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Bayesian Confidence Intervals for

DOUGLAS NYCHKA*

Smoothing Splines

The frequency properties of Wahba’s Bayesian confidence intervals for smoothing splines are investigated by a large-sample
approximation and by a simulation study. When the coverage probabilities for these pointwise confidence intervals are averaged
across the observation points, the average coverage probability (ACP) should be close to the nominal level. From a frequency
point of view, this agreement occurs because the average posterior variance for the spline is similar to a consistent estimate of
the average squared error and because the average squared bias is a modest fraction of the total average squared error. These
properties are independent of the Bayesian assumptions used to derive this confidence procedure, and they explain why the
ACP is accurate for functions that are much smoother than the sample paths prescribed by the prior. This analysis accounts
for the choice of the smoothing parameter (bandwidth) using cross-validation. In the case of natural splines an adaptive method
for avoiding boundary effects is considered. The main disadvantage of this approach is that these confidence intervals are only
valid in an average sense and may not be reliable if only evaluated at peaks or troughs in the estimate.

KEY WORDS: Boundary effects; Cross-validation; Nonparametric regression; Smoothing parameter.

1. INTRODUCTION

Consider the additive model Y, = f(t;) + e, (1 =k =
n), where the observation vector Y' = (Y;, Y,,...,Y,)
depends on a smooth, unknown function f evaluated at
the points 0 = t, = ¢, = - = ¢, = 1 and a vector of
independent and identically distributed errors: ¢’ = (e,
e, . ..,e,)with E(e) = 0Oand E(ee’) = g*l. The statistical
problem posed by this model is to estimate f from Y with-
out having to assume that f is contained in a specific para-
metric family. One solution is a smoothing spline estimate
for f where the appropriate amount of smoothing is de-
termined by generalized cross-validation. Splines have
been used successfully in a diverse range of applications
and eventually may provide an alternative to standard
parametric regression models [see Silverman (1985) for a
review]. One limitation in applying spline methods in prac-
tice, however, is the difficulty in constructing confidence
intervals or specifying other measures of the estimate’s
accuracy. Wahba (1983), using the interpretation of a
smoothing spline as a posterior mean, suggested a point-
wise confidence interval for f(#,) based on the posterior
distribution for f at #,. An intriguing feature of these con-
fidence intervals is that although they are derived from a
Bayesian viewpoint, they work well when evaluated by a
frequency criterion. If C(a, t) is the (1 — a)100% Bayesian
confidence interval for f(¢), then Wahba’s simulations show
that the average coverage probability (ACP)

1S Prif(a) € Cla 1)
k=1

is surprisingly close to the nominal level, 1 — a. An in-
teresting twist in Wahba’s analysis is that rather than sim-
ulating f as a realization of the continuous Gaussian pro-
cess prescribed by the prior, she used only several different
fixed functions.

Figures 1 and 2 contrast the difference between these
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two choices for f. Figure 1 is a plot of three realizations
of the stochastic process corresponding to Wahba’s prior
distribution for f. Figure 2 shows three of the cases used
in her simulations. These two groups of curves clearly
exhibit different degrees of smoothness, and it may be
puzzling why Wahba’s method is so successful when the
prior distribution for f is a poor reflection of the ‘“‘true”
function.

My goal in this article is to remove some of the mystery
concerning the remarkable simulation results reported by
Wahba by giving a frequency interpretation to these con-
fidence intervals. This is accomplished by switching the
fixed and random components of this model. Rather than
consider a confidence interval for f(z), where f(:) is
the realization of a stochastic process and  is fixed, I con-
sider confidence intervals for f(z,), where f is now a
fixed function and 7, is a point randomly selected from
{te}x=1... From this second point of view, the average cov-
erage probability computed by Wahba in her simulations
is really just Pr[f(z,) € C(e, 1,)]. Moreover,

Pr[f(z,) € C(a, 1,)] = Pr(|U| = Z,,) + o(1)

as n—> o,

(1.1)

where 9l is close to a standardized random variable that
is the sum of a normal random variable and a discrete
random variable related to the bias of the spline estimate
at the observation points. Z, is the (1 — a)100 normal
percentile. Although U is a sum of two random variables,
for the cases considered by Wahba the variance of the
normal component is substantially larger than the variance
of the component related to the bias. The agreement of
the ACP with the nominal level is a consequence of the
fact that the distribution of W is close to a standard normal
distribution.

One advantage of this interpretation is that these con-
fidence intervals may be justified independently of their
Bayesian derivation. From a frequency point of view, there
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Figure 1. Three Realizations From the Bayesian Prior. For a periodic
second-order smoothing spline the prior considered by Wahba is an
integrated Brownian bridge adjusted to be a periodic function. To fa-
cilitate graphing the sample paths, they have been scaled to come
from a Brownian bridge with unit variance and translated to have zero
mean. These adjustments do not change the qualitative impression of
the local smoothness of these functions.

are two factors that contribute to the accuracy of the av-
erage coverage probability. The average posterior vari-
ance of the cross-validated spline estimate is proportional
to a consistent estimate of the expected average squared
error, and the average squared bias is a small fraction of
the total average squared error. Suppose that f denotes a
spline estimate where the smoothing parameter has been
determined by cross-validation, and let T be a consistent
estimate of the expected average squared error. These
results suggest that if the observations are uniformly dis-
tributed, if the spline estimate is not influenced by bound-
ary effects, and if f is sufficiently smooth, then the intervals
f ) = Zu, T will have an ACP close to 1 — a. More-
over, because this analysis does not specifically depend on
f being a smoothing spline, it suggests that these results
may hold in general for other nonparametric regression
estimators.

