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We review smoothing spline analysis of variance (SS-ANOVA) methods for �ttinga function of several variables to scattered, noisy data. The �tted function is ob-tained as a sum of functions of one variable (main e�ects) plus a sum of functions oftwo variables (two-factor interactions), and so forth. The terms are found as solu-tions to a variational problem in a reproducing kernel Hilbert space which is builtup from tensor sums and products of Hilbert spaces of functions of fewer variables.These methods have found application in environmental and demographic dataanalysis problems, and provide an intuitively interpretable technique for examin-ing responses as (smooth) functions of several variables. Matrix decompositionmethods can be used to compute the SS-ANOVA �ts while adaptively choosingmultiple smoothing parameters by generalized cross validation (GCV), providedthat matrix decompositions of size n�n can be carried out, where n is the samplesize. We review the randomized trace technique and the back�tting algorithm,and remark that they can be combined to solve the variational problem whilechoosing the smoothing parameters by GCV for data sets that are much too largeto use matrix decomposition methods directly. Some intermediate calculations tospeed up the back�tting algorithm are given which are useful when the data hasa tensor product structure. We describe an imputation procedure which can takeadvantage of data with a (nearly) tensor product structure. As an illustration ofan application we discuss the algorithm in the context of �tting and smoothinghistorical global winter mean surface temperature data and examining the maine�ects and interactions for time and space.Subject classi�cation: AMS(MOS) 41A15, 62H11, 62G07, 65D07, 65D10,65D15, 62M30, 65K10, 62F15,49J55.Keywords: smoothing spline ANOVA, Gauss-Seidel algorithm, back�tting algo-yThis research in part by NSF under Grant DMS-9121003 and in part by NASA GrantNAGW-2961



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 2rithm, randomized trace estimates, generalized cross validation, RKPACK, largeenvironmental data sets.1 The Smoothing Spline ANOVA DecompositionSome of this section is reprised from [43]. Let T (�) be a measurable space, t� 2T (�), � = 1; � � � ; d; (t1; � � � ; td) = t 2 T = T (1) 
 � � � 
 T (d). For f satisfying somemeasurability conditions on T a unique ANOVA decomposition of f of the formf(t1; � � � ; td) = �+X� f�(t�) +X�� f��(t�; t�) + � � � (1)can always be de�ned as follows: Let d�� be a probability measure on T (�) andde�ne the averaging operator E� on T by(E�f)(t) = ZT (�) f(t1; � � � ; td)d��(t�): (2)Then the identity is decomposed asI =Y� (E�+(I�E�)) =Y� E�+X� (I�E�) Y� 6=� E�+X�<�(I�E�)(I�E�) Y
 6=�;� E
+� � �+Y� (I � E�): (3)The components of this decomposition generate the ANOVA decomposition of fof the form (1) by� = (Y� E�)f; f� = ((I � E�) Y� 6=� E�)f; f�� = ((I � E�)(I � E�) Y
 6=�;� E
)f; (4)and so forth.The idea behind SS-ANOVA is to construct a reproducing kernel Hilbert space(RKHS) H of functions on T so that the components of the SS-ANOVA decom-position represent an orthogonal decomposition of f in H, and, given noisy data,to estimate (some of) these components.We suppose there are observations yi generated according to the modelyi = f(t1(i); � � � ; td(i)) + �i; i = 1; � � � ; n; (5)where � = (�1; � � � ; �n)0 � N(0; �2In�n) is a `Gaussian white noise' vector. Some(or all) of the components in the ANOVA decomposition of f will be estimatedby �nding f in (an appropriate subspace of) H to minimizenXi=1(yi � f(t(i)))2 +X� ��J�(f�) +X�� ���J��(f��) + � � � ; (6)



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 3where the J�; J�� are `roughness penalties' and the series may be truncated atsome point. This is done as follows: Let H(�) be an RKHS of (real valued)functions on T (�) with RT (�) f�(t�)d�� = 0 for f�(�) 2 H(�), and let [1(�)] be theone dimensional space of constant functions on T (�). Construct H asH = dY�=1(f[1(�)]g � fH(�)g) = [1]�X� H(�) �X�<�[H(�) 
H(�)]� � � � ; (7)where [1(�)] is the constant functions on T (�) and [1] is the constant functions onT . With some abuse of notation, factors of the form [1(�)] are omitted wheneverthey multiply a term of a di�erent form. ThusH(�) is a shorthand for [1(1)]
� � �
[1(��1)]
H(�) 
 [1(�+1)]
 � � � 
 [1(d)] (which is a subspace of H). By letting thesquare norm on [1(�)] be (R fd��)2, and using the induced tensor product norm,the components of the ANOVA decomposition will be in mutually orthogonalsubspaces of H.Next, H(�) is decomposed into a parametric part and a smooth part, by lettingH(�) = H(�)� �H(�)s , where H(�)� is �nite dimensional (the \parametric" part) andH(�)s (the \smooth" part) is the orthocomplement of H(�)� in H(�). Elements ofH(�)� are not penalized through the device of letting J�(f�) = kP (�)s f�k2 whereP (�)s is the orthogonal projector onto H(�)s . [H(�) 
H(�)] is now a direct sum offour orthogonal subspaces: [H(�)
H(�)] = [H(�)� 
H(�)� ]� [H(�)� 
H(�)s ]� [H(�)s 
H(�)� ]� [H(�)s 
H(�)s ]. By convention the elements of the �nite dimensional space[H(�)� 
H(�)� ] will not be penalized. Continuing this way results in an orthogonaldecomposition of H into sums of products of unpenalized �nite dimensional sub-spaces, plus main e�ects `smooth' subspaces, plus two factor interaction spaces ofthe form parametric 
 smooth [H(�)� 
H(�)s ], smooth 
 parametric [H(�)s 
H(�)� ]and smooth 
 smooth [H(�)s 
H(�)s ] and similarly for the three and higher factorsubspaces.Now suppose that we have selected the model M, that is, we have decidedwhich subspaces will be included. Collect all of the included unpenalized subspacesinto a subspace, call it H0, of dimension M , and relabel the other subspaces asH�; � = 1; 2; � � � ; p. H� may stand for a subspace H(�)s , or one of the three sub-spaces in the decomposition of [H(�)
H(�)] which contains at least one `smooth'component, or, a higher order subspace with at least one `smooth' component.Collecting these subspaces asM = H0�P�H�, the estimation problem becomes:Find f in M = H0 �P�H� to minimizenXi=1(yi � f(t(i)))2 + pX�=1 ��1� kP �fk2; (8)



