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ABSTRACT

A new method, smoothing spline ANOVA, for combining station records of surface air temperature to get
the estimates of regional averages as well as gridpoint values is proposed. This method is closely related to the
optimal interpolation (also optimal averaging) method. It may be viewed as a generalization of these methods
from spatial interpolation methods to a method interpolating in both spatial and temporal directions. The con-
nection of this method to the commonly used anomaly approach is discussed in the context of correcting biases
resulting from incomplete sampling. A main strength of this new method is its ability to borrow information
across both space and time just like optimal interpolation does across space. This increases not only the accuracy
of estimates but also the ability to correct various biases resulting from incomplete sampling. Some of these
biases are ignored by the anomaly approach.

1. Introduction

A number of studies (Vinnikov et al. 1980; Yamamoto
and Hoshiai 1980; Jones et al. 1982; Jones et al. 1986;
Hansen and Lebedeff 1987; Vinnikov et al. 1990) have
used surface air temperature data at meteorological sta-
tions around the world to estimate changes over a large
area (regional, zonal, or global averages, etc.). The prob-
lem addressed in these studies may be, directly or in-
directly, viewed as estimating the surface air tempera-
ture as a function of location and time based on noisy
data scattered in both spatial and temporal domains.
Various averages may be calculated after an estimate of
the function is obtained. In the context of numerical
weather prediction, Lorenc (1986) reviewed a few meth-
ods for getting such estimates, which include optimal
interpolation, smoothing splines, kriging, and Kalman
filters, and pointed out that they are formally equivalent
to each other. The purpose of this article is to introduce
a new estimating method [smoothing spline ANOVA;
see Gu and Wahba (1993a,b) and Luo (1996a,b)], which
differs from the methods used in the previously cited
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studies in that it accomplishes spatial and temporal anal-
yses at the same time. In other words, this is not just
another estimating method in the spatial domain. This
new method is capable of borrowing information across
both spatial and temporal domains, hence making the
estimates more accurate and increasing our ability to
correct various biases resulting from incomplete sam-
pling. Borrowing information across both space and
time is certainly not a new idea. In numerical weather
predication and many other fields, people have bor-
rowed information across time, usually from the past,
through dynamical models. [See Lorenc (1986), Derber
and Rosati (1989), Thiebaux (1991), and Wahba et al.
(1995), and references therein.] However, there have not
been many studies that borrow information across both
space and time empirically. A. Kaplan et al. (1996,
manuscript submitted to J. Geophys. Res.) is one ex-
ample. In their approach, an empirical model (a Markov
model) is substituted for the dynamical model (and
hence the model itself has to be estimated too). Our
approach here represents a more direct generalization
of optimal interpolation type methods in spatial domain
to one interpolating in both spatial and temporal do-
mains. The thin plate spline in Wahba and Wendelberger
(1980), used as a spatial estimating method on rectan-
gular domains, can also accommodate time in a very
different manner than proposed here. The direct methods
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FIG. 1. The distribution of the 1000 stations used.

of this paper result in a global space and time fit that
is easily decomposed into various averages and anom-
alies of meteorological interest.

To calculate a global average or other regional av-
erages, the simple average of available station records
is obviously biased toward the area concentrated with
more stations. More sophisticated methods are needed.
Vinnikov et al. (1980) subjectively contoured the station
data to get gridpoint estimates, then averaged them with
cosine weighting to account for the change of grid den-
sity along meridians of latitude. Jones et al. (1982) did
a similar computation except with an objective method
for getting gridpoint estimates (nearest neighbor inverse
distance weighted average). Yamamoto and Hoshiai
(1980) used ‘‘optimal interpolation’’ to estimate grid-
point values from station data. Jones et al. (1986) di-
vided the globe into 36 3 36 boxes and within each
box the inverse distance weighted average was used to
estimate the gridpoint value corresponding to that box.
Hansen and Lebedeff (1987) divided the globe into a
number of equal-area small boxes and computed a mean
value for each small box using a distance-weighted av-
erage. Then a hierarchical average of box mean values
(from small boxes to bigger boxes, then to latitude
bands, to hemispheres, with different weighting schemes
at different levels) is used as an estimate of the global
average. Vinnikov et al. (1990) used a statistically op-
timum averaging method to compute different regional
means directly without computing gridpoint values. In
section 2, we will describe the smoothing spline method
to get both gridpoint estimates and regional average
estimates. This method is, as pointed out by many au-
thors (e.g., Lorenc 1986; Kimeldorf and Wahba 1971),
formally equivalent to the optimal interpolation method.
We will demonstrate in this article that statistically op-
timum averaging used by Vinnikov et al. (1990) is also
formally equivalent to the estimate based on the smooth-
ing spline method.