This frequency interpretation also emphasizes a limi-
tation of these confidence intervals for a fixed function.
They may not be reliable at specific points and are only
valid when averaged across the observation points (see

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2. Three Smooth Test Functions Considered by Wahba (1983).
These three cases all have at least one continuous derivative satisfying
periodic boundary conditions and are mixtures of beta densities: Case
1, $Bi0s + 7z + 3Ps10 (—); Case 2, 15fx017 + 5Ps (- - °); Case 3,
#Bas + 3Biziz + P (- - <), where B, is the standard beta density
function on [0, 1].

1135

Wahba 1985). In particular, points where the biases are
large will result in a coverage below 1 — «. Figures 3 and
4 illustrate this relationship for one of the cases from Wah-
ba’s Monte Carlo study. This problem is compounded be-
cause the bias of f tends to be large precisely at the points
where f has a more complicated and interesting structure.
Note that the points where the bias is large correspond to
sharp peaks or kinks in the function (see Fig. 2). Thus one
would not expect this confidence procedure to be reliable
if these intervals were only computed at points where f
has a peak. Despite this difficulty, this type of interval
appears to provide a reasonable measure of the spline
estimate’s accuracy provided that the point for evaluation
is chosen independently of the shape of f.

The large biases in Figure 4 are a consequence of the
spline estimate not adapting to the local behavior of f.
The estimate in this example uses a single, global value
of the smoothing parameter (bandwidth). This value is
appropriate at most points, but places where f changes
rapidly require a smaller value of the smoothing param-
eter. One possible way of reducing the bias is to consider
a spline estimate where the smoothing parameter can vary.
Hirdle and Bowman (1988) and Staniswallis (1986) pro-
posed adjusting the bandwidth for a kernel estimate based
on estimates of the bias, and a similar approach can be
taken for splines. Another strategy is to estimate the
smoothing parameter at a particular point, #,, by cross-
validating only on observations in a neighborhood of ¢,.
The size of this neighborhood could be inferred from the
value of the global smoothing parameter and a suitable
prior for f.

Another approach to confidence intervals (Cox 1986) is
to estimate a worst-case bias for f to obtain a conservative
interval. This method has the advantage of being reliable
at all points; however, the width of these intervals may be
unacceptably large.

Section 2 gives the details of the stochastic interpretation
of a smoothing spline and discusses the connection be-
tween the average posterior variance and the expected
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Figure 3. An Example of the Individual Coverage Probabilities of
Wahba’s “‘Bayesian” Confidence Intervals. Plotted are the pointwise
coverage probabilities estimated from a simulation of 1,000 trials. The
true function is Case 2 with n = 128, ¢ = .05, and using a normal
distribution for the errors. The smoothing for each estimate was deter-
mined by generalized cross-validation. The estimated ACP for this case
is .952 (horizontal line) with a standard error of .001.
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Figure 4. Bias of a Spline Estimate. The same parameters are used
as in Figure 3, except A is taken to be the minimizer of the expected
average squared error (1° = 6.99E-5). Points where the estimate is
significantly biased correspond to lower coverage probabilities and
match sharp peaks or kinks in the true function (see Fig. 2).

average squared error. Section 3 defines the random vari-
able, 4, that is related to the ACP. The distribution of 4
was computed for the different cases considered by Wahba
and found to be very close to a standard normal. These
results are also reported in this section. Section 4 explains
how the ideas in Section 3 generalize to natural smoothing
splines, and gives some simulation results. As part of this
discussion, a simple adaptive method is suggested for
avoiding large biases in the estimate at the endpoints.
Section 5 outlines a proof of the relationship in (1.1). This
analysis accounts for the fact that the smoothing parameter
is determined adaptively by cross-validation and the errors
may not be normally distributed. At least in this limited
context, inference based on this estimated smoothing pa-
rameter is asymptotically equivalent to the case when the
“optimal” value is known.

2. DEFINITION OF A SPLINE ESTIMATE

One property of a spline that distinguishes it from other
nonparametric regression estimators is that it is the solu-
tion to a variational problem. Let 3 = W3[0, 1) = {h :
h, h' are absolutely continuous and 4" € L2[0 1]}. Then,
for A > 0 the spline estimate, f;, is the minimizer of

LS (- hep + [ wora ey
k=1 [0.1]

for all & € 3. The integral in (2.1) may be interpreted as
a roughness penalty because it increases as the curvature
of h increases. Thus the smoothing parameter, 4, controls
the relative weight given to the smoothness of 4 versus its
fit to the data. When 4 is fixed, f; is a linear function of
Y and it is convenient to define an n X n ‘“hat” matrix,

A(4), depending only on {t,} such that f, = A() Y, where
£, = {f:(t), Fi(t), . . ., Fi(t,)}. For details concerning the
form of A(4) and 1ts computatlon see Bates, Lindstrom,

Wahba, and Yandell (1986) and Hutchinson and De Hoog
(1985). The spline estimate f, is referred to as a natural
spline because it satisfies the “natural” boundary condi-
tions f@(0) = f@(1) = 0 and f®(0) = fO(1) = 0. If %
is taken to be the periodic set of functions { € W3[0, 1]:

Joumal of the American Statistical Association, December 1988

h(0) = hi(1),j = 0, 1}, then f, will be a periodic spline
satisfying the periodic boundary conditions Fo0) =
F9(1), 0 = j =< 3. It is important to distinguish between
these two estimates, because Wahba’s simulation results
pertain to periodic splines whereas natural splines are more
likely to be used in applications.

