called ‘smoother’ matrix, that is, a symmetric, non-negative definite matrix
with all its eigenvalues in the interval [0, 1]. If the variance 02 in Equation (5) is
given, then the unbiased risk estimate for A is given by the minimizer of

UM = (I = AN)yll* +20%trA(N) (22)

can also be used. See [14], [7]. Other estimates are discussed in [40].

The code RKPACK ([15], [20], [23]) is designed to compute ¢rA(X) and com-
pute and find the minimizer of V() and solve (11), using matrix decomposition
methods.
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Recently Girard [9] [10], [11] and Hutchinson [27] have proposed the random-
ized trace technique for estimating trA(X) for large n. This method is feasible
for n larger than allowable with matrix decomposition methods, and can be used
whenever a ‘black box’ is available for obtaining f, the n-vector with ith entry
fa(t(@)),i =1,---,n, given y. That is, it is assumed that some algorithm is avail-
able which produces (a good numerical approximation to) f = A(\)y for any .
The the randomized trace estimate is based on the following fact: Let £ be an
n-dimensional (pseudo-)random vector with mean zero and covariance matrix I.
Then the expected value of £'A(N)¢ = trA(N\). Furthermore, if ¢ is a Gaussian
random vector then the standard deviation of L&/ A(X)¢ is \/g[%trAQ()\)]l/Q, [10].
Since A()) is a smoother matrix then 2¢rA()) € [0, 1] and the standard deviation
of L&/ A(N)¢ is no greater than \/%[%trA()\)]l/Q. In practice it is preferable to
estimate 1¢r(I — A())). Letting £(€) be f with the data vector y replaced by ¢,
then the estimate of Ltr(I— A(N)) is 1¢/[¢ - £(€)]. The same ¢ should be used for
all values of A\. This results in an estimate for V' (\) which is a smooth function
of X and appears to have the same shape as V(A) computed exactly. Excellent
results with n around 600 were reported in [42], for example, and have been also
reported by other authors, see, for example [13]. Since the (converged) backfitting
algorithm produces f = ZI/;:(] f‘g it can be used to compute the randomized trace
estimate of ¢r(I — A()\)) for selected values of .

Now, let 2 =y — > 5, f'g. Note that at convergence, when (14) is satisfied,

ly —£1> = = f5) - £ (23)
BF#
= |lzy = Syz %7 =0,1,---,p. (24)

This suggests that Ag, 3 =1,---,p can be updated at each step as the backfitting
proceeds, by considering Ag to be fixed for 3 # . Let A(),) stand for A(X) with
all the Ag considered fixed except A, and choose A, to minimize

_ llzy = Syz 1 _
V( ’Y) - t’f’(I _ A()\fy))”y - ]-7 y D, (25)

similarly for U(X,). This is the BRUTO algorithm in [26], p 262.

4 Global Climate Data

The algorithm we describe is well suited to the analysis of certain kinds of global
environmental data. Rather than give a completely general description, we will
motivate the discussion with respect to a particular example, of broad general
interest. Generalizations to more complicated models will be fairly evident.
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We have in mind monthly average surface temperature data, that has been
computed from daily observations of surface temperature that have been collected
at a large number of meteorological stations around the globe for varying periods
of time. One of the oldest observing stations, at Trondheim, Norway, has been
collecting such data since 1761. Records from around 1700 stations are available
for the period 1961-90, with varying numbers of missing data. Just to give some
concrete numbers, as an illustration consider data for the ny = 30 years 1961-1990,
for, say no = 1500, stations that have mostly complete records for that period.
Considering the occasional missing data point there will then be (for a particular
month) somewhat fewer than n = n; x ny = 45,000 observations, indexed (after
scaling) by t; € {t1(1),-+,t1(n1)} € T =[0,1], and ¢, € S, where S is the unit
sphere. (t9 takes on the values of (latitude,longitude) of the stations).

For expository purposes and generality we let po, @ = 1,2 be Lebesgue mea-
sure on the unit interval and on the sphere, respectively. In this example, if the
t1(j) are equally spaced, 7(!) can (possibly more naturally) be taken as a set of
n1 points, with p; assigning mass % to each point. In this problem, the choice
of Lebesgue measure on the sphere is a natural one, since we will be interested
in estimating the global average temperature. We remark parenthetically that
although from a mathematical point of view this choice appears trivially obvi-
ous, among climatologists who have to deal with very irregular data of this type
the choice of a commonly acceptable working definition of ‘global average surface
temperature’ is far from obvious.