To compare global averages or other regional aver-
ages across time (the crudest way to look at the large
area temperature change), another kind of bias exists
due to the incompleteness of sampling over time; that
is, the time period during which a station has records
varies from station to station. Hence, the changes across
years in the simple averages of each year’s records are
confounded with the changes across the locations of the
stations used in each year’s calculation. The way most
previous studies have chosen to correct this bias is
through the use of anomalies that are defined as the
differences of raw records and the average over a pre-
specified reference period, usually a period with good
sampling coverage. Hansen and Lebedeff (1987) used
a different scheme that, in some sense, is like an anom-
aly approach with a varying reference period. In section
3a, we will show that while the anomaly approach is
satisfactory in general, there are some significant biases
resulting from incomplete sampling that the anomaly
approach cannot correct. We will show in section 3b

that the smoothing spline ANOVA approach as de-
scribed there can correct such biases directly using raw
station data.

We chose the dataset prepared by Jones et al. (1991)
to apply this new method. The data were obtained from
http://cdiac.ESD.ORNL.GOV/ftp/. It is a combination of
four files: ndp020r1/jonesnh.dat, ndp020r1/jonessh.dat,
ndp032/ndp032.tm1, and ndp032/ndp032.tm2. This data-
set is assembled from different sources of monthly tem-
perature records at about 2000 stations distributed across
the world over the period from 1851 through 1991.
There are only a few stations with records dating back
that far. Most stations started recording in this century.
The stations are concentrated heavily in Europe and
North America. Some cleaning and homogenizing to the
original data have been done by Jones et al. (1991).

We did not redo the whole analysis of this dataset
using our new method. Instead a subset of this dataset
was chosen to illustrate our method. Only Northern
Hemisphere winter mean temperatures, defined as the
average of December, January, and February tempera-
tures, are considered. The word ‘‘winter’’ throughout
this article always refers to the winter in the Northern
Hemisphere. The most recent 30-yr period (1961–90)
is chosen. Instead of using all the stations in this dataset,
we selected 1000 stations mainly due to the limit of our
computing capacity (also see the discussion in section
2). These 1000 stations are chosen deliberately so that
they cover the sphere as uniformly as possible. Hence,
most stations left out are in Europe and North America
while almost all the stations in other regions are in-
cluded. Note that this selection of stations only mitigates
the problem of nonuniformness of station distribution,
it does not eliminate the problem. The distribution of
these 1000 stations is shown in Fig. 1. To have a graph-
ical idea of the incomplete sampling coverage, a plot
of each record’s year versus latitude with the longitude
nested within each year is given in Fig. 2. Having lon-
gitude nested within each year gives a better idea of the
data density. There are clearly fewer stations toward the
later part of the period. The records for the Antarctic
region end in 1988.



20 VOLUME 11J O U R N A L O F C L I M A T E

FIG. 2. The pattern of incompleteness in the data. The x axis is the
longitude nested within each year.

FIG. 3. Estimated global averages versus the number of stations
used. Circles: estimates for 1970; solid circles: estimates for 1980;
crossed circles: estimates for 1990.2. Smoothing spline estimates for one time data

Suppose that we want to estimate the temperature
field at one time, for example, winter mean temperature
field in one particular year, based on noisy data at some
locations:

yi 5 f(Pi) 1 ei, for i 5 1, 2, . . . , n. (1)

The symbol Pi is a point on the sphere [i.e., Pi 5 (li,
fi), a latitude–longitude pair] and the sphere will be
denoted by S. The symbol ei represents a ‘‘noise’’ term
that contains not only the measurement error in the rec-
ord yi, but also purely local variability that is of much
smaller scale than the resolution of any model to be
fitted.

A smoothing spline estimate of f, denoted by fu to
emphasize its dependence on a smoothing parameter u,
may be defined as the function that minimizes

n 1
2 2[y 2 f (P )] 1 [D f (P)] dP, (2)O i u i E uui51 S

where u is a regularization parameter (also called a
smoothing parameter) that controls the trade-off be-
tween the closeness of fu to the data {yi}, and the
smoothness of fu. The smaller u is, the more local fea-
tures are smoothed out in fu. The second term in (2),
usually called a penalty term, represents a weak con-
straint on fu. Peixoto and Oort (1992, p 84) have used
a Poisson equation as a strong constraint to extend a
temperature field from observation points to other
points. It is a common practice in numerical weather
prediction to use theoretical models as either strong con-
straints or weak constraints when estimating meteoro-
logical fields. Equation (2) represents the simplest ex-
ample of a weak constraint. Higher powers of D or some
other forms of penalty may be used. More work may
be done in this direction to incorporate prior and other
information into the penalty term. The details of com-
puting fu are given in appendix A.

Based on the computed fu, various area averages may
be calculated. We note that this scheme to get area av-
erages leads to the same answers that Vinnikov et al.
(1990) called the statistically optimum averaging [also

called Best Linear Unbiased Prediction (BLUP) in sta-
tistical literature] does, if appropriate penalty form and
smoothing parameter are chosen, just as the gridpoint
estimates by the smoothing spline method are the same
as those from optimal statistical interpolation. See ap-
pendix B for the demonstration of this formal equiva-
lence.