The smoothing parameter plays the same role as the
bandwidth in a nonparametric regression kernel estimate,
and this article concentrates on the statistical properties
of f, when 4 is selected by a data-based procedure. Spe-
cifically, let

v = 2 - aove /(L - ao)

be the generahzed cross-validation function and let 1 de-
note the global minimum of V. The spline estimate f=
#1 is the article’s focus. This form of cross-validation has
worked well in practlce one can show that, asymptotically,
Awill also minimize the average squared error for f (Cox
1984; Craven and Wahba 1979; Hérdle, Hall, and Marron
1988; Li 1986).

The rationale for Wahba’s confidence intervals comes
from the correspondence between f, and the mean of a
posterior distribution. Suppose that f is a sample path from
the Gaussian process

F() = ap + ait + (a%/nl) f ‘-9 dW (), (22)

where W(-) is the standard Weiner process and a ~ N(0,
{I). With this model for f, a natural spline satisfies the
relationships f;(f) = lim.... E(f(t) | Y) and 6?A(}) =
lim.., cov(f | Y), with £ = [f(t)), f(2), . . . , f(t,)]- The
same conditional moments also hold for the periodic spline
if f is assumed to be a sample path from a periodic version
of (2.2).

This connection between a smoothing spline and a pos-
terior mean led Wahba to propose

f(tk) * Z,2V 52[A(j~)]kk,

where 62 = ||[(I — A(2)Y|P/tr(I — A(A)) asa (1 — a)100%
confidence interval for f(#,). What is surprising about this
confidence procedure is that the ACP is close to 1 — «
even when f is much smoother (has more derivatives) than
the process in (2.2).

Part of the reason for the success of these intervals is
that the posterior variance, 6?A(4), is close to the ex-
pected average squared error. This observation was first
made by Wahba (1983) and is used in Section 3 to explain
the accuracy of the ACP for these intervals. This section
ends by discussing this connection in more detail.

Let T,(4) = (1/n) 2 (f(t) — f(t))? and let A° denote
the value of the smoothing parameter that minimizes
ET,(A). If f satisfies the conditions of Assumptions 1-3
in Section 5, then Nychka (1986) shows that

ztr A(l)/n p

ET,(°) — K asn— o,

2.3)
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where K = (32/27). Thus, in the limit the average pos-
terior variance will be proportlonal to the expected av-
erage squared error. Now if § is a periodic spline and if
the observation points are equally spaced, then tr A(4)/n
= Aw(4) because A(1) is a circulant matrix. For a natural
spline, the diagonal elements of A(4) will not be equal.
But the variation in these elements over most of the in-
terval will be very small (see Fig. 5) and in the limit these
terms will converge uniformly to their average value.
Therefore, the asymptotic limit in (2.3) suggests that the
standard error of Wahba’s intervals will be only about 10%
larger [(32/27)"* = 1.089] than [ET,(4°)]"2. Surprisingly,
the limiting constant in (2.3) depends only on the order
of the spline and the smoothness of f. This value differs
slightly from 1 because the true function is assumed to
have more derivatives than the sample paths implied by
the Bayesian prior. A brief derivation of this value is given
at the end of the Appendix; see Hall and Titterington
(1986) for more background on this topic.

One way of proving the result in (2.3) is by the obser-
vation that the average posterior variance is proportional
to a consistent estimate of ET,(4°) based on the cross-
validation function. Also, because the standard error of
the spline is related to the expected average squared error,
any estimate of this quantity is of interest in its own right.
Under Assumptions 1-3 in Section 5, EV(1) = (ET,(4)
+ 6%)(1 + o(1)) as n — ». Rearranging these terms, we
have ET, (1) = (EV(A) — ¢?)(1 + o(1)) as n — . This
asymptotic equivalence suggests that one might estimate
ET,(4) by subtracting an estimate of ¢* from V(1). One
possibility is to let

= V() - $2, (2.4)
where $2 = |[(I — A(A)YP/tr(I — CA(})) and ¢ = 2 —
(1/K). Under Assumptions 1-3 in Section 5 it follows that
T,/ ET(4,) will converge to 1 in probability as n — . [The

value for ¢ is chosenAso that terms of order ET,(4,) in the
difference between T, and ET,(/,) are eliminated.] In gen-

0.2 0.3 0.4 0.5 0.6 0.7

-0.1 0.0 0.1

1 | 1 L 1

0.0 o.2 0.4 0.6 0.8 1.0

Figure 5. Influence of the Boundaries on the Matrix A(4). Plotted
crosses are A(4) versus t, = k/n whenn = 128 and 1 = 6.99E—4.
Over most of the interval the diagonal elements are essentially constant.
Plotted using broken lines are the rows A;.(4) and Ag.«(4). These two
curves suggest the shape of the kernel att = 3/128 and t = 64/128
when the spline estimate is interpreted as a locally weighted average.
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eral, T, will be a consistent estimate of ET(4°) provided
the average squared bias of the spline estimate is not dom-
inated by effects at the boundaries [see Nychka (1986) for
details]. Section 4 describes a method for eliminating
boundary effects by restricting the evaluation of the spline
estimate to an interval smaller than the range of {f;},- ;...
This estimate of the expected average squared error has
worked well in simulations (see Table 3 in Sec. 4), and in
Section 5 I outline an argument for its consistency.