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 4where P � is the orthogonal projector in M onto H�, and ��1� = �� . The mini-mizer, call it f� (� = (�1; � � � ; �p)) of (8) is known to have a representation [40],Chapter 10 in terms of a basis f��g for H0 and the reproducing kernels (RK's)fR�(s; t)g for the H�. LettingQ�(s; t) = pX�=1 ��R�(s; t); (9)it is f�(t) = MX�=1 d���(t) + nXi=1 ciQ�(t(i); t) = �(t)0d+ �(t)0c; (10)where �0(t) = (�1(t); � � � ; �M (t));�0(t) = (Q�(t(1); t); � � � ; Q�(t(n); t)):cn�1 and dM�1 are vectors of coe�cients which satisfy(Q� + I)c+ Sd = yS0c = 0 (11)where here and below we are letting Q� be the n � n matrix with ijth entryQ�(t(i); t(j)), and S be the n�M matrix with i�th entry ��(t(i)). This systemwill have a unique solution for any set of positive f��g provided S is of fullcolumn rank, which we will always assume. This condition on S is equivalentto the uniqueness of least squares regression onto span f��g. Since the RK ofa tensor product space is the product of the RK's of the component spaces, thecomputation of the R�'s is straightforward. For example, the RK corresponding tothe subspaceH(�)� 
H(�)s is (in an obvious notation), RH(�)� (s�; t�)RH(�)s (s� ; t�). Ofcourse any positive de�nite function may in principle play the role of a reproducingkernel here. Conditionally positive de�nite functions [32] as in thin plate splines[44] may also be used. The point evaluation functionals f ! f(t(i)) may bereplaced by bounded linear functionals on H, and other functions can be addedto H0 subject just to the uniqueness conditions, making this class of functionestimates broadly useful in many applications. See [4] [5] [6] [7] [15] [16] [17] [18][19] [20] [21] [22] [23] [24][25] [29] [33] [34] [35] [37] [38] [39] [40] [41] [44] .2 Back�ttingHastie and Tibshirani [26] Section 5.2.3, discuss the back�tting (a. k. a. Gauss-Seidel) algorithm in the context of the general setup of SS-ANOVA problems



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 5as was described by [6]. Further discussion of the back�tting algorithm can befound in [3] and elsewhere. Referring to (8)-(11), let f0(t) = PM�=1 d���(t) andlet f�(t) = Pni=1 ci��R�(t(i); t). Then f�(�) = f0(�) +Pp�=1 f�(�) with c and dsatisfying (11) is the minimizer over f in M ofnXi=1(yi � f(t(i)))2 + pX�=1��kP �fk2; (12)where we have set �� = ��1� . Now, de�ne ~f0(�) = f0(�) and ~f�(�) =Pni=1 ci�R�(t(i); �),for arbitrary ci� . In what follows it will be useful to recall that k ~f�k2 � kP � ~fk2 =c0�R�c� where c� = (c1� � � � cn�)0 and R� is the n � n matrix with ijth entryR�(t(i); t(j)), see [40]. In [26] the authors consider minimizing (12) in the span ofall functions of the form f(�) = ~f0(�) + ~f1(�) + � � �+ ~fp(�) and they discuss �ndingd and c�; � = 1; � � � ; p to minimizeky � Sd� pX�=1R�c�k2 + pX�=1��c0�R�c�: (13)They note that the (vector) smooths corresponding to the minimizers, de�ned as~f0 � S ~d and ~f� � R�c�; � = 1; � � � ; p, satisfy the back�tting equations~f
 = S
(y �X� 6=
 ~f�); 
 = 0; 1; � � � ; p; (14)with the smoother matrix S0 given by S0 = S(S0S)�1S0 and the other smoothermatrices S� given by S� = R�(R�+��I)�1; � = 1; � � � p. The back�tting algorithmsolves for ~f0 and ~f�;� = 1; � � � ; p by cycling through ~f
 = S
(y �P�6=
 ~f�);
 =0; 1; � � � ; p. The back�tting algorithm is known to converge if the Frobenius normof each product S�S� is less than 1.Since the minimizer of (12) is in the M + n dimensional space spannedby f��(�); � = 1; � � � ;Mg [ fPp�=1 ��R�(t(i); �); i = 1; � � � ng, minimizing (12)in the larger space spanned by the M + np functions f��(�); � = 1; � � � ;Mg [fR�(t(i); �); � = 1; � � � p;n = 1; � � � ; ng will result in a solution in the n +M di-mensional space.Setting ~f� = R�c� , the last p back�tting equations becomeR�(��c� + pX�=1R�c�) = R�(y � Sd); � = 1; � � � ; p; (15)although c� will not be uniquely determined if R� is not of full rank. However,suppose ��R�c� = R�c for some c, � = 1; � � � ; p. Recalling that �� = ��1� , thiswould give R�(I + pX�=1 ��R�)c = R�(y � Sd); � = 1; � � � ; p; (16)