If 70 = [0, 1], we take for H(}) the subspace of Wi* = {f, f'abs.cont., f" €
L2[0,1]} of functions which satisfy fol fduy = 0. If we endow this space with the
square norm || f]12 ., = (f(1) = £(0))* + 3 (f"(u))?du then we can let HY be the
one dimensional space spanned by the ‘trend’ function ¢(u) = (u — 3)/12. Then
#V can be taken as the subspace of WJ" satisfying fol fw)du = (f(1)=f(0)) =0
with the square norm HfH2Hg1) = [ (f"(u))?du. The RK Ry (u,v) for HY is given
in [40] as

Ry(u,u') = ka(u)ko(u') — kg([u — u']) (26)
where kg(u) = By(u)/l! with By the fth Bernoulli polynomial. Elements in e
have a natural interpretation as having been ‘detrended’. If we take 7! =
{1,---,m}, and let J(f) = SP2[f(i +2) — 2f(i + 1) — f(i)]?, then H(D is the
subspace of E™ of vectors whose components sum to 0, the trend function is
¢(u) = u— (ny +1)/2, and 1Y is the n, — 2 dimensional subspace of E™ of
vectors perpendicular, in the Euclidean inner product, to the constant function
and the trend function. The RK for Hgl) can easily be shown to be the n; x ny
matrix obtained as follows: Let L be the (n; — 2) x n; matrix with 1 down the

diagonal, —2 down the super-diagonal and 1 down the next super-diagonal, 1. e.
J(f) = f'L'Lf, where f = (f(1),--- f(n1))’. Then R(j,j’) is the jj'th entry of
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(L'L)t where 1 is the Moore-Penrose generalized inverse,

Splines on the sphere have been discussed in [34],[35] where J(f) = fPeS(Am/Qf)QdP
with A the surface Laplacian on the sphere. Closed form expressions for RK’s
with a norm which is (topologically) equivalent to J(-) are given there for m =
3/2,2,5/2,...,6. The parameter m may be estimated from the data by minimizing
minyV (A) considered as a function of m, see [44]. Other positive definite functions
on the sphere may be found in [45] and references cited there. See also [8] and
[36] who obtain RK’s from historical meteorological data. Among sufficiently dif-
ferentiable functions on the sphere for which J(f) is finite, the null space of J(f)
is just the constant functions, so we take 7-[7(3) as empty and H? as HgQ). In the
example below we will choose the m = 2 case which (from [34]) gives the following
RK Ry for H®: Letting P, P’ be two points on the sphere, and z = cosy(P, P'),
where (P, P') is the angle between P and P’

Ro(P,P) = o | 30s(2) - ] 1)
where
4(2) =%{ln(1+ <1Ez>[12 <1gz>2—4<1§z>]—12 <1gz>3/2+6<1;2> +1}.
(28)

In the remainder of this section we will relable ¢t = (¢1,%2) as t = (z, P). Our
RKHS of historical global temperature functions is # = [10] @ [¢] @ ’Hgl)] ®

e 7—[9)], a collection of functions f(z, P), on [0,1] ® S, where H and f have
corresponding decompositions given below:

Ho= [ e g e M e W) e Wer? e Heu?
flz,P) = C + do(z) + filz) + faP) + o(@)fp2(P) +  fi2(z,P)
= mean + global + time + space —+ trend =+ space—
time main main by space time
trend effect effect effect interaction
For the 7() = [0,1] case, the components of the ANOVA decomposition

satisfiy the side conditions
1
0 = /0¢(ac)dac
1 1
0 = [ Al@ds = (A1) = £(0) = [ fale, Pz = fio(1, P) = f2(0,P)
0 = /SfQ(P)dPZ/qua,Q(P)dP:/Sfu(%P)dP,

the equalities involving fio holding for all P and for all x. Here M = 2 and
Ho is the span of the two functions ¢g(x, P) = 1 and ¢1(z, P) = ¢(z). For the
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D= {1,---,n1} case the integral over z is replaced by the sum over 1,---n;.
In this case,

ni ni ni
Z¢(]I)an ZRI(]a]I)an ZRI(]M]’)QS(]I)EO’ ]Zlaanl (29)
j'=1 j'=1 J'=1

This will lead to some algorithmic simplifications to be described, in the regular

data case. There are p = 4 subspaces whose components will be penalized, with
RK’s given below:

8 space RK
M Ri(z,P;z',P'") = Ry(z,z')
#(? Ro(z,P;2',P") = Ry(P,P)

¢(x)d(a") Ry(P, P')

1
2

3 [¢oH? R )
4 = Ry(z,2')Ro(P, P

Y ou? R,

5 Matrix decompositions with backfitting for regular data

In this section we describe an approach combining backfitting and matrix decom-
positions of size ny X n; and ny X ng which can be used for the global climate
data and other examples when the data are perfectly regular, that is, there is an
observation for each pair (zj,P),j = 1,---,n1,k = 1,--+,ny, where j indexes
time and k indexes station. (Note: this does not mean that the data is regular on
the sphere, just that each station is reporting at each time.) In the subsequent
section we will show how data imputation may (safely) be used when there are
(a small number of ) missing data points. The results in this and the next section
will appear in [31].

The results will become clear after we establish some notation. As before, let

H=y— Y ) (30)
B#Y

here the vectors in (30) all are of dimension n = n; X ng, unless otherwise noted,
we consider them partitioned into n; blocks of dimension ny and let z be a generic
vector of this form, With 2(j, k) be the kth entry in the jth block of z. Let Pi!z
be the ni-vector Wlth Zk 1 2(4,k) in the j position, j = 1,---,n; and Po(Z)z be
the mo-vector with = Z] 1 2(J, k) in the k th position, k = 1,---,ng. Finally, let

2 be the ng vector in the jth block of z. In the first backfitting equation v = 0
n (14), fo is the result of least squares regression of zg onto the columns of S. To
solve the other backfitting equations, write the remaining equations in (14) as

(R + AsD)fs = Rozg, B=1,--p. (31)
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Let Ry be the ny X ny matrix with jg’th entry Rl(acj, zj),5,7 =1,---,ny, and Ry
the ng X ng matrix with kk'th entry Ro(Py, Pyr), k. k' = 1, -, ny. Then, examining
the jth block of (14) for 3 = 2 gives

. S VU
R2P§2)f2+n—2fg = RoPPzy, j=1,--n, (32)
1

pA§

which entails that f'21~ = = P;7’f5, say. Defining the marginal smoother
matrix Sa(A) = Ra(Ra + )\I) results in

mi

£ =
PPy = S5(Xa/n1) P2 2. (33)
A similar argument, interchanging the roles of j and k gives, for § =1,

PV = S1 (M /na) PV 2, (34)

where S1(\) = Ry (Ry 4+ M\)~!
For § = 3 the jth block of (14) becomes

Z d(xj)p(xy) Rgf + Maff = Z d(xj)p(xj R2z3 , j=1,- (35)
j'=1 j'=1
It can be seen that f'g = (ﬁ(x])v j=1,--+,nq, for some ny vector v. Letting Pl(Z)z

be the ny vector with 3°7L, é(x;)2(4, ) in the kth position, and substituting this
into (35) results in

$(z;) 3 ¢ (w0 )Rov + Nyo(j)v = dlaj) Ra PV 23 (36)
j'=1
Therefore
ni
(3" ¢*(xj)Ro + MaT)v = Ry PV 23, (37)
j'=1
which gives
ni
= (3 ¢*(xj) Ry + Ma )" Bo PV 23, (38)
j'=1

Letting 371, ¢*(zj) = ¢? finally gives

] = (¢(x;)/¢%)S2(As /) P 23 (39)

Considering g = 4, )
£ = Sa(Ag)2a, (40)
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where Sy(A\) = Ry(Ry + M)~! with Ry = Ry ® Ry. The ny x n; and ng X ny
smoother matrices S;(\) and Sy(\) appear repeatedly with varying values of .
The approach we have taken in ongoing work for max (ni,ns) not too large is
to calculate the eigenvalue-eigenvector decompositions of R and R,. Letting
R, =TDI",S5,(\) =TD(D + X)~'T', S4(\) can be computed for varying values
of A\. The eigenvalues and eigenvectors of R4 are obtained as the tensor products
of the eigenvalues and eigenvectors of Rl and RQ and Sy(A) can then be computed
similarly.