Many authors have chosen to estimate the field on
grid points first and then to average gridpoint estimates
to get area means. A reason for this is to avoid the bias
that may result from the unbalanced station distribution.
Figure 3 shows the smoothing spline estimates of the
global average of winter temperature versus the number
of stations used in calculating these estimates, for three
arbitrarily chosen years. (Stations are chosen as uni-
formly distributed as possible by requiring a minimal
distance between any two stations. The smaller this dis-
tance is, the more stations included.) The estimated
global averages tend to stabilize after a certain number
of stations are included in the analysis. The initial vari-
ation of the estimates results from the change of covered
area, and after a certain point, the extra stations added
in the area already covered have little influence on the
estimate of global average. This shows that the smooth-
ing spline method (also ‘‘statistically optimum aver-
aging’’) can avoid the bias resulting from unbalanced
station distribution without referring to gridpoint esti-
mates. Based on Fig. 3, it seems that 1000 stations are
about adequate to estimate the global average based on
this particular dataset. That is, the estimates based on
the entire dataset will not differ much from the estimates
based on the subset of 1000 stations.

Even though the smoothing spline estimates of global
averages are not affected by the unbalanced station dis-
tribution, we may still want to average only over the
area where data are available, since global averages in-
volve the extrapolation to the region where there is no
data, (e.g., for this dataset, to the west coast of the
Americas). We define the region covered by this par-
ticular dataset to be the area where there is at least one
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FIG. 4. Estimated land average winter temperatures by three meth-
ods. Squares: estimates by the smoothing spline method of section 2
applied on each year’s temperature records; crossed squares: estimates
by the smoothing spline method of section 2 applied on each year’s
anomalies; solid squares: estimates by the smoothing spline ANOVA
method of section 3b.

station within 500 km. This region is shown in Fig. 5
as the colored region. Since most of this region is land,
we will refer to the average over this region as ‘‘land
average.’’ ‘‘Global average’’ will refer to the average
over the whole sphere, both land and sea regions. The
choice of 500 km is subjective to some extent. We note
that Jones (1994) used a 58 3 58 grid, which corresponds
to about 550 km 3 550 km at equatorial region, and a
grid box with at least one station within it was counted
as covered by the data. The land average in this article
is calculated by the cosine-weighted average (account-
ing for the change of latitude) of gridpoint values on a
200 3 100 grid falling in the land region defined above.
This is just a simple numerical way to integrate a func-
tion over an irregular region.

3. Smoothing spline estimates for multiple time
data

Suppose that we are interested in the time evolution
of the temperature field. That is, we want to estimate
the temperature field as a function of year and location,
based on scattered noisy data:

yi 5 f(ti, Pi) 1 ei, i 5 1, 2, . . . , n, (3)

where ti ∈ {1, 2, . . . , nt} denotes the year and Pi ∈ S
denotes the location of the ith data point. The value of
n is the total number of observations used, nt is the total
number of years, and ns is the total number of stations
included in the study. One obvious way to estimate f
is to ignore the time dependence and to estimate f(t, P)
as a function of P separately for each year. Besides the
loss of efficiency (since the information could have been
borrowed across years), this approach has a problem of
biases resulting from the incomplete sampling. This
problem and how the anomaly approach deals with it
will be discussed first, together with the problem that
the anomaly approach faces itself. After that we will
describe our smoothing spline ANOVA approach.

a. Biases from incomplete sampling and anomalies

Applying the smoothing spline method of section 2
to each year’s records in the period of 1961–90, we get
a sequence of land averages of winter temperature,
shown in Fig. 4 as squares. The last 2 yr have outstand-
ing high values in this sequence. If we concluded that
the dramatic increase of winter temperature occurred in
the last 2 yr of the 1980s, then we had been misled by
the bias resulting from the incomplete sampling, or the
spatial sampling difference across years. The records
for the Antarctic region end in 1988 (see Fig. 2). Ob-
viously this abrupt increase of winter temperature in the
last 2 yr is mainly because of the lack of data in the
Antarctic region where it is much colder than most other
regions of the world.

In order to correct the bias resulting from the spatial
sampling difference, many previous studies have chosen

anomalies, instead of raw temperature records, for com-
parison. An anomaly is defined as a difference between
a temperature record and the average temperature over
a specified reference period. Choosing 1961–90 as the
reference period, a sequence of average temperature
anomalies by the same smoothing spline method is
shown in Fig. 4 as crossed squares. In this sequence,
the outlying feature of the last 2 yr disappears.

The reason for the effectiveness of using anomalies
to correct the bias resulting from the spatial sampling
difference can easily be explained by the following data
decomposition.

The temperature field as a function of year (t) and
location (P) can always be written as a sum of its com-
ponent functions

f (t, P) 5 d 1 d f(t) 1 g (t) 1 g (P)1 2 1 2

1 g (P)f(t) 1 g (t, P), (4)f,2 12

where t ∈ {1, 2, . . . , nt} and P 5 (latitude, longitude)
∈ S, and f is a known linear function f(t) 5 t 2 [(nt

1 1)/2]. The following conditions on the component
functions guarantee that representation (4) is unique:

n nt t
g (t) 5 g (t)f(t) 5 0O O1 1

t51 t51

n n t t

 g (t, P) 5 g (t, P)f(t) 5 0O O12 12
t51 t51 g (P) dP 5 g (P) dP 5 g (t, P) dP 5 0,E 2 E f,2 E 12

 S S S

(5)

for any t and P. Because of these conditions, the com-
ponent functions in (4) and their combinations are of
clearly defined climatological meanings. For example,
d1 is the grand average temperature over both year and
location; d2 is the linear trend coefficient of global av-
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erages; d1 1 d2f 1 g1 is the global average temperature
history; g2, gf, 2, and g12 represent spatial variations
about d1, d2 and g1, respectively; d1 1 g2(P) is the av-
erage winter temperature at location P; and d2 1 gf, 2(P)
is the linear trend coefficient of winter temperatures at
location P.