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 6so that if c satis�es (I +Pp�=1 ��R�)c = y � Sd, then c� = ��c; � = 1; � � � ; psatis�es the back�tting equations. Thus, despite the apparently larger numbernp + M of unknowns in (14) compared to the n + M unknowns in (11), theback�tting solutions ~f
 ; 
 = 0; 1; � � � p are, at convergence, equivalent to solving(Q� + I)c+ Sd = y (17)S0c = 0 (18)for c and d and setting ~f0 = Sd;~f� = ��R�c. Equation (18) follows by observingthat the �rst back�tting equation becomes Sd = S0(y � Q�c). Substituting thisinto (I + Q�)c = (y � Sd) results in c = (I � S0)(y � Q�c) which entails (18).Substituting back into (17) results in c = y �Pp�=0 ~f
 , which may then be usedto compute f�(t) for general t via f�(t) =Pni=1 ci��R�(t(i); t).Ansley and Kohn [1] have a nice discussion of the back�tting algorithm in thecontext of von Neuman's alternating projection method.3 Choosing the Smoothing ParametersProbably the most popular method for choosing � = (�1; � � � ; �p) � (��11 ; � � � ; ��1p )is the GCV method,[7] [14] which chooses � as the minimizer ofV (�) = k(I �A(�))yk2[tr(I �A(�))]2 (19)where A(�) is the n� n matrix satisfyingA(�)y = (f�(t(1)); � � � f�(t(n)))0: (20)The matrix I �A(�) is known to have a representationI �A(�) = �2(�02(� + I)�2)�1�02 (21)where �2 is any n� (n �M) orthogonal matrix satisfying �02S = 0 and � is then� n matrix with i; jth entry Q�(t(i); t(j)), see, for example [40], p. 13. A(�) isa so-called `smoother' matrix, that is, a symmetric, non-negative de�nite matrixwith all its eigenvalues in the interval [0; 1]. If the variance �2 in Equation (5) isgiven, then the unbiased risk estimate for � is given by the minimizer ofU(�) = k(I �A(�))yk2 + 2�2trA(�) (22)can also be used. See [14], [7]. Other estimates are discussed in [40].The code RKPACK ([15], [20], [23]) is designed to compute trA(�) and com-pute and �nd the minimizer of V (�) and solve (11), using matrix decompositionmethods.



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 7Recently Girard [9] [10], [11] and Hutchinson [27] have proposed the random-ized trace technique for estimating trA(�) for large n. This method is feasiblefor n larger than allowable with matrix decomposition methods, and can be usedwhenever a `black box' is available for obtaining ~f , the n-vector with ith entryf�(t(i)); i = 1; � � � ; n, given y. That is, it is assumed that some algorithm is avail-able which produces (a good numerical approximation to) ~f = A(�)y for any y.The the randomized trace estimate is based on the following fact: Let � be ann-dimensional (pseudo-)random vector with mean zero and covariance matrix I.Then the expected value of �0A(�)� = trA(�). Furthermore, if � is a Gaussianrandom vector then the standard deviation of 1n�0A(�)� is q 2n [ 1n trA2(�)]1=2, [10].Since A(�) is a smoother matrix then 1n trA(�) 2 [0; 1] and the standard deviationof 1n�0A(�)� is no greater than q 2n [ 1n trA(�)]1=2. In practice it is preferable toestimate 1n tr(I � A(�)). Letting ~f(�) be ~f with the data vector y replaced by �,then the estimate of 1n tr(I�A(�)) is 1n�0[��~f(�)]. The same � should be used forall values of �. This results in an estimate for V (�) which is a smooth functionof � and appears to have the same shape as V (�) computed exactly. Excellentresults with n around 600 were reported in [42], for example, and have been alsoreported by other authors, see, for example [13]. Since the (converged) back�ttingalgorithm produces ~f �Pp�=0 ~f� it can be used to compute the randomized traceestimate of tr(I �A(�)) for selected values of �.Now, let z
 = y �P� 6=
 ~f�. Note that at convergence, when (14) is satis�ed,ky � ~fk2 = k(y �X� 6=
 ~f�)� ~f
k2 (23)= kz
 � S
z
k2; 
 = 0; 1; � � � ; p: (24)This suggests that ��; � = 1; � � � ; p can be updated at each step as the back�ttingproceeds, by considering �� to be �xed for � 6= 
. Let A(�
) stand for A(�) withall the �� considered �xed except �
 and choose �
 to minimizeV (�
) = kz
 � S
z
k2tr(I �A(�
)) ; 
 = 1; � � � ; p; (25)similarly for U(�
). This is the BRUTO algorithm in [26], p 262.4 Global Climate DataThe algorithm we describe is well suited to the analysis of certain kinds of globalenvironmental data. Rather than give a completely general description, we willmotivate the discussion with respect to a particular example, of broad generalinterest. Generalizations to more complicated models will be fairly evident.



