
Framework for kernel regularization with application
to protein clustering
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We develop and apply a previously undescribed framework that is
designed to extract information in the form of a positive definite
kernel matrix from possibly crude, noisy, incomplete, inconsistent
dissimilarity information between pairs of objects, obtainable in a
variety of contexts. Any positive definite kernel defines a consis-
tent set of distances, and the fitted kernel provides a set of
coordinates in Euclidean space that attempts to respect the infor-
mation available while controlling for complexity of the kernel.
The resulting set of coordinates is highly appropriate for visual-
ization and as input to classification and clustering algorithms. The
framework is formulated in terms of a class of optimization
problems that can be solved efficiently by using modern convex
cone programming software. The power of the method is illus-
trated in the context of protein clustering based on primary
sequence data. An application to the globin family of proteins
resulted in a readily visualizable 3D sequence space of globins,
where several subfamilies and subgroupings consistent with the
literature were easily identifiable.

classification � convex cone programming � dissimilarity information �
trace penalty � sequence data

I t has long been recognized that symmetric positive definite
kernels (hereafter ‘‘kernels’’) play a key role in function

estimation (1, 2), clustering and classification, dimension reduc-
tion, and other applications. Such kernels can be defined on
essentially any conceivable domain of interest (3), originally
function spaces and, more recently, finite (but possibly large)
collections of trees, graphs, images, DNA and protein sequences,
microarray gene expression chips, and other objects. A kernel
defines a distance metric between pairs of objects in the domain
that admits an inner product. Thus, they play a key role in the
implementation of classification algorithms [by means of support
vector machines (SVMs)] and clustering (via k-means algo-
rithms, for example), along with their more classical role in
function approximation and estimation and the solution of
ill-posed inverse problems (4). Since the mid-1990s, when the key
role of these kernels became evident in SVMs (5–8), a massive
body of literature has grown related to the use and choice of
kernels in many domains of application, including, notably,
computational biology (9). A Google search as of the date of this
writing gave �3 million results on the phrase ‘‘Kernel Methods,’’
along with an ad from Google soliciting job applications from
computer scientists.

Mathematically defined kernels, for example, spline kernels,
radial basis functions, and related positive definite functions
defined on Euclidean space, have long been the workhorses in
the field, generally with one or a few free parameters estimated
from the data (see, for example, ref. 10). A recent work (11)
proposes estimating a kernel by optimizing a linear combination
of prespecified kernels through a semidefinite programming
approach. Recent literature on kernel construction and use in
various contexts is available at the NIPS2004 web site (http:��
books.nips.cc�nips17.html) or in ref. 12.

It is frequently possible to use expert knowledge or other
information to obtain dissimilarity scores for pairs of objects,
which serve as pseudodistances between the objects. There are

two problem types of interest. The first is to estimate full relative
position information for a (training) set of objects in a space of
preferably low dimension to visualize the data or to conduct
further processing, typically, classification or clustering. One
traditional approach for this purpose is multidimensional scaling
(13), which continues to be an active research area. The second
problem is to place new objects in the space, given some
dissimilarity information between them and some members of
the training set, in the coordinate space of the training set.

This work proposes regularized kernel estimation (RKE), a
unified framework for solving both problems by fitting a positive
definite kernel from possibly crude, noisy, incomplete, incon-
sistent, weighted, repetitious dissimilarity information, in a fully
nonparametric approach, by solving a convex optimization prob-
lem with modern convex cone programming tools. The basic idea
is to solve an optimization problem that trades off goodness of
fit to the data and a complexity (shrinkage) penalty on the kernel
that is used to fit the data, analogous to the well known
bias–variance tradeoff in the spline and ill-posed inverse liter-
ature but not exactly the same. Within this framework, we
provide an algorithm for placing new objects in the coordinate
space of the training set.

The method can be used instead of multidimensional scaling
to provide a coherent set of coordinates for the given objects in
few or many dimensions without problems with local minima or
(some) missing data. It also can be used to solve problems
discussed in ref. 11 but in a fully nonparametric way.