In general if some components can be combined to reduce p then the number
of backfitting iterations required is likely to be smaller. In the present example
set f1+4 = f1 -I-f4 and 2144 =y — (fg-l-fg) and let 51+4(>\1, Ay) = R1+4(R1+4+I)
where Rj44 = 01Ry + 04R, = R1 () [9111 + 94R2] Then the 8 =1 and 8 = 4
backfitting steps can be replaced by the 1+ 4 step, f1+4 Sl+4()\1, A4)z144. This
may require repeated matrix decompositions of, say [ 211+ RQ] say, as 01,0, are
varied but may still represent a speedup.

The speed of convergence of the backfitting algorithm generally depends on
the magnitudes of the product matrices S,53, becoming faster as these products
become ‘smaller’. If the products were all 0 for @ # [, then the backfitting
iteration would converge in one step. In the example with 7() = {1, ,n1}, R, =
(L'L)t, the conditions (29) lead to all of these products equal 0 except SySa, SoS3
and S154. In general the sizes of these product matrices have a dependency on
the magnitute of the \g, decreasing as the \g increase. The most efficient method
for computing the f',y for very large, perfectly regular data sets under various
circumstances is under study. See [2] [12], Chapter 10.

6 Missing Data Imputation

In practice perfectly regular observational data, at least for climate data, is the
exception rather than the rule. Unfortunately, a few data points missing from a
regular set {z;, Py},7 = 1,---,n1,k = 1,---,ny means that both the outer and
inner loop backfitting equatlons would not all involve the same smoother matrices
S1, S5, and the ability to use a common eigenvalue- eigenvector decomposition
appears to be lost. We show how to get around this with an ‘imputation’ loop. To
demonstrate that the imputation loop is legitimate we first need a slight variation
of the leaving-out-one lemma in Craven and Wahba [7].

Lemma .1 The Leaving-Out-K Lemma
Let H be an RKHS with subspace H of dimension M as before, and for f € H let
|Pfl? = 75’:1 9§1||Pﬁf||2. Let fIK] be the solution to the variational problem:
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Find f € H to minimize

n

S > )Py, (41)

igS
where Sg = {i1, -+ ,ix} is a subset of 1,---,n with the property that (41) has a
unique minimizer, and let yi,i € Sk be ““mputed’ values for the ‘missing’ data
imputed as y; = fUEN(t(i)),i € Sk. Then the solution to the problem: Find f € H
to minimaize

n

> (vi— Yy - )2+ (1P (42)
i=1 1€ESK
idSk

is fIK1,

Proof

Let h = f5! and let f be any element in H # f5]. Then:

n

D (i —h(t(@D)* + Y (i = h(t(@)* + [ Phl?

Zéle IESK
= > (wi = @) + 1P
ISk
< D (= f@))? +IPfIP
ISk
< > (wi T+ > (Y-
¢Sk 1ESK
Thus, h = fI5 is the minimizer of (42). O
Let y be partitioned as
y(
y@
where the entries have been relabeled so that ¥ = (y;,, -+, ¥i ) = Yn—K 41, Un)',

and let A()\) be defined as before by f = A(\)y. Let A(X) be partitioned corre-

sponding to (43) as
A A
AN = . 44
™ ( " A22> (44)

P+ | PAIP
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Then, by the Leaving-Out-K Lemma,
FI (i) FIIH(i))
: = Agy™M) + Ag : ; (45)
FEI(# (i) G

and, if furthermore (I — Agg) = 0, then

FE((i)
. = (I — AQQ)_1A21y(1). (46)

FHIix))
There is an easy necessary and sufficient condition for (I — Agy) > 0.

Lemma .2 The Pre-Imputation Lemma

Let 'y be an n X M matriz of orthonormal columns which span the column space
of S, partitioned after the first n — K rows to match y in (43) as

I'n
(47)
I3}
Then (I — Agg) = 0 if and only if 1 is not an eigenvalue of To1Th;.
Proof
Let T'y be the n x n — M matrix in (21) and let T' be
‘ Iy Iy
F:<F1:F2>= SO (48)
[y : Ty

therefore, from (21), I — Agg = Tgo(T%(3 + I)T9) Ty, with T = I, and
FglF/ﬂ +T99T%, = Ik« k. Let u be any K-vector, we have u'T'y1 Thu+u'TooThou =
u'u. Thus u an eigenvector of I'9; 'y, with eigenvalue 1 guarantees that u/'T'9olhqu =
0 and so T, cannot be of full column rank, and hence (I — Ajy) cannot be of full
rank, conversely, if 1 is not an eigenvalue of I'9; T, then T[99, is strictly positive
definite, ensuring that T'), is of full column rank and hence (I — Agy) > 0. O