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 8We have in mind monthly average surface temperature data, that has beencomputed from daily observations of surface temperature that have been collectedat a large number of meteorological stations around the globe for varying periodsof time. One of the oldest observing stations, at Trondheim, Norway, has beencollecting such data since 1761. Records from around 1700 stations are availablefor the period 1961-90, with varying numbers of missing data. Just to give someconcrete numbers, as an illustration consider data for the n1 = 30 years 1961-1990,for, say n2 = 1500, stations that have mostly complete records for that period.Considering the occasional missing data point there will then be (for a particularmonth) somewhat fewer than n = n1 � n2 = 45; 000 observations, indexed (afterscaling) by t1 2 ft1(1); � � � ; t1(n1)g 2 T (1) � [0; 1], and t2 2 S, where S is the unitsphere. (t2 takes on the values of (latitude; longitude) of the stations).For expository purposes and generality we let ��; � = 1; 2 be Lebesgue mea-sure on the unit interval and on the sphere, respectively. In this example, if thet1(j) are equally spaced, T (1) can (possibly more naturally) be taken as a set ofn1 points, with �1 assigning mass 1n1 to each point. In this problem, the choiceof Lebesgue measure on the sphere is a natural one, since we will be interestedin estimating the global average temperature. We remark parenthetically thatalthough from a mathematical point of view this choice appears trivially obvi-ous, among climatologists who have to deal with very irregular data of this typethe choice of a commonly acceptable working de�nition of `global average surfacetemperature' is far from obvious.If T (1) = [0; 1], we take for H(1) the subspace of Wm2 = ff; f 0abs:cont:; f 00 2L2[0; 1]g of functions which satisfy R 10 fd�1 = 0. If we endow this space with thesquare norm kfk2H(2) = (f(1)� f(0))2+ R 10 (f 00(u))2du then we can let H(1)� be theone dimensional space spanned by the `trend' function �(u) = (u � 12)=12. ThenH(1)s can be taken as the subspace of Wm2 satisfying R 10 f(u)du = (f(1)�f(0)) = 0with the square norm kfk2H(1)s = R 10 (f 00(u))2du. The RK ~R1(u; v) for H(1)s is givenin [40] as ~R1(u; u0) = k2(u)k2(u0)� k4([u� u0]) (26)where k`(u) = B`(u)=`! with B` the `th Bernoulli polynomial. Elements in H(1)shave a natural interpretation as having been `detrended'. If we take T (1) =f1; � � � ; n1g, and let J(f) = Pn�2i=1 [f(i + 2) � 2f(i + 1) � f(i)]2, then H(1) is thesubspace of En1 of vectors whose components sum to 0, the trend function is�(u) = u � (n1 + 1)=2, and H(1)s is the n1 � 2 dimensional subspace of En1 ofvectors perpendicular, in the Euclidean inner product, to the constant functionand the trend function. The RK for H(1)s can easily be shown to be the n1 � n1matrix obtained as follows: Let L be the (n1 � 2) � n1 matrix with 1 down thediagonal, �2 down the super-diagonal and 1 down the next super-diagonal, i. e.J(f) = f 0L0Lf , where f = (f(1); � � � f(n1))0. Then ~R(j; j0) is the jj0th entry of



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 9(L0L)y where y is the Moore-Penrose generalized inverse,Splines on the sphere have been discussed in [34],[35] where J(f) = RP2S(�m=2f)2dPwith � the surface Laplacian on the sphere. Closed form expressions for RK'swith a norm which is (topologically) equivalent to J(�) are given there for m =3=2; 2; 5=2; :::; 6. The parameter m may be estimated from the data by minimizingmin�V (�) considered as a function ofm, see [44]. Other positive de�nite functionson the sphere may be found in [45] and references cited there. See also [8] and[36] who obtain RK's from historical meteorological data. Among su�ciently dif-ferentiable functions on the sphere for which J(f) is �nite, the null space of J(f)is just the constant functions, so we take H(2)� as empty and H(2) as H(2)s . In theexample below we will choose the m = 2 case which (from [34]) gives the followingRK ~R2 for H(2): Letting P; P 0 be two points on the sphere, and z = cos 
(P; P 0),where 
(P; P 0) is the angle between P and P 0~R2(P; P 0) = 12� �12q2(z)� 16� (27)whereq2(z) = 12 (ln(1 +s� 21� z�[12�1� z2 �2 � 4�1� z2 �]� 12�1� z2 �3=2 + 6�1� z2 �+ 1) :(28)In the remainder of this section we will relable t = (t1; t2) as t = (x; P ). OurRKHS of historical global temperature functions is H = [[1(1)] � [�] � H(1)s ] 
[[1(2)]�H(2)s ], a collection of functions f(x; P ), on [0; 1]
S, where H and f havecorresponding decompositions given below:H = [1] � [�] � [H(1)s ] � [H(2)s ] � [[�]
H(2)s ] � [H(1)s 
H(2)s ]f(x; P ) = C + d�(x) + f1(x) + f2(P ) + �(x)f�;2(P ) + f12(x; P )= mean + global + time + space + trend + space�time main main by space timetrend e�ect e�ect e�ect interactionFor the T (1) = [0; 1] case, the components of the ANOVA decompositionsatis�y the side conditions0 = Z 10 �(x)dx0 = Z 10 f1(x)dx = (f1(1)� f1(0)) = Z 10 f12(x; P )dx = f12(1; P ) � f12(0; P )0 = ZS f2(P )dP = ZS f�;2(P )dP = ZS f12(x; P )dP;the equalities involving f12 holding for all P and for all x. Here M = 2 andH0 is the span of the two functions �0(x; P ) � 1 and �1(x; P ) � �(x). For the