The feasibility of the RKE approach is demonstrated in the
context of protein sequence clustering, by applying the method
to global pairwise alignment scores of the heme-binding protein
family of globins. In this example, we are already able to visualize
the known globin subfamilies from a 3D plot of the training
sequence coordinates that are obtained by the regularized kernel
estimate. Furthermore, apparent subclusterings and outliers of
the known globin subfamilies from the 3D plot reveal interesting
observations consistent with the literature. Clustering of protein
sequences from a family to identify subfamilies or clustering and
classification of protein domains to determine protein function
present one major application area for the previously unde-
scribed framework presented here. However, we envision many
more applications involving clustering and classification tasks in
biological and nonbiological data analysis; some of these appli-
cations are detailed in Discussion.

In Dissimilarity Information and RKE, we present the general
formulation of the problem and define the family of RKEs.
Numerical Methods for RKE describes the formulation of RKE
problems and the task of placing test data in the coordinate space
of training data as general convex cone problems. Also included
is a brief discussion on tuning the parameters of the estimation
procedure. Protein Clustering and Visualization with RKE pre-
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sents an application to the globin protein family to identify
subfamilies and discusses the biological implication of the results.
Examples of placing test data points in the coordinate system of
training protein sequences are illustrated here. We conclude
with a summary and possible future directions in Discussion.

Dissimilarity Information and RKE
Given a set of N objects, suppose we have obtained a measure
of dissimilarity, dij, for certain object pairs (i, j). We introduce the
class of RKEs, which we define as solutions to optimization
problems of the following form:

min
K�SN

�
�i, j���

L�wij, dij, d̂ij�K�� � �J�K� , [1]

where SN is the convex cone of all real nonnegative definite
matrices of dimension N, � is the set of pairs for which we use
dissimilarity information, L is some reasonable loss function,
where d̂ij is the dissimilarity induced by K and L is convex in K.
J is a convex kernel penalty (regularizing) functional, and � is a
tuning parameter balancing fit to the data and the penalty on K.
The induced dissimilarity, which is a real squared distance
admitting of an inner product, is d̂ij � K(i, i) � K( j, j) � 2K(i,
j) � Bij�K, where K(i, j) is the (i, j) entry of K; Bij is a symmetric
matrix of dimension N with all elements 0 except Bij (i, i) � Bij( j,
j) � 1, Bij (i, j) � Bij ( j, i) � �1; and the inner (dot) product of
two matrices of the same dimensions is defined as A�B � ¥i,j A(i,
j)�B(i, j) � trace(ATB). The wij are weights that may, if desired,
be associated with particular (i, j) pairs. There are essentially no
restrictions on the set of pairs other than requiring that the graph
of the objects with pairs connected by edges be connected. A pair
may have repeated observations, which just yield an additional
term in Eq. 1 for each separate observation. If the pair set
induces a connected graph, then the minimizer of Eq. 1 will have
no local minima.

Although it is usually natural to require the observed dissim-
ilarity information {dij} to satisfy dij � 0 and dij � dji, the general
formulation above does not require these properties to hold. The
observed dissimilarity information may be incomplete (with the
restriction noted); it may not satisfy the triangle inequality; or it
may be noisy. It also may be crude, as, for example, when it
encodes a small number of coded levels such as ‘‘very close,’’
‘‘close,’’ ‘‘distant,’’ and ‘‘very distant.’’

In this work, we consider two special cases of the formulation
in Eq. 1, the first for its use in the application to be discussed.

Numerical Methods for RKE
Here, we describe a specific formulation of the approach in
Dissimilarity Information and RKE based on a linearly weighted
l1 loss and use the trace function in the regularization term to
promote dimension reduction. The resulting problem is as
follows:

min
K�0

�
�i, j���

wij�dij � Bij�K � � � trace�K� . [2]

We show how this formulation can be posed as a general conic
optimization problem and also describe a ‘‘newbie’’ formulation
in which the known solution to Eq. 2 for a set of N objects is
augmented by the addition of one more object together with its
dissimilarity data. A variant of Eq. 2, in which a quadratic loss
function is used in place of the l1 loss function, is described in
Supporting Text, which is published as supporting information on
the PNAS web site. We remark that trace was used as a
regularizer in ref. 11 in a different approach to obtain K, which
limited K to a linear combination of prespecified kernels.

General Convex Cone Problem. We specify here the general convex
cone programming problem. This problem, which is central to
modern optimization research, involves some unknowns that are
vectors in Euclidean space and others that are symmetric
matrices. These unknowns are required to satisfy certain equality
constraints and also are required to belong to cones of a certain
type. The cones have the common feature that they all admit a
self-concordant barrier function, which allows them to be solved
by interior-point methods that are efficient in both theory and
practice.