An observation is

y(t, P) 5 d 1 d f(t) 1 g (t) 1 g (P) 1 g (P)f(t)1 2 1 2 f,2

1 g (t, P) 1 e(t, P).12

Considering (5), the station mean over the same period is
nt1

y (P) :5 y(t, P) . d 1 g (P).O 1 2n t51t

The approximate equality here is due to the fact that
the records of some years may be missing and
St e(t, P) is only approximately zero. Therefore the
anomaly is

y(t, P) 2 y (P)

. d f(t) 1 g (t) 1 g (P)f(t) 1 g (t, P) 1 e(t, P).2 1 f,2 12

Now it is clear that the differences in g2(P) resulting
from different station sets across years do not affect the
anomaly. However, the differences in the last two terms
in (4) still do. The most suitable case in which using
anomalies will eliminate any bias resulting from spatial
sampling difference is when we are certain that the last
two terms in (4) are not significant; that is, we know in
advance that an additive model:

y(t, P) 5 d1 1 d2f(t) 1 g1(t) 1 g2(P) 1 e(t, P), (6)

is adequate. This is not the case here, however, since
we know that not only is there spatial variation in the
average temperature [(g2(P)], but also in the temperature
change trend over years. Some locations may have an
increase, others may have a smaller increase or even a
decrease. The pattern of such variation is actually one
important aspect of the climate we would like to extract
from the data. See, for example, Fig. 2 of Hegerl et al.
(1996). This makes the last two terms in (4) nonnegli-
gible when considering the bias resulting from spatial
sampling differences.

Having pointed out this limitation of the anomaly
approach, we would also like to make clear that it is
true that the spatial variation in g2(P) is the most prom-
inent spatial variation among the three terms in (4) in-
volving P. The spatial variation in the average temper-
atures (in a range from about 2408C to about 408C is
much larger than the spatial variation in the year by year
changes of temperature [(gf, 2(P)f(t) 1 g12(t, P)], which
is just a few degrees (8C). Therefore, the anomaly ap-
proach has eliminated the major part of biases resulting
from spatial differences. This is probably one of the
reasons for its satisfactory use so far.

The approach to be described in the following section
is very different from the previous approaches in that

we fit raw temperature records instead of anomalies. By
choosing appropriate parameters, this approach has the
ability to correct the bias resulting from the locational
difference in all the three terms of (4) involving P. The
estimates of land average winter temperature using this
approach are shown in Fig. 4 as solid squares. This
sequence is similar to the one obtained by the anomaly
approach. This is obviously evidence that our approach
has a similar ability to correct the bias resulting from
spatial sampling difference as the anomaly approach
does. But they also have some differences. Since we do
not single out g2(P), it is reasonable to expect that our
approach will correct the bias resulting from all three
terms in (4) involving P.

b. Smoothing spline model for multiple years

For the data in (3), a smoothing spline ANOVA es-
timate, fu, is defined as the minimizer of

n 1 1
2[y 2 f (t , P )] 1 J (g ) 1 J (g )O i i i 1 1 2 2u ui51 1 2

1 1
1 J (g ) 1 J (g ), (7)3 f,2 4 12u u3 4

where f has a representation as in (4), and J1(g1) 5
[g1(t 1 2) 2 2g1(t 1 d) 1 g1(t)]2, J2(g2) 5nt22St51

∫S (Dg2)2 dP, J3 is the same as J2, and J4 is derived from
J1 and J2 as the norm of the corresponding tensor-prod-
uct space. See Gu and Wahba (1993a,b) and Luo
(1996a,b) for more details. Other forms of penalty and
penalty terms with some additional parameters may also
be used depending on the situation. The details of com-
puting a smoothing spline estimate are given in appen-
dix C.

How to choose smoothing parameters, u’s in (7), is
a very crucial issue here, because the choice affects the
smoothing spline estimate to a great extent. For ex-
ample, if we choose u3 and u4 to be very small, we will
essentially make gf,2 and g12 disappear in our model and
adopt an additive model (6); hence, the results will be
very close to those from the anomaly approach. If we
choose u2, u3, and u4 to be very small, then we will
essentially get an estimate assuming no g2, gf,2, and g12

components, that is, no spatial variation at all. In that
case, we will be very close to the naive approach of
averaging each winter’s raw temperatures separately.