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 10T (1) = f1; � � � ; n1g case the integral over x is replaced by the sum over 1; � � � n1.In this case,n1Xj0=1�(j0) � 0; n1Xj0=1 ~R1(j; j0) � 0; n1Xj0=1 ~R1(j; j0)�(j0) � 0; j = 1; � � � ; n1: (29)This will lead to some algorithmic simpli�cations to be described, in the regulardata case. There are p = 4 subspaces whose components will be penalized, withRK's given below:� space RK1 H(1)s R1(x; P ;x0; P 0) = ~R1(x; x0)2 H(2)s R2(x; P ;x0; P 0) = ~R2(P; P 0)3 [�]
H(2)s R3(x; P ;x0; P 0) = �(x)�(x0) ~R2(P; P 0)4 H(1)s 
H(2)s R4(x; P ;x0; P 0) = ~R1(x; x0) ~R2(P; P 0)5 Matrix decompositions with back�tting for regular dataIn this section we describe an approach combining back�tting and matrix decom-positions of size n1 � n1 and n2 � n2 which can be used for the global climatedata and other examples when the data are perfectly regular, that is, there is anobservation for each pair (xj ; Pk); j = 1; � � � ; n1; k = 1; � � � ; n2, where j indexestime and k indexes station. (Note: this does not mean that the data is regular onthe sphere, just that each station is reporting at each time.) In the subsequentsection we will show how data imputation may (safely) be used when there are(a small number of) missing data points. The results in this and the next sectionwill appear in [31].The results will become clear after we establish some notation. As before, letz
 � (y �X� 6=
 ~f�): (30)here the vectors in (30) all are of dimension n = n1 � n2, unless otherwise noted,we consider them partitioned into n1 blocks of dimension n2 and let z be a genericvector of this form, with z(j; k) be the kth entry in the jth block of z. Let P (1)o zbe the n1-vector with 1n2 Pn2k=1 z(j; k) in the j position, j = 1; � � � ; n1 and P (2)o z bethe n2-vector with 1n1 Pn1j=1 z(j; k) in the k th position, k = 1; � � � ; n2. Finally, letzj be the n2 vector in the jth block of z. In the �rst back�tting equation 
 = 0in (14), ~f0 is the result of least squares regression of z0 onto the columns of S. Tosolve the other back�tting equations, write the remaining equations in (14) as(R� + ��I)~f� = R�z�; � = 1; � � � p: (31)



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 11Let ~R1 be the n1�n1 matrix with jj0th entry ~R1(xj; xj0); j; j0 = 1; � � � ; n1, and ~R2the n2�n2 matrix with kk0th entry ~R2(Pk; Pk0); k; k0 = 1; � � � ; n2. Then, examiningthe jth block of (14) for � = 2 gives~R2P (2)o ~f2 + �2n1~f j2 = ~R2P (2)o z2; j = 1; � � � n1; (32)which entails that ~f12 = � � � = ~fn12 = P (2)o ~f2, say. De�ning the marginal smoothermatrix ~S2(�) = ~R2( ~R2 + �I)�1 results inP (2)o ~f2 = ~S2(�2=n1)P (2)o z2: (33)A similar argument, interchanging the roles of j and k gives, for � = 1,P (1)o ~f1 = ~S1(�1=n2)P (1)o z1; (34)where ~S1(�) = ~R1( ~R1 + �I)�1For � = 3 the jth block of (14) becomesn1Xj0=1�(xj)�(xj0) ~R2~f j03 + �3~f j3 = n1Xj0=1�(xj)�(xj0) ~R2zj03 ; j = 1; � � � n1: (35)It can be seen that ~f j3 = �(xj)v; j = 1; � � � ; n1, for some n2 vector v. Letting P (2)1 zbe the n2 vector with Pn1j=1 �(xj)z(j; k) in the kth position, and substituting thisinto (35) results in�(xj) n1Xj0=1�2(xj0) ~R2v + �3�(xj)v = �(xj) ~R2P (2)1 z3: (36)Therefore ( n1Xj0=1�2(xj0) ~R2 + �3I)v = ~R2P (2)1 z3; (37)which gives v = ( n1Xj0=1�2(xj0) ~R2 + �3I)�1 ~R2P (2)1 z3: (38)Letting Pn1j=1 �2(xj) = �2 �nally gives~f j3 = (�(xj)=�2) ~S2(�3=�2)P (2)1 z3: (39)Considering � = 4, ~f4 = S4(�4)z4; (40)



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 12where S4(�) = R4(R4 + �I)�1 with R4 = ~R1 
 ~R2. The n1 � n1 and n2 � n2smoother matrices ~S1(�) and ~S2(�) appear repeatedly with varying values of �.The approach we have taken in ongoing work for max (n1; n2) not too large isto calculate the eigenvalue-eigenvector decompositions of ~R1 and ~R2. Letting~R� = �D�0; ~S�(�) = �D(D + �I)�1�, ~S�(�) can be computed for varying valuesof �. The eigenvalues and eigenvectors of R4 are obtained as the tensor productsof the eigenvalues and eigenvectors of ~R1 and ~R2 and S4(�) can then be computedsimilarly.In general if some components can be combined to reduce p then the numberof back�tting iterations required is likely to be smaller. In the present example,set ~f1+4 = ~f1+~f4 and z1+4 = y�(~f2+~f3) and let S1+4(�1; �4) = R1+4(R1+4+I)�1,where R1+4 = �1R1 + �4R4 = ~R1 
 [�1110 + �4 ~R2]. Then the � = 1 and � = 4back�tting steps can be replaced by the 1+4 step, ~f1+4 = S1+4(�1; �4)z1+4. Thismay require repeated matrix decompositions of, say [ �1�4 110+ ~R2], say, as �1; �2 arevaried but may still represent a speedup.The speed of convergence of the back�tting algorithm generally depends onthe magnitudes of the product matrices S�S�, becoming faster as these productsbecome `smaller'. If the products were all 0 for � 6= �, then the back�ttingiteration would converge in one step. In the example with T (1) = f1; � � � ; n1g; ~R1 =(L0L)y, the conditions (29) lead to all of these products equal 0 except S0S2; S0S3and S1S4. In general the sizes of these product matrices have a dependency onthe magnitute of the ��, decreasing as the �� increase. The most e�cient methodfor computing the ~f
 for very large, perfectly regular data sets under variouscircumstances is under study. See [2] [12], Chapter 10.
6 Missing Data ImputationIn practice perfectly regular observational data, at least for climate data, is theexception rather than the rule. Unfortunately, a few data points missing from aregular set fxj ; Pkg; j = 1; � � � ; n1; k = 1; � � � ; n2 means that both the outer andinner loop back�tting equations would not all involve the same smoother matrices~S1; ~S2, and the ability to use a common eigenvalue- eigenvector decompositionappears to be lost. We show how to get around this with an `imputation' loop. Todemonstrate that the imputation loop is legitimate we �rst need a slight variationof the leaving-out-one lemma in Craven and Wahba [7].Lemma .1 The Leaving-Out-K LemmaLet H be an RKHS with subspace H0 of dimension M as before, and for f 2 H letkPfk2 = Pp�=1 ��1� kP �fk2. Let f [K] be the solution to the variational problem:



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 13Find f 2 H to minimize nXi=1i 62SK(yi � f(t(i)))2 + kPfk2; (41)where SK = fi1; � � � ; iKg is a subset of 1; � � � ; n with the property that (41) has aunique minimizer, and let y�i ; i 2 SK be `imputed' values for the `missing' dataimputed as y�i = f [K](t(i)); i 2 SK. Then the solution to the problem: Find f 2 Hto minimize nXi=1i 62SK(yi � f(t(i))2 + Xi2SK(y�i � f(t(i)))2 + kPfk2 (42)is f [K].ProofLet h = f [K] and let f be any element in H 6= f [K]. Then:nXi=1i 62SK(yi � h(t(i))2 + Xi2SK(y�i � h(t(i)))2 + kPhk2= Xi 62SK(yi � f [K](t(i)))2 + kPf [K]k2< Xi 62SK(yi � f(t(i)))2 + kPfk2� Xi 62SK(yi � f(t(i)))2 + Xi2SK(y�i � f(t(i)))2 + kPfk2Thus, h = f [K] is the minimizer of (42).Let y be partitioned as y = 0B@ y(1)� � �y(2) 1CA (43)where the entries have been relabeled so that y(2) = (yi1 ; � � � ; yiK )0 � (yn�K+1; � � � yn)0,and let A(�) be de�ned as before by ~f = A(�)y. Let A(�) be partitioned corre-sponding to (43) as A(�) =  A11 A12A21 A22 ! : (44)



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 14Then, by the Leaving-Out-K Lemma,0BB@ f [K](t(i1))...f [K](t(iK)) 1CCA = A21y(1) +A220BB@ f [K](t(i1))...f [K](t(iK)) 1CCA ; (45)and, if furthermore (I �A22) � 0, then0BB@ f [K](t(i1))...f [K](t(iK)) 1CCA = (I �A22)�1A21y(1): (46)There is an easy necessary and su�cient condition for (I �A22) � 0.Lemma .2 The Pre-Imputation LemmaLet �1 be an n�M matrix of orthonormal columns which span the column spaceof S, partitioned after the �rst n�K rows to match y in (43) as0B@ �11� � ��21 1CA : (47)Then (I �A22) � 0 if and only if 1 is not an eigenvalue of �21�021.ProofLet �2 be the n� n�M matrix in (21) and let � be� = ��1...�2� = 0BB@ �11 ... �12� � � � � ��21 ... �22 1CCA ; (48)therefore, from (21), I � A22 = �22(�02(� + I)�2)�1�022, with ��0 = In�n and�21�021+�22�022 = IK�K . Let u be anyK-vector, we have u0�21�021u+u0�22�022u =u0u. Thus u an eigenvector of �21�021 with eigenvalue 1 guarantees that u0�22�022u =0 and so �022 cannot be of full column rank, and hence (I �A22) cannot be of fullrank, conversely, if 1 is not an eigenvalue of �21�021, then �22�022 is strictly positivede�nite, ensuring that �022 is of full column rank and hence (I �A22) � 0.We have



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 15Lemma .3 The Imputation LemmaLet g(2)(o) be a K-vector of initial values for an imputation of (f [K](t(i1)); � � � f [K](t(iK))0,and suppose 0 � (I �A22). Let successive imputations g(2)(`) for ` = 1; 2; � � � be ob-tained via 0B@ g1(`)� � �g2(`) 1CA = A(�)0B@ y1� � �g2(`�1) 1CA : (49)Then lim`!10BB@ g(1)(`)� � �g(2)(`) 1CCA = 0B@ f [K](t(1))� � �f [K](t(n)) 1CA : (50)ProofBy the Leaving-Out-K Lemma,0BB@ f [K](t(1))...f [K](t(n)) 1CCA = A(�)0BBBBBB@ y(1)� � �f [K](t(i1)...f [K](t(iK))
1CCCCCCA ; (51)so we only need to show thatlim`!1 g(2)(`) = 0BB@ f [K](t(i1)...f [K](t(iK)) 1CCA : (52)But g(2)(`) = A21y(1) +A22[A21y(1) +A22g(2)(`�1)] (53)= � � � (54)= (I +A22 + � � �+A`�122 )A21y(1) +A2̀2g(2)(o) : (55)so that assuming 0 � (I �A22) givesg(2)(`) ! (I �A22)�1A21y(1); (56)and the result follows.We remark that the randomized trace technique works perfectly well in con-junction with the imputation technique. The components of the noise vector � inthe randomization techique are generated only where there are observations.