To describe the cone programming problem, we define some
notation. Let Rp be Euclidean p-space, and let Pp be the
nonnegative orthant in Rp, that is, the set of vectors in Rp whose
components are all nonnegative. We let Qq be the second-order
cone of dimension q, which is the set of vectors x �
(x(1), . . . , x(q)) � Rq that satisfy the condition x(1) �
[¥i�2

q x(i)2]1/2. We define Ss to be the cone of symmetric positive
semidefinite s 	 s matrices of real numbers.

The general convex cone problem is then

min
Xj, xi, z

�
j�1

ns

Cj�Xj � �
i�1

nq

ci�xi � g �z

s.t. �
j�1

ns

Arj�Xj � �
i�1

nq

ari�xi � gr�z � br , �r [3]

Xj � Ssj
�j; xi � Qqi

�i; z � Pp .

Here, Cj, Arj are real symmetric matrices (not necessarily positive
semidefinite) of dimension sj; ci, ari � Rqi; g, gr � Rp; br � R1.

The solution of a general convex cone problem can be
obtained numerically by using publicly available software such as
SDPT3 (14) and DSDP5 (15).

RKE with l1 Loss. To convert the problem of Eq. 2 into a convex
cone programming problem, without loss of generality, we let �
contain m distinct (i, j) pairs, which we index with r � 1,
2, . . . , m. Define IN to be the N-dimensional identity matrix and
em,r to be vector of length 2m consisting of all zeros except for
the rth element being 1 and (m � r)-th element being �1. If we
denote the rth element of � as (i(r), j(r)), and with some abuse
of the notation let i � i(r), j � j(r), and w � P2m with w(r) �
w(r � m) � wi(r), j(r), r � 1, . . . , m, we can formulate the problem
of Eq. 2 as follows:

minK�0,u�0w �u � �IN�K

s.t. dij � Bij�K � em,r�u � 0, �r , [4]

K � SN, u � P2m .

Newbie Formulation. We now consider the situation in which a
solution KN of Eq. 2 is known for some set of N objects. We wish
to augment the optimal kernel (by one row and column), without
changing any of its existing elements, to account for a new object.
That is, we wish to find a new ‘‘pseudo-optimal’’ kernel K̃n�1 of
the form

K̃N�1 � �KN bT

b c � � 0, [5]

(where b � RN and c is a scalar) that solves the following
optimization problem:

minc�0,b
 i�� wi�di,N�1 � Bi,N�1�KN�1�
[6]

s.t. b � Range�KN� , c � bTKN
�b � 0,
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where KN
� is the pseudoinverse of KN, and � is a subset of {1,

2, . . . , N} of size t. The quantities wi, i � � are the weights
assigned to the dissimilarity data for the new point. The con-
straints in this problem are the necessary and sufficient condi-
tions for K̃N�1 to be positive semidefinite.

Suppose that KN has rank p � N and let KN � 
�
T, where

N	p is the orthogonal matrix of nonzero eigenvectors and � is
the p 	 p matrix of positive eigenvalues of KN. By introducing
the variable b̃ and setting b � 
�1/2b̃, we can ensure that the
requirement b � Range(KN) is satisfied. We also introduce the
scalar variable c̃, and enforce c � c̃2 by requiring that

Z �
def� 1 c̃

c̃ c� � S2 . [7]

By using these changes of variable, the condition c � bTKN
�b �

0 is implied by the condition

x �
def

� c̃ b̃T�T � Qp�1 .

Further, we define the N 	 (p � 1) matrix ¥
def
� [0N 2
�1/2],

where 0N is the zero vector of length N, and let ¥i� be the row
vector consisting of the p � 1 elements of row i of ¥. We use KN(i,
i) to denote the iith entry of KN and define the weight vector w �
P2t with components w(r) � w(t � r) � wi(r), r � 1, . . . , t. We then
replace the Problem 6 by the following equivalent convex cone
program:

min
Z�0,u�0,x

w �u

s.t. � 1 0
0 0� �Z � 1,

� 0 0.5
0.5 0 ��Z � � 1

0p
�� x � 0,

di,N�1 � KN�i, i� � �0 0
0 1��Z

� 
i.�x � et,r�u � 0, �r�1,2, . . . ,t ,

Z � S2, x � Qp�1 , u � P2t ,

where i � i(r) as before. Note that the constraints on Z ensure
that it has the form of Eq. 7.