We have
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Lemma .3 The Imputation Lemma
Let g(z) be a K -vector of initial values for an imputation of (fU¥)(t(i1)), - fI8 (t(ix))’,

(0)
and suppose 0 < (I — Agy). Let successive imputations gg)) for£=1,2,--- be ob-

tained via

9(13) y'
= A0 . (49)
2 2
9t Ie-1)
Then !
904 FIEI#(1))
éhm = . (50)
—00
9t FH(t ()
Proof
By the Leaving-Out-K Lemma,
y
FIE(1)
: =AWy | M) | (51)
FHI(t(n)) 5
FEI(#(ix))
so we only need to show that
FEI(H(i)
Jim gg?)) = : : (52)
FEI(#(ix))
But
gg)) = Aoy + Agp[AsyW + AQQQE?_U] (53)
= (54)
= (I+Ap+---+ Aﬁgl)Amy(” + Aéggg)). (55)
so that assuming 0 < (I — Ag) gives
gg)) — (I — AQQ)_lAgly(l), (56)
and the result follows. O

We remark that the randomized trace technique works perfectly well in con-
junction with the imputation technique. The components of the noise vector £ in
the randomization techique are generated only where there are observations.
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7 Starting Guesses, Outliers

Good starting guesses for the imputations, if any, for the Ag’s, and for the f'g are
all required for the smoothing spline ANOVA fits to converge rapidly. Figure 1
is a contour plot of the global average winter temperature in 1981. The station
winter average temperatures y; were the averages of the December, January and
February monthly average temperatures obtained from the Jones/Wigley data files
obtainable from the Carbon Dioxide Information and Analysis Center (CDIAC)
at Oak Ridge National Laboratory (ORNL) in the files ndp020r1/jonesnh.dat.Z
and ndp020rl/jonessh.dat.Z in the pub directory at 128.219.24.36, see also [28].
The dots indicate the station locations, and we are using a subset of ng = 725
stations that had complete records for the winter of 1981. This contour plot was
obtained by using RKPACK with the GCV estimate of A to fit a smoothing spline
on the sphere in the space [12)] @ 7—[§2) described previously, with the RK for ”HgZ)
given by Ra(P, P'). RKPACK returns the ¢ and d of (10) (in this case p = 1), and
the X obtained by GCV. This could be done for each year and starting guesses for
the various components of the full smoothing spline ANOVA could, for example
be obtained by computing the marginal vectors (via applying Po(l) and PO(Q) to the
ny yearly fits at the full set of ny station locations). Starting guesses for A3 and
A4 could be obtained by combining the A’s that come from the one year at a time
global fits, and starting guesses for Ay and Ao by obtaining fits to the marginals.
Alternatively, in data like this, it may be desireable to view the year main effect
at several levels of smoothing, in this case it might be desireable to choose one or
more values of A; by ‘eyeball’. A plot of the global yearly average temperature
for the years 1854 thru 1993 appears in [28], and a similar plot for 1856 thru 1995
may be found in the New York Times of September 10, 1995, although technical
details of the method of computing the global yearly averages are not given.

In meteorological data sets of the type we are considering, the occasional
grossly erroneous data point is the rule rather than the exception, due to instru-
mental and human errors of various types. The residuals after a smoothing spline
ANOVA fit of the kind described here may be examined and used as a screening
tool for gross data errors. See, for example, Knight [30].

8 Summary

We have reviewed some theory and practice of smoothing spline ANOVA fits, and
outlined an algorithm which has the potential for fitting very large environmental
data sets with nearly regular structure by smoothing spline ANOVA methods and
GCV estimates of smoothing parameters. Regular structure is exploited to use
matrix decompositions for the marginal smoother matrices only. The Leaving-
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Figure 1: Contour plot of global average winter temperature, 1981
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Out-K Lemma demonstrates that under a mild condition, an iterative data impu-
tation can be used to fill in missing data in an otherwise regularly structured data
set in a defensible manner - that is, the imputation converges to the imputation
that would result if the smoothing spline ANOVA variational problem were solved
without the imputed data and the imputation were made from the solution. The
analysis of historical global winter surface temperature data has been described
as a potential application. In some preliminary numerical work (in preparation)
we have been able to analyze 30 years of global winter surface temperatures from
1000 stations, with about 50% of the 30,000 possible observations present.
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