3. FREQUENCY INTERPRETATION FOR
PERIODIC SPLINES

This section covers the case when f 1 is a periodic spline
and {,},-,., are equally spaced. This case is considered for
two reasons. First, it is the estimate computed by Wahba
in her Monte Carlo study. Second, in this simple case the
frequency interpretation of these confidence intervals is
the least complicated. A general discussion for the natural
spline estimate is given in Section 4.

The random variable < in (1.1) is defined for the case
when the measurement errors are normally distributed and
the spline estimate is evaluated at an optimal value of the
smoothing parameter. Recall that A° minimizes the ex-
pected average squared error, and let f° = f. Because
42 is not a random quantity, it is easy to decompose f°
into fixed and random components related to the bias and
variance of the estimate. Also, because this estimate is a
linear function of the data, the random component will be
normally distributed. With this decomposition, it is
straightforward to interpret the ACP for this estimate.

In practice, the measurement errors may not follow a
normal distribution and A° must be estimated. The main
mathematical result of this article shows that the difference
between the ACP for f when 1 is determined by gener-
alized cross-validation and the ACP for f° converges to 0
as the sample size increases. This result suggests that the
intuition gained from studying the idealized estimate, f°,
may be useful in interpreting the ACP for the more prac-
tical case.

Recall that for a periodic spline with equally spaced
knots, the diagonal elements of A(1) are equal. In this
case all of the pointwise confidence intervals should have
the same width. For now they are represented as

fo(t) + Z,,D. (.1

Now let b(r) = Ef°(r) — f(¢t) and v(t) = f°(t) — Ef°(t).
Recall that 7, has a distribution independent of e putting
equal mass on the points {f,};<;<,. Finally, set b = b(z,)
and v = v(t,). It will be argued that the correct choice
for D is [ET(4°)]"? and u = [b + v]/[ET,(A°)]">

The ACP has the form

B3 1w - £ = Z.D)

:!H

= Pr[|b(z,) + v(z,)| = Z.,D]
Pr{|(b + v)/D| = Z,p).
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Thus the ACP for the intervals in (3.1) will be close to 1
— a provided that the distribution of & = (b + v)/D is
close to a standard normal. It is easy to argue that this
should be so from the properties of b and v summarized
in the following lemma.

Lemma 3.1. If f, is a periodic spline, t, = k/n (k =
0, n — 1), and e ~ N(0, ¢*I), then (a) E(b) = 0, (b) v
~ N(0, (6?/n)tr[A(2°)¥]), and (c) b and v are independent.

Proof. (a) Because the constant function is in the
null space of the roughness penalty, (I — A(4°))1 = 0.
Using the symmetry of A we have E(b) = (1/n) 2j_,
(Efit) — f(6)) = AU/ml'd — A £ =0.(b) V' =
(), ..., v(t)) = (A(L°)e)'. Because e is normally
distributed, v ~ N(0, 62A%(4,)). A*(A) will also be a cir-
culant matrix, and the diagonal elements can be writ-
ten as (1/n)tr A%(2). Thus v(t,) = E(v | t, = &) ~ N(O,
atr A%(A°)/n). Because this distribution does not depend
on k, the unconditional distribution is the same. (c) From
the results in (b) it follows that E(p(v) | b) will not depend
on b for any measurable function ¢.

By definition, var(b + v) = ET,(1°), so by setting D
= [ET,(2°)]"? it follows that E(u) = 0 and var(u) = 1.
Also, for all of the cases considered by Wahba, var(b)/
var(v) < .25. The distribution of < should be close to a
normal, since it is the convolution of two independent
random variables, one normal and the other with a vari-
ance that is small relative to the normal component. Figure
6 is a histogram of the distribution of b for Case 2 with n
= 128 and ¢ = .05 (see Fig. 4) along with an appropriately
scaled version of the normal density for v. The convolution
of these two distributions is close to normal.

Table 1 reports the maximum absolute difference be-
tween the distribution function of U and a standard normal
over the range of cases considered by Wahba. For all of
these cases the distribution of <u differs from a standard
normal by less than 1%. The ratio var(b)/var(v) is also
reported for each case. Note that these values are in rough
agreement with asymptotic theory. If f is a second-order
smoothing spline (second-derivative roughness penalty)

a _
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Figure 6. Comparison of the Densities of b and v. The histogram
represents the discrete distribution of b for the same parameters as in
Figure 4. The random variable v is distributed as N(0, 3.58E —4). This
normal density has been superimposed on the plot by scaling by the
histogram bin width and the number of observations. The convolution
of these two distributions yields a distribution very close to a normal
(see Table 1). It is this similarity that helps to explain the accuracy of
the ACP.
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where (1/n) 27_, (f(t) — Efi(t))? = y2*(1 + o(1)) for
some y > 0 as 4 — 0, then a simple calculation yields
var(b)/var(v) = (1/4a)(1 + o(1)) (see Nychka 1986, lemma
3.1). For the smooth test functions considered by Wahba,
a = 2 for Cases 1 and 3 because these functions have three
periodically continuous derivatives and f® € L0, 1].
Thus we would expect var(b)/var(v) = .125. For Case 2,
a = 1 because this function does not have a periodic
second derivative and the ratio of variances should be
compared with .25. The difference between these actual
fractions in Table 1 and the asymptotic values may be due
to the fact that the beginning Fourier coefficients for these
functions decrease at a rate different from what would be
expected in the limit.