Choosing Elements of �. If the dissimilarity information is sym-
metric (i.e., dij � dji), we can choose � to be the subset of {(i, j) :
i � j} for which information is available. However, the codes we
use for solving the formulation in Eq. 4 (14, 15) require O(m2)
storage (where m is the size of �), which is prohibitive for the
application we describe in Protein Clustering and Visualization
with RKE. Hence, we define � by randomly selecting a subset of
the available dissimilarity information in a way that ensures that
each object i appears with roughly the same frequency among the
(i, j) pairs of �. Specifically, for each i, we choose a fixed number
k of pairs (i, j) with j � i (we call the objects j ‘‘buddies’’ of i) and
add either (i, j) or (j, i) to the set �, reordering if necessary to
ensure that the first index of the pair is smaller than the second.
[It is possible that (j, i) has been placed in � at an earlier stage.]
We choose the parameter k sufficiently large that the solution of
Eq. 4 does not vary noticeably with different random subsets.

The newbie formulation in Eq. 6 is comparatively inexpensive
to solve, so we take � to be the complete set of objects for which
dissimilarity information di,N�1 is available.

Eigenanalysis, Tuning, Truncation. The left five images of Fig. 1
illustrate the effect of varying � on the eigenvalues of the

regularized estimate of K obtained by solving Eq. 4. The data are
from the example to be discussed in Protein Clustering and
Visualization with RKE, with N � 280 objects and k � 55 buddies
for each of the N objects. Note that the vertical scale is in units
of log10 �. As � increases, the smaller eigenvalues begin to shrink,
although in this example there is a very broad range of values of
�, spanning several orders of magnitude, where the sensitivity to
� is barely visible. At � � 10�8, the condition number of K is
�103. As � goes much past 200 in this example, the penalty on
K dominates, and the dissimilarity information in the data is
suppressed.

It is desirable to have a kernel with rank as low as possible
while still respecting the data to an appropriate degree. Even if
the rank of the regularized kernel estimate is not low, a low rank
approximation obtained by setting all but a relatively small
number of the largest eigenvalues to zero might retain enough
information to provide an efficient way of doing classification or
clustering.

In the work described here, as well as in various simulation
studies, we started with a very small positive �, increased � in a
coarse log scale, and then experimented with retaining various
numbers of eigenvalues to get a low rank approximation to K.
The rightmost image in Fig. 1 shows the first 10 eigenvalues for
the � � 1 case in an expanded log scale. Natural breaks appear
after both the second and the third eigenvalues. Setting all of the
eigenvalues of K after the largest p to 0 results in the �th
coordinates of the jth object as xj(�) � �����(j), � � 1, 2, . . . , p,
where the ��, �� are the first p eigenvalues and eigenvectors of
K and ��(j) is the j component of ��. We remark that the
coordinates of the N objects are always centered at the origin
because the RKE estimate of K always has the constant vector
as a 0 eigenvector. In the example discussed in Protein Clustering
and Visualization with RKE below with four classes of labeled
objects, the choice of � � 1 and p � 3 provided plots with a clear,
informative clustering on the labels, that was verified from the
science of the subject matter. We note that using the estimated
K or a low-rank version of it as the kernel in an SVM will result
in linear classification boundaries in the object coordinates,
[piecewise linear in the case of the multicategory SVM (MSVM)
of ref. 16]. It will be seen in the plots for labeled objects in Protein
Clustering and Visualization with RKE that piecewise linear

Fig. 1. The effect of varying � on the eigenvalues of the regularized estimate
of K. The left five images show log-scale eigensequence plots for five values of
�. As � increases, smaller eigenvalues begin to shrink. The rightmost image
shows the first 10 eigenvalues of the � � 1 case displayed on a larger scale.
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classification boundaries in p � 3 coordinates would apparently
do quite well. However, that will not necessarily always be the
case, and a more flexible workhorse kernel in the p object
coordinates can be used. The MSVM (16) comes with a cross-
validation based method for choosing the MSVM tuning param-
eter(s) in a labeled training set. In principle, the parameters �
and p here can be incorporated in that method or other related
methods as additional MSVM parameters. Further examination
of principled methods of choosing � and p along with the MSVM
tuning parameter(s) is needed.

