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We study the problem of estimating the distribution of
the three-dimensional radiuses of a collection of spheres,
given measurements of the two-dimensional radiuses of
a sample of planar cross sections. This problem arises in
the estimation of the tumor size distribution of spherical
microtumors induced in mouse livers following injection
of a carcinogen. We first convert this problem to a form
suitable for the application of cross-validated spline meth-
ods for the solution of ill-posed integral equations given
noisy data. Then we develop special numerical tech-
niques that will allow the spline methods to be accurately
applied to integral equations like those associated with
the present problem. We apply the resulting method to
some mouse-liver data. The subject mouse liver has been
completely dissected, allowing a rare comparison of the
estimate with the ‘‘truth.”” The statistical properties of
the estimate are explored via Monte Carlo methods. The
interplay between statistical and numerical analytic meth-
ods for problems like this are explored and the use of
eigensequence plots for studying ‘‘ill posedness’’ is de-
scribed.

KEY WORDS: Random spheres model; Stereology;
Cross-validated splines; Tumor size distribution; Ill-
posed problem.

1. INTRODUCTION

We have been working with data from experiments in
pathology studying the growth of microtumors (hepato-
cellular foci) in the livers of mice (see Koen, Pugh, and
Goldfarb, 1983). Mice are injected at 15 days of age with
a carcinogen that induces the formation of malignant tu-
mors in the liver. After a fixed period of time the mice
are sacrificed, and samples of liver tissue are stained and
embedded in a paraffin block. The matrix of paraffin en-
ables the sample to be sliced thinly, and these slices are
mounted on microscope slides. Tumors in the sample will
now appear in cross section on these slides, and their
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cross-sectional area or radiuses, if spherical, can be
measured.

It is desired to estimate the number density and three-
dimensional size distribution of the liver tumors from the
cross-sectional observations. In these particular experi-
ments, a single mouse liver may contain anywhere from
a few to several hundred microtumors. Different math-
ematical models for tumor growth have different imipli-
cations for the variation of tumor size distribution with
mouse age. Thus it is desired to identify tumor size dis-
tributions for groups of experimental animals sacrificed
at different times after the exposure to the carcinogen.
These growth models are important because they might
suggest some of the mechanisms that initiate and promote
liver cancer. By the limitations of the dissection proce-
dure, tumors can only be identified by their cross sec-
tions. Since tumors of different sizes can produce the
same size cross sections, there is not a direct correspon-
dence between the cross-sectional data and the distri-
bution of tumor sizes. Although it is possible to take
many, closely spaced slices and completely reconstruct
each tumor, this procedure is both tedious and costly.
What is required is a statistical method that estimates the
three-dimensional tumor size distribution from observa-
tions of two-dimensional cross sections from a modest
number of slices.

The biology of the liver suggests that the tumors will
be uniformly distributed throughout the tissue, and ex-
amination of successive cross sections has indicated that
the tumors are roughly spherical. These assumptions sug-
gest a model from geometric probability. Consider a me-
dium that contains spheres whose centers are distributed
according to a Poisson process in space with constant
intensity and whose equatorial radiuses are distributed
according to the cumulative distribution function Fi(r).
It is assumed that the tumor number density is small
enough so that distinct spheres do not interfere with one
another. Now suppose this medium is sliced in a manner
independent of the spheres’ sizes and locations. Let F»(x)
denote the cumulative distribution function of the (two-
dimensional) cross-sectional radiuses from randomly se-
lected slices. The relationship between F, and F; was
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derived by Wicksell (1925) and is
R
Fy(x) =1 - *-I—LJ \r2 — x2 dFs(r),

R=x=0,

(1.1

where R is an upper bound for the maximum possible
value of r and p. is the mean (three-dimensional) radius,

R
" =JO rdF(r).

Equation (1.1) is obtained by a conditioning argument. If
a single sphere of radius r is cut by a particular plane,
then the distance from the cutting plane to the center of
the sphere is equally likely to be anywhere between 0 and
r, and the cdf of the cross-sectional radius is F(x) = 1
— V(7 = x2)/r (0 = x = r). The probability that a sphere
of radius r will be cut is proportional to its radius times
its relative frequency in the sphere population.

In practice, tissue slices are parallel and uniformly
spaced (see Figure 1), and the orientation of the cutting
planes is chosen to maximize the cross section of the cuts.
For (1.1) to hold, it is only necessary to assume that the
sphere centers are distributed so that the preceding con-
ditioning argument holds.