There are basically two types of techniques for choos-
ing smoothing parameters. One consists of the so-called
objective or data-driven methods such as cross valida-
tion (CV), generalized cross validation (GCV), and gen-
eralized maximum likelihood (GML) estimations (see
Wahba 1990, chap. 4). The other consists of ‘‘subjec-
tive’’ methods. We may compute for each choice of
smoothing parameters an estimate of the standard de-
viation of the observation, then compare it with our prior
knowledge about the size of such observation ‘‘error.’’
We may also use the past data to estimate these param-
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TABLE 1. RGCV scores for the 1000 station dataset. Here, log10(u1)
and log10(u2) are fixed at 2.1 and 4.5, respectively, and (*) indicates
a local minimum.

log10(u4)
log10(u3)

1.5 1.25 1 .75 .5

4.4
4.1
3.8

0.62752
0.63452
0.62737(*)
0.63958

0.63617
0.62747
0.63905

0.62909
0.64697
0.63298
0.64201

FIG. 5. Estimates of local winter temperature trend [d2 1 gf,2(P)].
(a) estimates by the smoothing spline ANOVA method using the
original data (truth for the simulated data); (b) estimates by the
smoothing spline ANOVA method using the simulated data.

eters. This is exactly Vinnikov et al.’s (1990) approach
for deciding both their smoothing parameter and co-
variance function. In general, these subjective criteria
rarely give us a precise choice of smoothing parameters,
but still, they are very important in guiding us and are
even sufficient for our needs in many applications. It is
important to keep these criteria in mind even when we
use data-driven criteria since so-called objective meth-
ods may give us misleading results also, not to mention
that some important information is very hard to be for-
mulated into objective criteria.

In our particular application, we decide to use a sub-
jective method to choose u1 and u2 and an objective
method to choose u3 and u4. The main reason is because
of the large computational demand of choosing all four
u’s by an objective method. Another reason is that we
have a relatively clear idea about how much smoothing
should be done to g1 and g2. As a matter of fact, we
want little smoothing done to them. A way to relate this
information to a smoothing parameter is through the
concept of ‘‘degrees of freedom.’’ A commonly used
definition of the degrees of freedom in a smoothing
spline estimate is tr[A(u)] (see Wahba 1990), where A(u)
is the influence matrix defined by [ fu(x1), fu(x2), . . . ,
fu(xn)]T 5 A(u)(y1, y2, . . . , yn)T, that is, the coefficient
matrix of the linear dependence of the estimated values
on the observed values. This concept can be readily
generalized to each component of fu. See appendix C
for more details. The maximum degrees of freedom is
(nt 2 2) for g1 and ns for g2, where nt is the total number
of years, and ns is the total number of stations used in
the analysis. To choose u1 and u2 in such a way that
little smoothing is done to g1 and g2, we just choose
them so that their corresponding degrees of freedom are
close to their maximum values.

A commonly used data-driven method is to choose
u’s that minimize the GCV score, which is defined as

1
2ˆ\y 2 f \

n
V(u) 5 ,

2
1

tr(I 2 A(u))[ ]n

where and y 5 (y1, y2,Tf̂ 5 [ f (x ), f (x ), . . . , f (x )]u 1 u 2 u n

. . . , yn)T. The numerator \y 2 , the residual sum2f̂ \
of squares, can easily be computed after we get the
estimate of the function. However, when the data size

is very large as in our case here, computing tr[I 2 A(u)]
exactly can be very expensive; hence, we use an ap-
proximation to the GCV score called ‘‘randomized
GCV’’ (RGCV) score:

1
2ˆ\y 2 f \

n
RGCV(u) :5 ,

2
1

T ˆj [j 2 f (j )][ ]n

where j is a standard multivariate normal random vector
with the same length as the data vector, and is thef̂ (j)
smoothing spline estimate when the data vector y is
substituted by j [Girard (1989) and Wahba et al. (1995)].
In order to minimize the variation induced by j, it is
better to use the same j for all choices of u.

Using the approach described above, u1 and u2 were
chosen as 1020.1 and 104.5, which correspond to 27.8
degrees of freedom for g1, and 989.8 for g2. With u1

and u2 fixed, we choose u3 and u4 according to the RGCV
criterion by a crude grid search. We first set some pre-
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liminary limits for them by the tool of the degrees of
freedom of their corresponding components. For u3, the
limits are 10.5 and 101.5 corresponding to 565.4 and
890.5 degrees of freedom (the maximum is 1000), re-
spectively. For u4, the limits are 102.8 and 104.4 corre-
sponding to 7052.6 and 17 138.2 degrees of freedom
(the maximum is 28 000, but the total number of ob-
servations is 20 910), respectively. Part of the search
results are given in Table 1. A minimum in RGCV gives
us a choice of u3 5 101.25 and u4 5 104.1, which cor-
respond to 831.1 degrees of freedom for gf,2 and
14 860.5 degrees of freedom for g12, respectively.

The estimated standard deviation of e, by the for-ŝ,
mula of Wahba (1990, section 4.7)

2 2ˆ ˆ\y 2 f \ \y 2 f \
2ŝ 5 . , (8)ˆtr(I 2 A(u)) j(j 2 f (j ))

is 0.498C, which is a little bit larger than what a typical
measurement error of mean temperature is expected to
be. But this is still reasonable considering the fact that
here e contains not just the measurement error.