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 167 Starting Guesses, OutliersGood starting guesses for the imputations, if any, for the �� 's, and for the ~f� areall required for the smoothing spline ANOVA �ts to converge rapidly. Figure 1is a contour plot of the global average winter temperature in 1981. The stationwinter average temperatures yi were the averages of the December, January andFebruary monthly average temperatures obtained from the Jones/Wigley data �lesobtainable from the Carbon Dioxide Information and Analysis Center (CDIAC)at Oak Ridge National Laboratory (ORNL) in the �les ndp020r1/jonesnh.dat.Zand ndp020r1/jonessh.dat.Z in the pub directory at 128.219.24.36, see also [28].The dots indicate the station locations, and we are using a subset of n2 = 725stations that had complete records for the winter of 1981. This contour plot wasobtained by using RKPACK with the GCV estimate of � to �t a smoothing splineon the sphere in the space [1(2)]�H(2)s described previously, with the RK for H(2)sgiven by ~R2(P; P 0). RKPACK returns the c and d of (10) (in this case p = 1), andthe � obtained by GCV. This could be done for each year and starting guesses forthe various components of the full smoothing spline ANOVA could, for examplebe obtained by computing the marginal vectors (via applying P (1)o and P (2)o to then1 yearly �ts at the full set of n2 station locations). Starting guesses for �3 and�4 could be obtained by combining the �'s that come from the one year at a timeglobal �ts, and starting guesses for �1 and �2 by obtaining �ts to the marginals.Alternatively, in data like this, it may be desireable to view the year main e�ectat several levels of smoothing, in this case it might be desireable to choose one ormore values of �1 by `eyeball'. A plot of the global yearly average temperaturefor the years 1854 thru 1993 appears in [28], and a similar plot for 1856 thru 1995may be found in the New York Times of September 10, 1995, although technicaldetails of the method of computing the global yearly averages are not given.In meteorological data sets of the type we are considering, the occasionalgrossly erroneous data point is the rule rather than the exception, due to instru-mental and human errors of various types. The residuals after a smoothing splineANOVA �t of the kind described here may be examined and used as a screeningtool for gross data errors. See, for example, Knight [30].8 SummaryWe have reviewed some theory and practice of smoothing spline ANOVA �ts, andoutlined an algorithm which has the potential for �tting very large environmentaldata sets with nearly regular structure by smoothing spline ANOVA methods andGCV estimates of smoothing parameters. Regular structure is exploited to usematrix decompositions for the marginal smoother matrices only. The Leaving-
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Figure 1: Contour plot of global average winter temperature, 1981



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 18Out-K Lemma demonstrates that under a mild condition, an iterative data impu-tation can be used to �ll in missing data in an otherwise regularly structured dataset in a defensible manner - that is, the imputation converges to the imputationthat would result if the smoothing spline ANOVA variational problem were solvedwithout the imputed data and the imputation were made from the solution. Theanalysis of historical global winter surface temperature data has been describedas a potential application. In some preliminary numerical work (in preparation)we have been able to analyze 30 years of global winter surface temperatures from1000 stations, with about 50% of the 30,000 possible observations present.AcknowledgementsWe would like to thank Jan Helgeland who �rst suggested to us the �tting of asmoothing spline ANOVA model to surface temperature data, and to Donald R.Johnson and David Callan for helpful discussions.References[1] C. Ansley and R. Kohn. Convergence of the back�tting algorithm for additive models. J.Austral. Math. Soc. Series A, 57:316{329, 1994.[2] A. Buja, T. Hastie, and R. Tibshirani. Linear smoothers and additive models. Ann. Statist.,17:453{555, 1989.[3] J. Chambers and T. Hastie. Statistical Models in S. Wadsworth and Brooks, 1992.[4] Z. Chen. Interaction spline models and their convergence rates. Ann. Statist., 19:1855{1868,1991.[5] Z. Chen. Fitting multivariate regression functions by interaction spline models. J. Roy.Stat. Soc. B, 55:473{491, 1993.[6] Z. Chen, C. Gu, and G. Wahba. Comments to `Linear Smoothers and Additive Models',by Buja, Hastie and Tibshirani. Ann. Statist., 17:515{521, 1989.[7] P. Craven and G. Wahba. Smoothing noisy data with spline functions: estimating thecorrect degree of smoothing by the method of generalized cross-validation. Numer. Math.,31:377{403, 1979.[8] F. Gao. On combining data from multiple sources with unknown relative weights (thesis).Technical Report 902, Dept. of Statistics, University of Wisconsin, Madison, WI, 1993.[9] D. Girard. A fast `Monte Carlo cross validation' procedure for large least squares problemswith noisy data. Technical Report RR 687-M, IMAG, Grenoble, France, 1987.[10] D. Girard. A fast `Monte-Carlo cross-validation' procedure for large least squares problemswith noisy data. Numer. Math., 56:1{23, 1989.[11] D. Girard. Asymptotic optimality of the fast randomized versions of GCV and CL in ridgeregression and regularization. Ann. Statist., 19:1950{1963, 1991.[12] G. Golub and C. VanLoan.Matrix Computations, Second Edition. Johns Hopkins UniversityPress, 1989.[13] G. Golub and Urs VonMatt. Generalized cross validation for large scale problems. TechnicalReport xx, Stanford University, Stanford, CA, 1995.