In this work we will usually be acting as though we are
sampling from some population of tumors that possess a
density f3. The problem is: Given a sample from F, ob-
tain a good estimate for the density fi(r) = F3'(r). In
practice, tumor cross sections can only be observed if

(1.2)
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they are larger than some radius €. In this case, clearly
the experiment does not provide information concerning
f3(x) for x = . However, an integral relationship between
the two-dimensional distribution, conditional on x = e,
and f3(x) for x = €, can still be obtained. This was ob-
served by Chover and King (1981), and their derivation
follows. Let F,< be the conditional distribution of x given
x = e. Defining p. by

Re = fR Vr? — €2 fi(rdr, (1.3)
it follows from (1.1) that
1 — Fa(e) = ==, (1.4)
T8
hence
ewn 11— F(x) _ o
1 - F*(x) = 1= Fa@ F2© (1 - F2(x). (1.5)

Substituting (1.5) into (1.1) gives
R
Fr) = 1 — ;1— J Vi Z 22 f5(dr.  (1.6)

The problem now is to estimate f3(r), r = e (or, rather,
f35(r) = f3(M/(1 — F;(e)), given a sample from F>°.

The problem of estimating the distribution of sphere
sizes in a medium from the cross sections of a randomly
oriented slice, given a sample cumulative distribution
function from F,, is a classical problem in stereology.
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Figure 1. Schematic Diagram of the Slicing Design: (a) Slicing Design; (b) Detail of Sphere Intersected by Two Slices.
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For the case € = 0, several approaches have been pro-
posed, including maximum likelihood, regression, and
nonparametric methods (see Keiding, Jensen, and Ranek
1972; Nicholson and Merck 1969; Nicholson 1970,1976;
and Tallis 1970). Recently, Kuk (1982) has placed this
problem in the context of estimating a mixing distribution.
Watson (1971) discussed the estimation of moments of
f3. Anderssen and Jakeman (1975) obtained an estimate
of f3 from the inversion formula

R
£20) = 32 [ {apa oy VT = 2.

They use spectral differentiation and product integration
to evaluate the integral. Mendelsohn and Rice (1982) stud-
ied a similar problem in which the desired density g and
the density 4 from which observations are made are re-
lated by

h(r) = f w(r, x)g(x)dx 1.7

for a normal kernel w. Their work is somewhat related
to the work described here and will be discussed later.

The problem of recovering estimates of fs from ob-
servations on f, is harder than might appear at first glance
because it is ill posed. Here this means that large changes
in the true f; lead to changes in the sample histogram
that are imperceptible compared to the sampling error.
In particular, high-frequency components in f; will not
in general be recoverable from medium or even large sam-
ples from F,*. For this reason parametric methods (if a
parametric form is known) or nonparametric methods,
which estimate a smooth solution, are most likely to be
successful. If the true solution is smooth, then a good
nonparametric smoothing method is a promising candi-
date for recovering the ‘‘truth.’’ If the truth is not smooth,
then such a method should recover the smooth part of
f3. Similar remarks have appeared in Anderssen and
Jakeman (1975), Mendelsohn and Rice (1983) and else-
where, but are worth repeating.

In Section 2.1 we show how the problem of estimating
f3* from a sample from f, can be converted to the prob-
lem of solving an integral equation given noisy data. We
can then apply cross-validated spline methods for solving
ill-posed integral equations. These methods have been
shown to be successful in a variety of applications (see
Crump and Seinfeld 1982, Merz 1980, and Wahba
1977,1979,1980,1982a,b).

In Section 2.2 we develop a numerical algorithm using
certain carefully matched quadrature approximations,
which are particularly suited to the application of cross-
validated spline methods to integral equations like (1.6).

In Section 3 we apply the estimation procedure to a
sample of cross-sectional mouse-liver data obtained by
two of us (Goldfarb and Pugh). The mouse liver from
which this data was taken was exhaustively dissected,
and the true distribution of the three-dimensional tumors
from the subject mouse was determined. Thus we have
a unique opportunity to compare the estimated distri-
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bution with an actual distribution in circumstances that
accurately reflect laboratory experiments.

The results appear to be quite successful.