Protein Clustering and Visualization with RKE
Background. One of the challenging problems of contemporary
biology is inferring molecular functions of unannotated proteins.
A widely used successful method of protein function prediction
is based on sequence similarity. Statistically significant sequence
similarity, which is typically based on a pairwise alignment score
between two proteins, forms the basis for inferring the same
function. Two major related problems exist for predicting func-
tion from sequence. The first problem is the clustering of a large
number of unlabeled protein sequences into subfamilies for the
purpose of easing database searches and grouping similar pro-
teins together. The second problem is concerned with assigning
new unannotated proteins to the closest class, given the labeled
or clustered training data. A substantial amount of literature
exists for addressing these two problems. In particular, ref. 17
employs profile hidden Markov models (HMMs) for both prob-
lems. Clustering of proteins is obtained by a mixture of profile
HMMs, whereas assignment of new protein sequences to the
clusters�classes is based on the likelihood of the new sequence
under each of the cluster-specific HMMs. Later, ref. 18 addresses
the second problem first by obtaining an explicit vector of
features (Fisher scores) for each protein sequence and then by
using a variant of SVMs, based on a kernel called the Fisher
kernel for classification purposes. The feature vector for each
protein sequence is based on the likelihood scores of the input
sequence evaluated at the corresponding maximum likelihood
estimates of the HMM parameters fitted on the training data.
More recently, ref. 19 similarly uses SVMs for protein classifi-
cation. However, in contrast to obtaining a feature vector by
likelihood scores, they define a feature vector for each protein
sequence as a vector of its pairwise sequence similarity scores to
all other proteins. Alternatively, ref. 20 represents protein
sequences as vectors in a high-dimensional feature space by using
a string-based feature map and train an SVM based on these
vectors by using a mismatch kernel. These latter works clearly
illustrate the advantage of representing each protein sequence by
a high-dimensional feature vector in some coordinate system and
the power of kernel methods for protein classification. The RKE
methodology presented here provides an efficient way to rep-
resent each protein sequence by a feature vector in a chosen
coordinate system using the pairwise dissimilarity between pro-
tein sequences.

Data. We illustrate the utility of RKE methodology by using a
data set of globins that was first analyzed in ref. 17 by a profile
HMM approach. The data set, distributed with the HMMER2
software package (21), has a total of 630 globin sequences. The
globin family is a large family of heme-containing proteins with
many subfamilies. It is mainly involved in binding and�or trans-
portation of oxygen. For illustration purposes, we randomly
choose 280 sequences from these data so that three large
subclasses of the globin family (	-chains, 
-chains, myoglobins)
are included along with a heterogeneous class containing various
types of chains. This selection resulted in a total of 112 ‘‘	-
globins,’’ 101 ‘‘
-globins,’’ 40 ‘‘myoglobins,’’ and 27 ‘‘globins’’
(the heterogeneous class), according to the SwissProt database

annotation (25). The proportion of sequences in each class was
taken to be proportional to the class sizes in the original data set.

Implementation of RKE. We used the RKE formulation of RKE
with l1 Loss for this application. The BIOCONDUCTOR package
PAIRSEQSIM (22) was used to obtain global pairwise alignment
scores for all pairs of N � 280 sequences. This procedure gave
a total of N(N � 1)�2 � 39,060 similarity scores, which we then
normalized to map into the interval [0, 1]. We used one minus
each of these numbers as the dissimilarity measure for each pair
of sequences. During this process, alignment parameters were
taken to be equal to the BLAST server (23) defaults. To construct
the active index pair set �, we used the procedure described in
Choosing Elements of � with k � 55 randomly chosen buddies for
each protein sequence. The set � thus contained �14,000
sequence pairs, corresponding to �36% of the size of the
complete index set. Replicated runs with k � 55 proved to be
nearly indistinguishable, as judged by examination of eigenvalue
and 3D plots and the measure: ¥i�j�d̂ij1 � d̂ij2��¥i�j(1�2)(d̂ij1 �
d̂ij2), where the third subscript in d̂ijk indexes different replicates
(the above measure is typically �5% for each pairwise compar-
ison). The tuning parameter � is set to 1 in the plots that follow
later in this section.