For a periodic spline, Wahba’s confidence procedure
suggests that D should be equal to ¢tr A(1°)/n; however,
at least from a frequency point of view, D = ET,(1°)
appears to be a more defensible choice because it stan-
dardizes the variance of . Using 6tr A(4)/n should result
in slightly conservative intervals with an ACP slightly higher
than 1 — a. This effect is apparent in Wahba’s original
simulations; however, the practical difference between
these two choices for D is slight because the resulting
ACP’s differ by less than a few percent.

4. EXTENSION TO NATURAL SPLINES

So far the discussion has been limited to periodic splines
where f must satisfy a specific set of periodic boundary
conditions. Although this narrow scope is adequate to ana-
lyze Wahba’s Monte Carlo study, these restrictions on the
estimator and f limit its usefulness. In this section I gen-
eralize the frequency interpretation of these Bayesian con-
fidence intervals to a natural spline estimate and give a
straightforward solution to the problem of boundary ef-
fects. To make the presentation less complicated assume
that the observation points are uniformly distributed. It is
possible to extend these ideas to other distributions, but
this is beyond the scope of this article.

The main difficulty in generalizing the ideas in the pre-
vious section from periodic splines to natural splines is
that the diagonal elements of A (4) will no longer be equal.
This complicates the definition of v, because the random
variable v(#;) must now depend on k and hence will not
be independent of b. For uniformly distributed {t;} the
variation in A, (1) reflects the fact that f can be estimated
more accurately in the middle of the interval compared
with the endpoints (see Fig. 5). (If the observation points
were not distributed uniformly, these diagonal elements
would adjust for the relative accuracy of f due to the
variation in the density of {#}.)

Another problem with natural splines is that the average
squared error (and hence the cross-validation function)
may be dominated by the bias of the estimate in small
neighborhoods of 0 and 1 (Messer 1986; Rice and Rosen-
blatt 1983). The diagonal elements of A(4) do not adjust
for this effect. In fact, the ACP will approach 1 as n — «
because the average squared error for almost all of the
points in the interval will be negligible with respect to the
total average squared error.
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Table 1. Comparison of the Distribution of A With a Standard Normal for a Periodic Spline

o =.0125 o = .05 oc=.2
True %K-S M %K-S M %K-S ‘_/_a_'@
function n var(v) var(v) var(v)
Case 1 64 .06 14 10 A7 .16 .22
128 .09 14 .06 .16 A7 21
256 11 14 .04 15 .16 19
Case 2 64 44 .16 16 15 .07 .16
128 .70 A7 .27 .16 .05 .15
256 .87 .18 37 .16 .07 15
Case 3 64 13 13 12 15 .09 19
128 14 13 13 14 .08 .18
256 14 13 13 14 10 A7

NOTE: The three functions considered here are plotted in Figure 2. %K-S = 100 x (sup|Pr(u < z) — ®(z)|), where @ is the standard
normal cdf. Also, U = (b + v)/[var(b + v)]'’2, where v ~ N(0, (62/n)tr A%(i°)) and b has a discrete distribution taking on the values
(E?"(tk) — f(tx)}, 1 =< k < n, with equal probability. foisthe smoothing spline estimate using an optimal choice for the smoothing parameter.
With these definitions var(b + v) is equal to the expected average squared error of the spline estimate.

A simple way to deal with both of these problems is to
restrict the evaluation of the spline to a subinterval of [0,
1]: 9 = [d1, 1 — &) for J;, , > 0. If 4 remains fixed as
the sample size increases, then f,(¢) for t € 9 will not be
influenced by boundary effects (Nychka 1986). Moreover,
if the observation points are uniformly distributed, then
the diagonal elements A, (1) will converge uniformly to a
function independent of k for ¢ € 4. Thus, at least for
large sample sizes, a natural spline estimate restricted to
an interior interval will have properties similar to those of
a periodic spline.

The frequency interpretation for confidence intervals in
this setting is similar to that in Section 2. Because $ may
be chosen so that the diagonal elements of A(A) for ¢, €
¢ are essentially constant, consider pointwise confidence
intervals of equal width. Let n; = #{t, € J} and

) = <3 () - S
UTI=F

Let 43 be the minimizer of ET;(A). Following the devel-
opment in Section 3, the ACP for the intervals f o(t) =
Z.nD (4 € 9) is given by Pr(|y| = Z,,), where Qu; =
[fx(z.) — f(z,)]/D and z, assumes the values {, € 9} with
equal probability. As in the periodic case, s can be de-
composed into the sum of a discrete and a normal random
variable. Because A(A) is not circulant, however, these
two components will not be independent. Also, the ex-
pectation of Qs is not identically equal to 0 because of the
restriction of f to points in 4. Note that E(u3) = ET;(19).
Therefore, to standardize QU; a natural choice for D is
[ET;(23)]"2. Despite these departures from the exact re-
lationships in Section 3, the distribution of ; is close to
a standard normal with this choice for D.