The estimates of land average winter temperatures
[defined as ∫land fu(t, P) dP] are shown in Fig. 4 as solid
squares. There exists an overall cooling trend in the
early 1960s and an overall warming trend from the
1970s on. The linear trend of land averages over these
30 yr is about 0.015878C yr21. For comparison, the trend
estimated by the anomaly approach of about 0.015918C
yr21 is in very close agreement.

Estimated local winter mean temperature, that is, d1

1 g2(P), is shown in Fig. 7 (solid contour lines). This
is the familiar pattern of (Northern Hemisphere) winter
mean temperature across the world. Estimated local win-
ter temperature (linear) trend, that is, d2 1 gf,2(P), is
shown in Fig. 5a. We see that most of the European
area has a warming trend (positive coefficient) except
the eastern Mediterranean region and a large area of the
North Atlantic, including Greenland. A cooling trend
has been observed in part of Africa and America also.
Strong warming trends have been noticed in parts of
Siberia and North America.

The whole history of these 30-yr winter temperature
anomalies [i.e., d2f(t) 1 g1(t) 1 gf,2(P)f(t) 1 d12(t, P)]
based on our smoothing spline estimates is made into
a movie that can be accessed at http://www.stat.psu.edu/
;zhen.

As a by-product, we may check the residuals from
smoothing spline fits to identify outliers [see Knight
(1980) for a comparison with other approaches]. We
plotted the residuals against the year and other variables
and actually identified a few obvious outliers. They were
suspected to be typos during data transcription. Details
may be found in Luo (1996a), section 3.3.3. As of 17
June, 1996, the last time we visited the database at
CDIAC, these possible typos were still there. We note,

however, that this is not the latest database and not the
one used in the latest IPCC Report; (see Nicholls et al.
(1996). Also, the values at these few data points do not
change the final results significantly.

c. Discussions

For the particular dataset used in section 3b, the dif-
ferences between our smoothing spline estimate of the
temperature field and the estimate based on the anomaly
approach are not significant, as seen in Fig. 4. This does
not mean, however, that these two methods will not give
significantly different estimates in other situations. Be-
sides the reason given in section 3a, there is another
reason why in this particular example two approaches
result in similar estimates. That is due to the fact that
there is very little correlation between different years’
winter temperatures as can be shown by looking at their
time series’ autocorrelation plot. Hence, the information
borrowed across time is mainly in the 30-yr average
winter temperature and 30-yr linear trend. In its own
way, the anomaly approach has already borrowed a ma-
jor part of this information through using the station
mean temperature in the definition of each year’s anom-
aly. Based on this analysis, we would expect more varied
results in the situation where strong correlations across
time do exist, for example, as pointed out by a referee,
in daily or hourly temperatures. Another situation where
we would expect more varied results is when the spatial
variation of linear trend plays a bigger role in the total
spatial variation, for instance, when a smaller spatial
domain is considered and the mean temperature’s vari-
ation does not dominate the total spatial variation.

The model described in section 3 can easily be ex-
tended to the situation where, besides year and location,
we want to include other variables (e.g., season) into
our model. For example, a model of monthly temper-
ature similar to (4) may be defined as follows. Monthly
temperature f as a function of year, month, and location,
denoted by t, m, and P, respectively, can be written as
a sum of several component functions:

f (t, m, P)

5 d 1 d f(t) 1 g (t)1 2 1

1 g (P) 1 g (P)f(t) 1 g (t, P)2 f,2 12

1 g (m) 1 g (m)f(t) 1 g (t, m)3 f,3 13

1 g (m, P) 1 g (m, P)f(t) 1 g (t, m, P),23 f,23 123

(9)

where these components satisfy some side conditions
similar to those in (5).

A smoothing spline ANOVA estimate can be defined
as the minimizer of
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FIG. 6. Estimates of land average winter temperatures. Solid
squares: estimates by the smoothing spline ANOVA method using
the original data (truth for the simulated data); squares estimates by
the smoothing spline ANOVA method using the simulated data.

FIG. 7. Estimates of local winter mean temperature [d1 1 g2(P)]. Solid contour lines: estimates
using the original data (truth for the simulated data); dashed contour lines: estimates using the
simulated data.

n 1 1
2[y 2 f (t , m , P )] 1 J (g ) 1 J (g )O i i i i 1 1 2 2u ui51 1 2

1 1 1 1
1 J (g ) 1 J (g ) 1 J (g ) 1 J (g )3 f,2 4 12 5 3 6 f,3u u u u3 4 5 6

1 1 1 1
1 J (g ) 1 J (g ) 1 J (g ) 1 J (g ),7 13 8 23 9 f,23 10 123u u u u7 8 9 10

(10)

where J1J4 are the same as in (7), J5 and J6 are the same
and may be defined as

12

2J(g) :5 [g(m 1 2) 2 2g(m 1 1) 1 g(m)] ,O
m51

with g(13) :5 g(1) and g(14) :5 g(2). This form of
penalty is chosen because of the periodic nature of the
variable month. The rest of the J’s are defined through
the tensor-product structure of their corresponding func-
tion spaces. See Luo (1996a) for more details. A vertical
spatial coordinate can be similarly included.