Convergence properties of this estimate can be ob-
tained by adapting known techniques for regularized so-
lutions to ill-posed linear-operator equations (e.g., see
Cox 1983, Lukas 1981, Silverman 1983, and Wahba 1977).
The results appeared in Nychka (1983). More to the im-
mediate point, the experimenter would like to know how
well the method will recover size distributions with a sam-
ple size and slicing design similar to those encountered
in practice. We have designed a Monte Carlo experiment
to answer this question for an experiment similar to the
laboratory experiment described in Section 3. This ex-
periment is in the spirit of the recent landmark paper of
Diaconis and Efron (1983). Some of the results are given
in Section 4. In general, the accuracy of the estimate is
quite impressive, considering the modest sample size and
ill posedness of the problem. It is, however, difficult to
estimate f3(r) for r near € with sample sizes like those in
Section 3. This is not surprising considering that f is
subject to length-biased sampling and that large tumors
can give rise to both large and small cross sections. Thus
information in the data concerning the behavior of f3 near
€ is scanty. The method described here extrapolates from
data-rich to data-poor regions of r in a linear manner. In
Section 5 we describe how a priori information concern-
ing the behavior of f3; near € can, if available, be incor-
porated into the estimate.

In Section 6 we show how certain eigensequence plots
can provide important insight into the precise degree of
ill posedness of this problem, and we discuss the effects
of “‘binning”’ the data.

In Section 7 some related methods are described, and
we describe the very important interplay between statis-
tical smoothing methods and approximation theoretic
methods such as quadrature and finite-element methods.

2. CROSS-VALIDATED SPLINE METHODS FOR ILL-
POSED LINEAR-OPERATOR EQUATIONS

2.1 The Cross-Validated Spline Estimate fx for f,

Let 3 be the (Sobolev) Hilbert space of real-valued
functions on [e, R]: # = {h: h, h’ absolutely continuous,
h"e&L,[e, R]}. The (usual) model behind cross-validated
spline methods for integral equations is

i=12,... 2.1

where the {e;} are independent zero-mean random vari-
ables with common unknown variance, and L, . . ., L,
are bounded linear functionals on # (see Wahba
1977,1978,1980,1982a,b). Given data z = (zi, . . . , 2.)’,
the cross-validated spline estimate k5 for A is obtained as
the minimizer in % of

i = Lzh + €, y 1,

1 R
= (Lik = z* + ) f (h"(r)2dr,  (22)
n - €

where the smoothing (bandwidth) parameter is taken as
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the generalized cross validation (GCV) estimate of A (see
Craven and Wahba 1979).

In the problem under study, let £,¢ be the sample cdf
of the cross-sectional radiuses, let {P;};~,, be a partition
of the interval [e, R], e = Py < P, < - < P, <R, and
let z; be the fraction of all observations in the ith bin, [P;,
Piiy).

Then

2 = Fof(Pivy) — Fo5(P))
= F>*(Piv1) — F2*(P) + &, (2.3)

where the €; are random variables. If the observations are
an independent sample from F¢, then the {e;} will have
zero mean and be jointly asymptotically normal and only
weakly correlated. In this work we are going to ignore
the fact that the variances of the e€; are not necessarily
the same. (Various reweighting schemes are possible; see
Cox 1970 and Villalobos and Wahba 1982.) Letting 4 =
f3/pe, and setting

R
L:h = L' V2 — PZh(r)dr

R
- J‘P. V2 — P 2h(dr, (2.4)

(2.3) becomes (with the aid of (1.6)) z; = L;4 + €;. Given
Z, we let i, be the minimizer of (2.2) in ¥ and let f, be

Fa(r) = ha(r) / J;R ha(s)ds.

Our estimate f; is then fx, where \ is the GCV estimate
of A. (Note that [R hx(s)ds is an estimate for 1/p...) The
estimate obviously integrates to 1, but it is not required
to be positive. Negativity was not a problem with the
actual mouse-liver data. In one of the Monte Carlo ex-
amples the estimate went negative, and we have trun-
cated the estimate in the plots. If desired, non-negativity
constraints can be added to the problem of (2.2) (see
Wahba 1982a and Villalobos 1983).

We remark that a penalized log-likelihood estimate for
g = log f3* may be defined by extending the results of
Silverman (1983) and by differentiating (1.6) to obtain a
relationship between f»¢ and g. O’Sullivan (1983) has re-
cently shown how to use GCV to estimate the smoothing
parameter in similar estimates. While the penalized log-
likelihood estimate appears to be more computationally
burdensome than the estimate under study here, we be-
lieve that further investigation is warranted. Note that
the smoothness penalty in such a method is applied to log
fs¢ as opposed to f<.