Before discussing these results, however, a method for
determining Y is presented. For p > 0 let y(1) be the
smallest interval containing {¢;: a;(1) =<1 + p}, where a;(4)
= Aj;j(A)/inf <<, Awk(2). By this construction, decreasing
p will decrease the variation in the diagonal elements of
A(4) for t, € (2). The interval J(1°) is used to evaluate
the distribution of 4l;; therefore, two values of A enter this
computation. The interval for evaluation depends on 4°,

and the spline estimate on this interval uses A$. Initially,
a one-step procedure was considered, where the smooth-
ing parameter minimized

El1 3 4w - foyr|.

o 4ENA)

Unfortunately, this criterion tends to have multiple min-
ima. Also, the estimate for this value of the smoothing
parameter using cross-validation had more variability than
the two-step procedure described later. In either case, note
that the choice of ¢ is not completely objective because p
must be specified. In fact, when f has four continuous
derivatives, for boundary effects to be asymptotically neg-
ligible we must have p = o(n'”® exp{—n'?}) as n — . This
rate can be derived by relating the optimal choice for the
smoothing parameter on an interior interval to an effective
bandwidth (Nychka 1986; Silverman 1984). The rate on p
should be chosen so that the distances between the left
endpoint of §(13) and 0 and the right endpoint of §(13)
and 1 converge to 0 at a slower rate than the optimal
effective bandwidth.

Table 2 reports the properties of the ACP when a natural
spline is restricted to an interior interval. This table com-
pares the distribution of s when D = [ETy(13)]"* to a
standard normal in a format similar to Table 1. The column
n;/n indicates the fraction of observations included in $(4,).
In these computations p = .1; that is, the diagonal ele-
ments of A(4) in J(1°) differ by at most 10% from their
minimum. Note that this restriction does not exclude many
data points. To see how much boundary effects influence
the distribution of (;, a version of Case 3 was considered,
where the function was shifted periodically so that the
maximum of the absolute value of the second derivative
was at 0 [faiea(t) = f(t + .164 mod 1)]. From asymptotic
theory, a large second derivative at 0 should induce large
biases at this endpoint. Surprisingly, for the ranges of n
and ¢ considered in these simulations this change in the
function only increases the Kolomogorov—Smirnov dis-
tance by at most 1%. The last case in this table uses the
same shifted function but no boundary correction. That
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Table 2. Comparison of the Distribution of u; With a Standard Normal for a Natural Spline Estimate Restricted to a Subinterval
o = .0125 o = .05 oc=.2
True %K-S % % ns %K-S m % ns %K-S var(b) % n,
function var(v) n var(v) n var(v) n
Case 1 64 2.34 A1 93.7 2.37 12 93.8 2.71 15 87.5
128 2.20 12 95.3 2.70 12 92.2 2.78 14 89.1
256 2.26 A1 95.3 2.52 A1 93.8 2.77 13 90.6
Case 2 64 1.20 .18 96.9 .78 15 96.9 .25 15 93.8
128 .96 16 96.8 .39 14 95.3 18 15 93.8
256 1.20 a7 97.7 .50 14 96.9 .24 14 94.5
Case 3 64 .60 12 96.9 .79 12 96.9 1.38 14 93.8
128 .74 12 96.9 .86 12 96.9 1.26 13 95.3
256 - .62 ah 97.7 .91 12 96.9 1.28 13 95.3
Case 3 64 1.67 14 96.9 1.58 15 96.9 .59 .21 93.8
(shifted) 128 1.76 14 98.4 1.35 14 96.9 .50 .20 93.8
256 1.57 14 97.7 1.30 14 96.9 .73 .18 94.5
Case 3 64 .74 14 100 .87 15 100 .84 22 100
(shifted with no 128 1.44 15 100 117 15 100 1.03 .21 100
boundary adjustment) 256 1.68 15 100 1.31 15 100 1.08 22 100

NOTE: Case 3 (shifted) refers to the function in Case 3 translated so that the maximum value of the second derivative is 0. No boundary adjustment means that the spline and the cross-

validation function were evaluated on the entire interval %K-S = 100 X sup.|Pr(l; <z) —
by less than 10% and n; is the number of observations included in the subinterval.

is, 9 = [0, 1]. Again, there is little difference between the
distribution of 9l(; and a standard normal.

This section ends by summarizing the results of a sim-
ulation study when 1°, A3, and ET(A3) are estimated. These
estimates require the use of cross-validation twice: first to
determine 9 and then to estimate 3. Let 4 be the minimizer
of the generalized cross-validation function given in Sec-
tion 2, and take the interval for evaluation to be 9(4). Now
let ,1,; be the minimizer of the restricted cross-validation
function

Y, - fk(tk):|2. 4.1)

1
s re9(d) [1 - Akk(’l)

The natural spline estimate is taken to be f= fﬂé Note
that f is computed using the full data set; however, cross-
validation is only applied to estimates where t, € 9(J).
Besides this restriction, (4.1) is the usual “leave one out”
procedure incorporating a special shortcut for splines (Cra-
ven and Wahba 1979). ET(43) can be estimated by gen-
eralizing (2.4). First, to simplify notation let W denote a
diagonal matrix such that W, = 1 when ¢, € J(A) and Wy,
= 0 otherwise, and let u(41) = (1/ns;)tr(WA(2)). With this
notation the generahzed cross-validation function for the
interval y(1) is

A/n )W — AD))YI?

e )
the estimate of S2 is
o _ (Un) Wi — AD))Y] .37
S w7/ SR

and we have T5 = (V;(4) — $2)¢(4;). The constant € in
(4.2) is the appropriate adjustment when f has four con-
tinuous derivatives; @ is a slight bias correction based on
the assumption that 4; is a consistent estimate of 13. The
consistency of Tj is discussed at the end of Section 5. The
form for ¢ is derived in the Appendix.