Visualization of the Globin Sequence Space and Results. Fig. 2
displays the 3D representation of the sequence space of 280
globins. This figure shows that the first three coordinates of the
protein sequence space, corresponding to three largest eigen-
values, is already quite informative. The four main classes of the
globin family are visually identifiable: The four colors red, blue,
purple, and green represent 	-globins, 
-globins, myoglobins,
and globins, respectively.

Further investigation of this 3D plot reveals several interesting
results. First, we observe that the five hemoglobin �-chains,
namely HBAZ�HORSE, HBAZ�HUMAN, HBAZ�MOUSE,
HBAZ�PANTR, and HBAZ�PIG, shown by �, are located close
to each other and are embedded within the 	-globin cluster.
�-Globin chains are 	-like polypeptides and are synthesized in

Fig. 2. A 3D representation of the sequence space for 280 proteins from the
globin family. Different subfamilies are encoded with different colors: Red
symbols are 	-globin subfamily, blue symbols are 
-globins, purple symbols
represent myoglobin subfamily, and green symbols, scattered in the middle,
are a heterogeneous group encompassing proteins from other small subfam-
ilies within the globin family. Here, hemoglobin �-chains are represented by
the symbol �, fish myoglobins are marked by �, and the diverged 	-globin
HBAM�RANCA is shown by *. Hemoglobin 	-D chains, embedded within the
	-globin cluster, are highlighted by the symbol ‚.
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the yolk sac of the early embryo. It is well known that human
�-globin polypeptide is more closely related to other mammalian
embryonic 	-like globins (i.e., �-globins) than to human 	-
globins (24). Furthermore, the �-globin gene in humans is a
member of the 	-globin gene cluster. Second we note that
HBAM�RANCA, which is represented by * and is a hemoglobin
	-type chain, seems to be isolated from the rest of the 	-globin
sequences. A possible explanation might be found in the struc-
ture of this protein. Ref. 26 notes that the gene encoding this
protein appeared through a gene duplication of hemoglobin,
which took place near the time of the duplication that generated
the 	- and 
-chains. Our third observation is that the myoglobins
MYG�MUSAN, MYG�THUAL, and MYG�GALJA, denoted
by open squares, which are all fish myoglobins [Mustelus ant-
arcticus (Gummy shark), Thunnus albacares (Yellowfin tuna),
and Galeorhinus japonicus (shark)], appear to be slightly sepa-
rated from the rest of the myoglobin cluster. This observation is
quite remarkable because fish myoglobins are known to be
structurally distinct from the mammalian myoglobins (27), and
the RKE method nicely highlights this distinction on the basis of
primary sequence data only. The 3D plot also reveals subclusters
in the 	-globin cluster. For example, all of the 10 hemoglobin
	-D chains (shown by open triangles in Fig. 2) are clustered
together within the 	-globin cluster.

In a recent work (28), the authors provided a 3D plot of the
protein structure space of 1,898 chains. These authors used
multidimensional scaling to project protein structures to a
lower-dimensional space based on the pairwise structural dis-
similarity scores derived from 3D structures of proteins. Our
application of RKE to the globin family, which is a few levels
down from the top level of the protein structure hierarchy
considered by ref. 28, provide an analogous 3D plot for the
sequence space of the globin family. It is quite encouraging that
subprotein domains of this family are readily distinguishable
from the 3D embedding of the protein sequences. It is also worth
mentioning that our current application is concerned only with
pairwise sequence similarity, which can be obtained efficiently.
However, clustering at the higher levels of the protein structure
hierarchy is known to benefit enormously from 3D structural
similarities (see Discussion for details).

Classification of New Protein Sequences. We next illustrate how the
newbie algorithm can be used to visualize unannotated protein
sequences in the coordinate space of training data obtained by
RKE. We used the following sequences as our test data: (i)
HBAZ�CAPHI, hemoglobin �-chain from goat Capra hircus; and
(ii) HBT�PIG, hemoglobin �-chain from pig Sus scrofa. Fig. 3
displays the positions of these two test sequences with respect to
280 training sequences. We observe that HBAZ�CAPHI (filled
circle) clusters nicely with the rest of the hemoglobin �-chains,
whereas HBT�PIG (filled star), which is an embryonic 
-type
chain, is located closer to 
-globins. Additionally, we also used
17 leghemoglobins (filled triangles) as test data and found that
these cluster tightly within the heterogeneous globin group. This
observation is consistent with the results of ref. 17, whose
authors also found a heterogeneous globin cluster with a tight
subclass of leghemoglobins among their seven clusters obtained
by a mixture of HMMs. These results indicate that RKE together
with newbie algorithm provide a powerful means for clustering
and classifying proteins.