2.5

2.2 The Numerical Method for Computing fx

Using known but scattered results, we next give an
efficient numerical procedure for computing (a very good
approximation to) the minimizer of (2.2) and the GCV
estimate A of A. The method is readily implemented for
n less than a few hundred. In all of our calculations,
n will be 80, and the bins are equally spaced in log x
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between € and R. The log spacing is a crude variance-
stabilizing spacing for our mouse-liver data. For the
actual and most of the Monte Carlo data, the number of
observed cross sections was between 150 and 450.
The choice of n = 80 bins is large enough so that the
binning is not doing any appreciable smoothing.
Binning as smoothing will be discussed in further detail
in Section 6.

As with any ill-posed problem, care must be taken in
the actual calculation of the solution, or garbage may re-
sult from dividing random or roundoff errors by small
eigenvalues. It will be seen here and in Sections 6 and 7
that the numerical analysis and the estimation procedure
can become inextricably intertwined in ill-posed prob-
lems. Approximation-theoretic methods become smooth-
ing procedures and vice versa. For completeness, and to
allow discussion of this point, we outline the major steps
of our numerical method here, pointing out the steps de-
veloped particularly for the problem at hand.

Using the results in Kimeldorf and Wahba (1971),
Wahba (1978), and Wahba and Wendelberger (1980), an
explicit formula for 4, , the minimizer of (2.2) in ¥, can
be given as follows. Under the inner product

(S, 8% = FO2© + F'Og'©@ + [ £,

€ is a reproducing-kernel Hilbert space. The reproducing
kernel for # with this inner product is

or,s) =1+ (r —e)s — € + 0i(r, ),

e=r,s<R, (2.6)
where
(e — )3
0., 5) = (r e)z(s €) _(r 65) , y=s
=(r—e)(s—€)2_(s—€)3 r=s
2 6 ’ o

Let 1(r) = 1, d2(n) = (r — €), and &(r) = Li(Q:(:, 1),
where L; is given by (2.4) and L:(Q:(-, r)) means that L;
is applied to Q.(s, r) considered as a function of 5. Let
T be the n X 2 matrix with ivth entry 7, = L;, (v = 1,
2), and let K be the n X r matrix with ijth entry k;; =
TR E/(r)&/(r)dr. If T is of rank 2, h, is uniquely deter-
mined and given by

n 2
() = X cikdr) + X dvbo(), 2.7)
i=1 v=1

where ¢ = (¢1, ..., c,) and d = (d,, d)' satisfy
(K + n\)c + Td = z, 2.8)
T'c=0. 2.9)

The GCV estimate A of \ is the minimizer of the cross-
validation function V(\),

V) = Un(| = Az PA/n) eI — AN,
(2.10)



836

where A(\) is the n X n influence matrix defined by
Ly(hy)

La(hy)

From, for example, Wahba and Wendelberger (1980) it
is known that

I - A\ = Q(QKQ' + n\D)™2Q’, -(2.11)

where Q can be taken as any n X n — 2 matrix whose
n — 2 columns are linearly independent and perpendic-
ular to the two columns of 7. The numerical problem now
is to compute the minimizer \ of V(M) and hy.

In this problem closed-form expressions can be ob-
tained for the {¢,;} and {r;,} and are given in Appendix A.
Unfortunately we were unable to find a closed-form
expression for k;; = [Z £/(r¢&/(r)dr, so some form of
quadrature must be used. It is not at all clear that just
applying the nearest handy quadrature formula to obtain
approximations to the entries k;; of K is appropriate. In
particular, the non-negative definiteness of K could easily
be lost, leading to problems in the calculation of \.

The following form of matched quadrature can be used
to avoid this problem. The particular form of matched
quadrature chosen is motivated by (a) the fact that &,*(e)
=0w=0,1,i=1,2,...,n)and (b) the desire to do
as little quadrature approximation as possible by exploit-
ing the known closed-form expressions for ; and ;..

First, let m; be the representer of L; in ¥; that is, L;h
= (m;, h). It is known that m; = & + and; + and, for
some a;i, a, (e.g., see Kimeldorf and Wahba 1971). Note
that (2.2) may be rewritten as

1 i (i, B) — z)* + ) f * (h"(r)*dr
n< Ni, i e .