®(z)]. In each of these cases the subinterval is chosen such that the diagonal elements of A(4°) differ

Table 3 summarizes the results for a simulation study
based on the same cases considered in evaluating the dis-
tribution of ;. Each case involves 200 repetitions, and
95% confi ence intervals were computed of the form F(t)
+ 1.96V T; [t, € 9(J)]. The first number in this table is
the ACP, the second value is the ratio E(T;)/ET(43), and
the third is the sample standard deviation for this ratio
from the 200 trials. Over the range of cases the ACP
remained close to .95; T, appears to have little bias. The
smoothing spline and the diagonal elements of A(1) were
calculated using the order-N algorithm of Hutchinson and
De Hoog (1985). The minimizations of V(1) and (4.1)
were carried out with respect to log(4) using a coarse grid
search followed by a golden section search. The normal
errors were generated by Knuth’s version of the Kinder-
man—Monahan ratio of uniforms.

5. ASYMPTOTIC PROPERTIES OF THE AVERAGE
COVERAGE PROBABILITY

This section establishes (1.1), showing that the ACP
when A° and ET,(1°) are estimated is asymptotically equiv-
alent to the ACP when both of these quantities are known
and the measurement errors are normally distributed. A
proof is given for periodic splines. At the end of the section
is a discussion of the modifications necessary to show this
equivalence for a natural spline evaluated on a restricted
interval. If this theorem was limited to periodic splines
with equally spaced observation points, this proof could
be greatly simplified by expanding f and f in Fourier series
(e.g., see Rice and Rosenblatt 1983). This approach has
not been taken because it will not generalize easily to the
nonperiodic case or to higher-dimensional, thin-plate
splines.

Let G, denote the empirical distribution function for
{t:}1<k<n. Although other cases can be considered, assume
that the observation points satisfy one of two cases: (a)
fixed design points, sup,ep. |G, — u| = O(1/n); (b) ran-
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Table 3. Average Coverage Probabilities for a Natural Spline Estimate Restricted to an Interior Interval
o = .0125 o= .05 oc=.2
True BACP Mean(T) SD(T) % Mean(T) SD(T) . Mean(T) SD(T)
function #AC ET(%°) ET(2) %ACP ET(2°) ET(2°) #ACP ET(2°) ET(%°)
Case 1 64 94.6 1.01 .16 94.1 1.02 .21 92.4 1.03 .38
128 94.6 1.01 14 93.8 1.02 19 93.5 1.03 .39
256 94.3 1.02 1 94.4 1.04 .26 93.7 1.02 .26
Case 2 64 93.4 1.01 .20 94.1 1.02 .20 94.1 1.04 .20
128 94.8 1.00 13 94.2 1.01 15 94.9 1.02 15
256 94.7 .97 .09 94.6 1.02 14 94.3 1.01 14
Case 3 64 94.2 1.01 19 93.9 1.03 .20 93.6 1.00 18
128 94.7 1.01 14 94.2 1.00 13 94.2 1.00 .20
256 94.6 1.01 .09 94.7 1.00 .10 94.3 1.00 1
Case 3 64 94.1 1.01 19 93.8 1.02 19 93.3 .98 19
(shifted) 128 94.6 1.00 14 93.9 1.00 13 92.9 .93 21
256 94.1 1.00 .09 945 .98 10 92.9 .93 14

NOTE: The standard errors (SD’s) for the estimated %ACP’s range from .22 to .57. ET(4°) is the minimum expected average squared error, and the estimate T is defined by (4.3). The sample

statistics are based on 200 trials of a Monte Carlo simulation.

dom design points, {f;};<x<, is @ random sample from the
uniform distribution on [0, 1].

E(lel]’) < .

Assumption 2. 1 is the minimizer of V(1) over the in-
terval [4,, ®], where 4, ~ n=85,

Assumption 1.

Assumption 3. f is such that for some y > 0, (1/n)
2.1 b2 = y22(1 + o(1)) uniformly for A € [4,, ).

Assumption 1 is necessary to guarantee asymptotic
normality of the spline estimate. Unfortunately, uni-
form asymptotic approximations to f; are only _pos-
sible for A € [4,, ©), and Assumption 2 insures that Awill
be in this range. Assumption 3 concerns the asymptotic
behavior of the mean squared bias for f. It will hold for
second-order periodic splines provided that f® € L0, 1]
and f®(0) = fW() for 0 = k = 3.

Theorem 5.1. Let
ct, @) = f(t) = Z, VT, (5.1)

where § is defined in Section 2 and T, is given by (2.4).
Under Assumptions 1-3,

Pr(f(z,) € C(tn, @) — Pr(|U[ = Z,0) = 0 (5.2)
uniformly in « as n — .

Corollary 5.1. 1f T, is replaced by 6tr A(A)/n in (5.1),
then (5.2) holds provided 9 is replaced by (27/32) 4t [com-
pare (2.3)].

An outline of the proof is given here [see Nychka
(1987) for the technical details]. To simplify notation,
fora € R" let ¢(a, ¢) = (1/n) Zior, L(a] <o), £ =
(F@), . N»w—WMFWV_”*WMY
- f]/[ET (/1")]”2, and z = Z,,. With this notation the
ACP when A is estimated by cross-validation is simply
Egp(W, z). For a, b € R" and ¢ > 0, ¢ satisfies the ele-
mentary inequality

1]a — bf?