Discussion
We have described a framework for estimating a regularized
kernel (RKE methodology) from general dissimilarity informa-
tion by means of the solution of a convex cone optimization
problem. We have presented an application of the RKE meth-
odology (including the newbie algorithm) to homology detection
in the globin family of proteins. The most striking result here is

perhaps the fact that a simple 3D plot is sufficient for visual
identification of the subfamily information. However, in other
applications, the plot coordinates (or higher-dimensional coor-
dinate vectors obtained by retaining more eigenvalues) may be
used to build an automatic classification algorithm by means of
the (principled) MSVM (16). That algorithm comes with a
tuning method; it partitions the attribute space into regions for
each training category, and it also comes with a method for
signaling ‘‘none of the above.’’ Multicategory penalized likeli-
hood estimates also may be used if there is substantial overlap
of the data from different classes (10, 29–31).

A much more difficult problem in the context of protein
classification and clustering is remote homology detection, that
is, detecting homology in the presence of low sequence similarity.
Because our framework accommodates an arbitrary notion of
dissimilarities, we can easily take advantage of various types of
dissimilarities such as presence or absence of discrete sequence
motifs (32) and dissimilarities based on the primary, secondary,
and tertiary structure (33) and obtain optimal kernels from each
piece of information or data set. Without using labeled training
sets, relations between a pair of kernels from different sources
of information (or their lower rank approximations) can be
quantified in various ways. A simple example is a measure of
correlation: ¥ijd̂ij	

s/2d̂ij

s/2�((¥ijd̂ij	

s )1/2(¥ijd̂ij

s )1/2), where 	 and 


index the different sources of information and s is a real number
to be chosen. With labeled data, these kernels can be examined
further and combined in an optimal way, as, for example, in ref.
11, in the context of classification. As emphasized above, a
striking feature of the presented methodology is the fact that it
can exploit any type of dissimilarity measure and data sets with
missing information. These properties are clearly beneficial in
biological data analysis, because many biologically relevant
dissimilarities may not naturally result in positive semidefinite
kernels (pairwise alignment scores, for example), which are
essential for powerful classification methods such as SVMs.

Homology detection is one type of computational biology
problem for which our framework offers rigorous, f lexible tools.
However, there are many other computational biology applica-
tions that can naturally be handled within this framework.
Clustering of transcription factor position weight matrices (bind-
ing profiles) is one such application. With the increasing growth

Fig. 3. Positioning test globin sequences in the coordinate system of 280
training sequences from the globin family. The newbie algorithm is used to
locate 1 hemoglobin �-chain (filled circle), 1 hemoglobin �-chain (filled star),
and 17 leghemoglobins (filled triangles) into the coordinate system of the
training globin sequence data.
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of transcription factor-binding site databases, such as ref. 34, a
need for characterizing the space of DNA-binding profiles and
for developing tools to identify the class of newly estimated�
studied profiles is emerging. A characterization of all available
experimentally verified binding profiles such as in ref. 34 might
provide invaluable information regarding the possible class of
binding profiles. Such information then can be used in super-
vised motif-finding methods such as ref. 35. A natural dissimi-
larity measure for binding profiles is the Kullback–Leibler
divergence. Clustering of the experimentally verified binding
profiles based on a regularized kernel estimate of such dissim-
ilarity measure might group binding profiles in a way that is
consistent with the DNA binding domains of the transcription
factors. We envision that this technique might generate a
‘‘protein binding profile space,’’ as the work of ref. 28 generated
a ‘‘protein structure space.’’

Potential topics for further exploration include both extension
of the methodology and extension of the applications; in biology,
the clustering of proteins at the top level of the protein hierarchy;
and in other contexts, medical images in particular; other choices
of loss and penalty functionals in the noisy manifold unfolding
problem; and examining the properties of alternatives provided
here and their application in other contexts.
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