Now choose a fine grid of N + 1 points, € = 5o < 57 <
s2 < -+ < sy = R, and for any & let Pxh be that element
in % that minimizes J(h) subject to (Pyh)(s;) = h(s;) (I
=0,1,2,..., N)and (Pxh)' (¢) = h'(e). Pnh will be
a cubic interpolating spline subject to the left-boundary
conditions. The matched quadrature consists of approx-
imating L; by L, where L; is the linear functional on %
defined by L;h = (Pnm;, h). We are now in a position
to solve the approximate problem. Minimize

LS Gk = 207 + 2 f * ()
n< i i . s

= A(\)z.

(2.12)

in ¥, exactly. This is easily done using formula (2.7),
since it can be shown that%, = L;$, = L;¢, = 7, and
L{Q:(, ») = Pnt; = &, say. (The procedure we used
for computlng Pnt; is given in Appendix B.) k;; = Je R
g,”(r)g,"(r)dr is readily evaluated exactly, since the {£;}
are piecewise polynomials. The minimizer A, of (2. 12) is
given by (2.7), (2.8), and (2.9), with §; replaced by & and
K replaced by K = {k;;}. The cross-validation function
V(M) for this problem is given by (2.10) and (2.11) with
A(\) replaced by A()), defined by replacing K by K in
(2.10). QK Q' will be non-negative definite.
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Given _I'( and T, we give an efficient procedure for min-
imizing V(\) and computing ¢ and d.

1. Use LINPACK (Dongarra et al. 1979) to find the
OR decomposition of T, to obtain

R,
T=(01:02){ |,
0

where Q,isann X n — 2matrix with Q' Q> = 1,,_2xp_2
(Q2'T = 0) and R, is upper triangular. The Q appearing
in (2.11) can be taken as Q5.

2. Let B = Qz'f( (> and use EISPACK (Smith et al.
1976) to find the eigenvalue eigenvector decompositon
UDgU' of B, where b,2 (v = 1,2, ..., n — 2) are the
n — 2 diagonal entries of Dp (eigenvalues of B) and the
n — 2 columns of U are the eigenvectors of B. Then

n—2 na

tr(d — A(\)) = E] T

(I — A\)z = n\Q,U(Ds + n\)~'U’'Q,'z.
3. Lettingw = U'Q,'z, then
nAW,

2 1 n—2 nA 2

(b + n)x) / <n 2:, b + nh) ’
¢ = Q:U(Dp + n\I)"'w, and d is obtained by solving
Rid = Qi'(z — Kc). V(\) is minimized by a global
search in log \. If nA is much smaller than the smallest
b,? or much larger than the largest b,2, it may be taken
as 0 or «, respectively, so this limits the region required
to be searched. [& hx(r)dr is easily evaluated.

It is useful to note that if Ay is to be obtained for re-
peated samples, with the same bins, the cost is quite mod-
est for runs after the first, since the expensive calculations
involve the calculation of Q;, Q., R, U, and Dg, and
these need only be computed once because they do not
depend on the data.

1n2

wn=—2

The preceding procedure appeared in Wendelberger
(1981) and has been found to work well in similar prob-
lems for n as large as 350. In the calculations that follow
we used N = 80, with the s; equally spaced. Further
discussion of the choice of N appears in Section 6.

3. NUMERICAL RESULTS WITH
THE LABORATORY DATA

The liver being sliced fits roughly into a box about 7,500
X 7,500 microns (u) square by 2,380 deep (100 = .01
cm), and for the experimental data studied, it is sliced
perpendicular to the short dimension in 21 equally spaced
slices (of negligible thickness) 50 microns apart, through
the central 1,000 microns of the block, to be called the
slicing region. Figure 1 gives a schematic diagram of the
slicing design.

Thus, in practice, slices of the paraffin block containing
the liver are all parallel to one another, the spacing is
equal, and only the ‘‘phase’’ of the tumors with respect
to the slicing grid is random. In this experiment, it was
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PROBABILITY

r,MICRONS

Figure 2. Probability That a Sphere of Radius r Will Have at Least
One Observed Cross Section.

determined in the laboratory that e = 38.46 microns was
the smallest cross-sectional radius reliably detected by
all of the personnel identifying cross sections. This de-
termination was made after comparing replicated slide
readings by the same and different technicians. Smaller
cross sections, when observed, were ignored. If € is cho-
sen too small, an erroneous estimate may result, whereas
if e is chosen too large, an unnecessary loss of information
results. The behavior of the estimate near the left end-
point may be sensitive to the choice of €. Spherical tumors
of three-dimensional radius greater than 45.8 microns and
lying wholly in the slicing region will be observed in at
least one slice, and tumors with radiuses between e and
45.8 may or may not be observed. Figure 2 gives the
probability that a sphere of radius r that lies wholly in
the slicing region will have at least one observed cross
section. Equation (1.1) still holds, but a little reflection
will show that if the spacing is uniform and spheres can
be sliced more than once, the sampling variance will be-
come smaller as the spacing becomes finer.