[p(a, ) — olb, o) =~ E—=t

+ lp(b, ¢) — o(b, c + &), (5.3)

and this is the main device in the proof for bounding
expressions. Also, I use a Gaussian approximation to a
smoothing spline developed by Cox (1984). Under As-
sumptions 1-3 it is possible to construct a probability space
containing the processes w(t), w(t), and w°(t) such that
law(@) = law(W), law(®°) = law(w°), (1/n)[W° — W
5 0 as n— o, and Ep(W?, z) = Pr(ju| < z). This last
property follows from the fact that w°(¢) is the approxi-
mation to a spline estimate based on normal errors.

Outline for Proof of Theorem 5.1. Reexpressing (5.2)
with respect to the probability space that contains the
Gaussian approximation to f;,

|Ep(®, z) — Pr(|u] < 2)| =
= Elp(W, 2) — o(W, 2)|
= Elp(W, z) — ¢(W°, 2)| + Elp(W°, z) — ¢(W°, 2)|.
(5.4)

Now applying (5.3) to the first term in (5.4), for any
e>0

‘E(P(W’ Z) - E(/)(W”, Z)i

. R [T N .
o, 2) = o, 2] = I = WIF + [p(he, 2 + &) — p(W, 2]

Adding and subtracting ¢(W°, z + ¢) — @(W°, z) within
the second expression and using (5.3) twice more gives

lo(W, 2) — p(W°, 2)|
1 (1 2
= = i — woll2 + = 50 __ wwoll2
= {n W — wejl . W we| }

+ {lo(We, z + 2¢) — p(W°, z + ¢)|
+ ‘(D(Wo’ z + 3) - ¢(wo, Z)|}

Lial + 18,
&

IA

Now, a, —> 0 as n — by lemma A.1 of Nychka (1987),
the construction of W°, and the consistency of T,. Also,
E(B,) = 9(¢) uniformly for z € R (Nychka 1987, lemma
A.2). With these results, for any 6 > 0 we have Pr(|p(W,
z) — p(W°, z)| > 6) = Pr(a, = &%) + O(e/d). Therefore,
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lo(W, z) — @(W°, z)] = 0 as n — . Moreover, because
this random variable is bounded, E|p(W, z) — o(W°, z)|
— 0 as n — . This takes care of the first term on the left
side of (5.4), and the second term can be handled in a
similar manner.

The corollary follows from the remarks at the end of
Section 2 and by straightforward modifications of the def-
initions of & and &°. '

The last part of this section describes how Theorem 5.1
can be extended to a natural spline estimator. To simplify
this discussion, assume that J is a fixed interval rather than
the adaptive interval 9(4) described in Section 4. In the
statement of Theorem 5.1, U and T need to be replaced
by ;s and Ty, respectively. Also, 7, should be restricted
to 9. The corollary will require similar modifications. For
Assumption 2 the interval 1, .] should be replaced by [4,,
{,]), where {, — © as n — . Assumption 3 needs to be
changed to read (1/n;) 2,y b(1)* = yA((1 + o(1)) uni-
formly for A € [4,, {,] as n — o. This condition will hold
provided f® is continuous and not identically 0 (Nychka
1986).

The proof of this modified version of Theorem 5.1 de-
pends on the consistency of 4; and T;. The convergence
of both of these estimates in turn hinges on the uniform
convergence of T; and V; to their expected values. It is
necessary that

T;(4) - ET;(A) =

0,(ET5(2)) (5.5)

and

(V,;(l) - nl > ei) — (EVs(A) — 0% = 0,(ETs(1))

0 yEY

(5.6)

uniformly for A € [4,, {,) as n — «. Given Assump-
tions 1-3, (5 4), and (5.5), it follows that d5/23 5 1 and
T/ E T,;(A,;) L 1asn— o, Unfortunately, at present there
are no published results establishing (5.5) and (5.6) when
4 is a subinterval of [0, 1]. Using the kernel approximation
to @ smoothing spline and the asymptotic theory for kernel
estimators (Marron and Hardle 1984), however, it should
be possible to prove these relationships.

APPENDIX: DERIVATIONS OF THE BIAS
CORRECTION FOR T; AND THE CONSTANT K

A bias correction to the cross-validation function is derived to
improve the estimates of the average squared error. An argument
is given for the form of the constant, K, in (2.3).

Let m; = (1/n;)tr(WA/(A)) for j = 1, 2, and let b2 = (1/n;)

IkEiU) (Ef A(t) — f(t))*. Then,

EVi(4) = (ETy() + ¢?)

_ b+ ¥l = 2my + my)
(1 - mz)2

- (b + (1 + my)).
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After some algebra,
&(1) = EVy(A) — o? — _ mQ2 — o, — my)
ETy(4) a-m)3 ’

where a, = m,/m, and a, = b*/(b* + o*m,). Thus p(1) = 1/[1
+ 6(4)] is taken to be the bias correction and E[(V;(1) — a%)p(4)]
= ET(4). Note that all of the quantities in ¢ can be computed
directly from the diagonal elements of A(4) and A%(4) except for
a,. Under the assumption that 75 is a consistent estimate of Ag
and that b? satisfies Assumption 3, it is possible to show that a,
converges to $.

Now I provide a heuristic derivation for the limit in (2.3).
Assume that

ETy(4)

sur A()/n » 1 asn—s o
atr A(X°)/n

Thus, using the more general notation,

K = d?’A(X)/n
~ ET()) b+ a'm,
og‘m,

llEem] - 2] -«

For a second-order smoothing spline it is known that, under
Assumption 2, a, converges to % (e.g., see Nychka 1986, lemma
3.1). Also, from the previous discussion 1 — a; has the limit §.
The value for K now follows.

o’m,

[Received January 1987. Revised May 1988.]
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