4. Simulation

In order to assess the accuracy of the smoothing spline
estimates described in section 3b, a small experiment is
done. Using the residuals of the fit in section 3b, an
estimate of the standard deviation of e in (3) was cal-
culated for each station. Pretending the estimates ob-
tained in section 3b and these standard deviations to be
the truth, a new dataset was generated by (3) with e
generated by a pseudonormal random variable generator.
Then the same smoothing spline estimating method was
applied to this dataset. The first two smoothing param-
eters (u1 and u2) were fixed at the same values as in
section 3b. The other two smoothing parameters were
chosen according to the RGCV criterion as log10(u3) 5
.625 and log10(u4) 5 3.5.

The sequence of estimated land averages
[∫land f(t, P) dP] is shown in Fig. 6 together with the
‘‘truth.’’ The estimated local winter mean temperature
[d1 1 g2(P)] and the corresponding ‘‘truth’’ are shown
together in Fig. 7. The estimated local winter temper-
ature trend [d2 1 gf, 2(P)] is shown in Fig. 5b. It should
be compared with Fig. 5a. In most areas (mainly the
areas where sufficient data exist), the agreement be-
tween the truth (Fig. 5a) and the estimate (Fig. 5b) is
quite good. But in areas where no data or very scattered
data exist, there are some discrepancies. This suggests
a way to get a kind of confidence interval for the es-
timates obtained in section 3b., that is, to repeat this
experiment many times and use the variation in the es-
timates of these experiments to estimate the variation
in the estimate of section 3b. This is called a parametric
bootstrap method. See Efron and Tibshirani (1993) for
more details.
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APPENDIX A

Computational Details of Smoothing Spline
Estimates for One-Time Data

It can be proved (Wahba 1981) that the minimizer of
(2) has a representation

n

f (P) 5 d 1 u c R(P, P ), (A1)Ou i i
i51

where d and c are given by

T 21 T 21d 5 1 (uQ 1 I) y/1 (uQ 1 I) 1
215c 5 (uQ 1 I) (y 2 d1),

(A2)

where Q is an n by n matrix with its (i, j)-th element
R(Pi, Pj). Here, R is a nonnegative definite function
uniquely defined by ∫ (Df )2 dP. We will use

1 1 1
R(P, P9) 5 q (z) 2 , (A3)2[ ]2p 2 6

where z 5 cos(g(P, P9), g(P, P9) is the angle between
P and P9, and

21 2 1 2 z 1 2 z
q (z) 5 ln 1 1 12 2 42 5 1 2 1 2 1 2[ ]!2 1 2 z 2 2

3/21 2 z 1 2 z
2 12 1 6 1 11 2 1 2 62 2

[see Wahba 1981, (3.3) and (3.4)]. This R does not
correspond exactly to ∫S (D f)2 dP, but a norm topolog-
ically equivalent to it. In other words, we are not com-
puting the minimizer of (2), but (2) with a slightly
changed penalty term. The reason is computational since
R corresponding to ∫S (D f)2 dP is too expensive to com-
pute. By the results of Stein (1990), these changes will
not make the results much different when sufficient data
are available.

It is not difficult to verify that

R(P, P9) dP 5 0, for any P9 ∈ S;E
S

hence ∫S fu(P) dP / ∫S 1 dP 5 d. That is, d is the global
average of fu. We can also integrate fu (numerically)
over a region to get an estimate of the average tem-
perature in that region.

APPENDIX B

The Equivalence of Smoothing Spline Averaging
Method to the ‘‘Statistically Optimum Averaging’’

Method

Considering the model in (1), Vinnikov et al. (1990)
assume that f is a random field over the sphere with a
constant mean, say C, and a covariance function R(P,
P9). They also assume that {ei} are independent random
variables such that E(ei) 5 0 and Var(ei) 5 s2. The {ei}
are assumed to be independent of f as well. Then the
mean squared error of estimating the average of f over
a region K , S, ∫K f dP/b, where b :5 ∫K 1 dP by a
linear combination piyi of observed data isnSi51

2n

MSE 5 E f dP /b 2 p yOE i i1 2i51K

5 Var f dP /b 1 p p R(P , P )O OE i j i j1 2[ i jK

2n n n

2 2 21 p s 2 2 p V 1 C 1 2 pO O Oi i i i1 2] [ ]i51 i51 i51

5 [variance] 1 [bias], (B1)

where

V 5 Cov f dP /b, f (P ) 5 R(P, P ) dP /b.i E i E i[ ]
K K

Restricting estimators to unbiased ones, that is, re-
quiring that the ‘‘bias’’ term in (B1) equals zero, co-
efficients {pi} must satisfy