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 19[14] G.H. Golub, M. Heath, and G. Wahba. Generalized cross validation as a method forchoosing a good ridge parameter. Technometrics, 21:215{224, 1979.[15] C. Gu. RKPACK and its applications: �tting smoothing spline models. In Proceedingsof the Statistical Computing Section, pages 42{51. American Statistical Association, 1989.Code available thru netlib.[16] C. Gu. Adaptive spline smoothing in non-Gaussian regression models. J. Amer. Statist.Assoc., 85:801{807, 1990.[17] C. Gu. Cross-validating non-Gaussian data. J. Comput. Graph. Stats., 1:169{179, 1992.[18] C. Gu. Diagnostics for nonparametric regression models with additive terms. J. Amer.Statist. Assoc., 87:1051{1057, 1992.[19] C. Gu. Penalized likelihood regression: a Bayesian analysis. Statistica Sinica, 2:255{264,1992.[20] C. Gu, D.M. Bates, Z. Chen, and G. Wahba. The computation of GCV functions throughhouseholder tridiagonalization with application to the �tting of interaction spline models.SIAM J. Matrix Anal., 10:457{480, 1989.[21] C. Gu and G. Wahba. Semiparametric ANOVA with tensor product thin plate splines.Technical Report 90-61, Dept. of Statistics, Purdue University, Lafayette, IN, 1990, toappear, J. Roy. Stat. Soc. Ser. B.[22] C. Gu and G. Wahba. Comments to `Multivariate Adaptive Regression Splines', by J.Friedman. Ann. Statist., 19:115{123, 1991.[23] C. Gu and G. Wahba. Minimizing GCV/GML scores with multiple smoothing parametersvia the Newton method. SIAM J. Sci. Statist. Comput., 12:383{398, 1991.[24] C. Gu and G. Wahba. Semiparametric analysis of variance with tensor product thin platesplines. J. Royal Statistical Soc. Ser. B, 55:353{368, 1993.[25] C. Gu and G. Wahba. Smoothing spline ANOVAwith component-wise Bayesian \con�denceintervals". J. Computational and Graphical Statistics, 2:97{117, 1993.[26] T. Hastie and R. Tibshirani. Generalized additive models. Chapman and Hall, 1990.[27] M. Hutchinson. A stochastic estimator for the trace of the in
uence matrix for Laplaciansmoothing splines. Commun. Statist.-Simula., 18:1059{1076, 1989.[28] P. Jones, T. Wigley, and K. Bri�a. Global and hemispheric temperature anaomalies-landand marine instrumental records. In T. Boden, D. Kaiser, R. Sepanski, and F. Stoss,editors, Trends '93: A Compendium of Data on Global Change, ORNL/CDIAC-65, pages603{608, Oak Ridge, TN, 1994. Carbon Dioxide Information Analysis Center, Oak RidgeNational Laboratory.[29] G. Kimeldorf and G. Wahba. Some results on Tchebyche�an spline functions. J. Math.Anal. Applic., 33:82{95, 1971.[30] R. Knight. A comparison of some methods for 
agging erroneous observations in certaintypes of meteorological data. Technical Report 610, Dept. of Statistics, University of Wis-consin, Madison, WI 53706, 1980.[31] Z. Luo. Ph.D thesis. PhD thesis, Dept. of Statistics, University of Wisconsin, Madison, WI53706, 1996.[32] C. Micchelli. Interpolation of scattered data: distance matrices and conditionally positivede�nite functions. Constructive Approximation, 2:11{22, 1986.[33] G. Wahba. Improper priors, spline smoothing and the problem of guarding against modelerrors in regression. J. Roy. Stat. Soc. Ser. B, 40:364{372, 1978.[34] G. Wahba. Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comput.,2:5{16, 1981.[35] G. Wahba. Erratum: Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat.Comput., 3:385{386, 1982.[36] G. Wahba. Vector splines on the sphere, with application to the estimation of vorticity anddivergence from discrete, noisy data. In W. Schempp and K. Zeller, editors, Multivariate



Wahba and Luo / Smoothing Spline ANOVA for Large Data Sets 20Approximation Theory, Vol.2, pages 407{429. Birkhauser Verlag, 1982b.[37] G. Wahba. Bayesian \con�dence intervals" for the cross-validated smoothing spline. J.Roy. Stat. Soc. Ser. B, 45:133{150, 1983.[38] G. Wahba. A comparison of GCV and GML for choosing the smoothing parameter in thegeneralized spline smoothing problem. Ann. Statist., 13:1378{1402, 1985.[39] G. Wahba. Partial and interaction splines for the semiparametric estimation of functionsof several variables. In T. Boardman, editor, Computer Science and Statistics: Proceedingsof the 18th Symposium, pages 75{80. American Statistical Association, Washington, DC,1986.[40] G. Wahba. Spline Models for Observational Data. SIAM, 1990. CBMS-NSF RegionalConference Series in Applied Mathematics, v. 59.[41] G. Wahba. Multivariate function and operator estimation, based on smoothing splinesand reproducing kernels. In M. Casdagli and S. Eubank, editors, Nonlinear Modelingand Forecasting, SFI Studies in the Sciences of Complexity, Proc. Vol XII, pages 95{112.Addison-Wesley, 1992.[42] G. Wahba, D. Johnson, F. Gao, and J. Gong. Adaptive tuning of nummerical weatherprediction models: Part I: randomized GCV and related methods in three and four dimen-sional data assimilation. Technical Report 920, Dept. of Statistics, University of Wisconsin,Madison, WI, to appear Monthly Weather Review, 1994.[43] G. Wahba, Y. Wang, C. Gu, R. Klein, and B. Klein. Smoothing spline ANOVA for ex-ponential families, with application to the Wisconsin Epidemiological Study of DiabeticRetinopathy. Technical Report 940, Department of Statistics, University of Wisconsin,Madison, WI, to appear, Ann. Statist., 1994.[44] G. Wahba and J. Wendelberger. Some new mathematical methods for variational objectiveanalysis using splines and cross-validation. Monthly Weather Review, 108:1122{1145, 1980.[45] R. Weber and P. Talkner. Some remarks on spatial correlation function models. Mon. Wea.Rev., 121:2611{2617, 1993.