n

p 5 1. (B2)O i
i51

With the restriction (B2), the minimizer of the mean
square error (MSE) is

2 21 2 21p 5 (Q 1 s I) V 1 (Q 1 s I) 1
T 2 211 2 1 (Q 1 s I) V

3 ;
T 2 211 (Q 1 s I) 1

hence the estimate of the average of f over region K is

T T 2 21 T 2 21y p 5 y (Q 1 s I) V 1 y (Q 1 s I) 1
T 2 211 2 1 (Q 1 s I) V

3
T 2 211 (Q 1 s I) 1

TT 2 21 T 2 21y (Q 1 s I) 1 y (Q 1 s I) 1
5 1 y 2 1

T 2 21 T 2 211 21 (Q 1 s I) 1 1 (Q 1 s I) 1
2 213 (Q 1 s I) V,

which is exactly ∫K fu dP / ∫K 1 dP with u 5 1/s2 [(con-
sidering (A1) and (A2)]. The smoothing spline approach
gives not only the same average estimates of statistically
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TABLE C1. The nonnegative definite functions in the representation
(C1) of a smoothing spline estimate.

a Ra

1
2
3
4

R1(t, P; t9, P9) 5 Rtime (t, t9)
R2(t, p; t9, P9) 5 Rspace (P, P9)
R3(t, P; t9, P9) 5 f(t)f(t9)Rspace(P, P9)
R4(t, P; t9, P9) 5 Rtime (t, t9) Rspace(P, P9)

optimum averaging when parameters are matched ap-
propriately, but also the same grid point estimates of
statistical optimal interpolation. See, for example, Lor-
enc (1986) or Wahba (1990).

Vinnikov et al. (1990) used a prescribed R(P, P9) and
empirically estimated s2. In smoothing spline estimates,
s2 is assumed unknown and to be estimated simulta-
neously based on the same data. The function R is de-
cided by the form of the penalty term, but other R’s,
including those estimated from current or past data, may
also be used, which makes the smoothing spline ap-
proach even closer to the statistical optimal averaging
approach.

APPENDIX C

Computational Details of Smoothing Spline
Estimates for Multiple Time Data

It can be shown that the minimizer of (7) has a rep-
resentation similar to (A1):

f (t, P) 5 d 1 d f(t)u 0 1

n 4

1 c u R [(t , P ); (t, P)], (C1)O Oi a a i i
i51 a51

where each Ra is a nonnegative definite function decided
by the choice of Ja and given in Table C1 where Rtime

and Rspace will be described below and d :5 (d0, d1)T and
c :5 (c1, . . . , cm)T are the solution of

T0 5 S c
(C2)5(Q 1 I)c 5 (y 2 Sd),u

where y :5 (y 1 , . . . , yn)T , S is a n 3 2 matrix
with i th row [1, f( t i)] , Qu 5 uaQa , and Qa

4Sa 5 1

5 [Ra(xi , xj)] i , j 5 1 , 2 , . . . , n . Here, xi 5 (ti, Pi), which
is a shorthand for the year, latitude, and longitude of
the ith data point. In this article, the nonnegative definite
function Rtime is defined as follows. Let L be a (nt 2 2)
3 nt matrix:

1 22 1 0 · · · 0 0 0 

0 1 22 1 · · · 0 0 0 0 0 1 22 · · · 0 0 0
. (C3) 

· · · · · ·

0 0 0 0 · · · 22 1 0 
0 0 0 0 · · · 1 22 1 

Thus, J1(g) 5 gTLTLg, where g 5 [g(1), g(2), . . . ,
g(nt)]T. Then Rtime(j, j9) is the jj9th entry of (LTL)† where
† denotes the Moore–Penrose generalized inverse. In
this article Rspace is given by (A3). It would be possible
to substitute other nonnegative definite functions.

Since considering time and space simultaneously
means that we are dealing with a huge data size, efficient
algorithms are needed to solve (C2). Luo (1996b) de-
veloped some algorithms that can handle a few thousand

stations and as many years as practically needed in this
application (there are only about 150 yr of historical
instrumental records of temperature). After c and d are
obtained, the components of fu and various regional
averages can easily be computed.

For choosing smoothing parameters u’s, the degrees
of freedom for the component of fu mentioned in section
3b are defined as tr(Sa), where Sa(ua) 5 (Qa 1
(1/ua)I)21Qa, for a 5 1, 2, 3, 4. Let Qtime be a nt 3 nt

matrix with its (i, j) entry being Rtime(i, j), and Qspace be
a ns 3 ns matrix with its (i, j) entry being Rspace(Pi, Pj).
Let , , . . . , be all the eigenvalues of Qtime, andt t tl l l1 2 n

, , . . . , be all the eigenvalues of Qspace, thens s sl l l1 2 n

n n stt s n ln l t js itr(S ) 5 , tr(S ) 5 ,O O1 2t sn l 1 1/u n l 1 1/ui51 j51s i 1 t j 2

n 2 ss \f\ l j
tr(S ) 5 , andO3 2 s\f\ l 1 1/uj51 j 3

n n t st s l li j
tr(S ) 5 ,O O4 t sl l 1 1/ui51 j51 i j 4

where

nt

2 2\f\ 5 f(t) .O
i51
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