R was taken as 690w. This number was chosen as a
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Figure 3. Histogram of Cross-Sectional Radiuses: 154 Observed
Cross Sections.
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Figure 4. The Estimate f, (r), for Three Different Values of \.

conservative upper bound for the largest possible tumor
radius after examining the reconstructed tumor size dis-
tributions from a group of seven mice (which include the
mouse used as an example in Section 3). The spline es-
timate has been found not to be sensitive to R as R in-
creases, provided R is somewhat larger than the maxi-
mum tumor radius. It is our experience that once outside
the range of the observed data, the estimate of f5 will be,
effectively, 0.

With this slicing, 154 tumor cross sections were ob-
served. Figure 3 gives a histogram of the observed cross-
sectional radiuses using the bins [P;, P; . ]. Figure 4 gives
a plot of the estimate f,(r), € = x = R, for three different
values of N. This figure demonstrates the sensitivity of
fx as \ varies. For large \, the resulting spline is very
smooth, but it may have ignored some features of the
data. When \ is small, the estimate fits the cross-sectional
distribution well, but it yields an oscillating estimate for
the tumor size density. In these particular data, one won-
ders whether the mode at 280 microns is an actual com-
ponent of the distributions or, rather, just an artifact from
undersmoothing.

Figure 5 gives a plot of log V(\) versus log . V(\)
is minimized for \ around 107°. This suggests that the
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Figure 5. The Cross-Validation Function V(N).
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Figure 6. Histogram of True Tumor Size Distribution and fx.

solid curve in Figure 4 is a good estimate for the size
density. Note that this estimate retains a mode at around
280 microns. To compare fx with the true f;<, the slicing
region was completely dissected by fine slicing. Figure 6
gives a plot of fx (the same as the middle curve in Figure
2) and a histogram of the true tumor-size distribution.
There were 53 tumors at least partially in the slicing re-
gion. Tumors that were only partially in the slicing region
were counted as a fraction of an observation, that fraction
being the ratio of the volume inside the slicing region to
the whole tumor volume as estimated by the curvature
of the portion in the slicing region.

Overall the agreement between a histogram of the re-
constructed data and the cross-validated smoothing
spline is good. These results are particularly striking be-
cause there are only 53 reconstructed tumors in the tissue
sample, although of course, the systematic sampling
helps. The concentration of tumors around 280 microns
predicted by the spline is an actual feature of the recon-
structed data. Close to the lower limit, €, however, the
spline underestimates the reconstructed distribution.

4. MONTE CARLO EXPERIMENTS

We studied the sampling properties of the estimate by
Monte Carlo methods designed to mimic the effects of
multiple sampling of large tumors, as well as edge effects,
as they actually occur in the mouse experiment.

The geometry of the Monte Carlo experiment is exactly
that described in Figure 1; however, R in that figure may
take on other values. A pseudo-random number for the
total number of spheres was generated according to a
Poisson distribution with mean equal to the volume of the
entire block x 900 tumors/cc. (The actual mouse had a
tumor number density of about 900/cc.) If the number of
spheres is n3, then n; ‘‘centers’’ are uniformly distributed
throughout the entire block. For each center, a random
radius was generated according to the density fs.
Twenty-one parallel, infinitely thin slices 50 microns
apart were then made through the shaded region, and the
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radiuses of all (two-dimensional) intersections greater
than € were recorded.

There are now at least two ways of defining the ‘‘true’’
distribution of the three-dimensional radiuses in this ex-
periment. One is as the ‘‘theoretical’’ distribution deter-
mined by the density f3, from which the pseudo-random
radiuses were drawn. The second is as the ‘‘actual’’ dis-
tribution of the three-dimensional radiuses that were ac-
tually drawn. For comparison purposes we will display
both the theoretical density and a histogram of the actual
distribution as just defined. (The actual distribution is de-
fined here a little differently than the true distribution of
Section 3, since tumors in the block but outside the slicing
region can be counted.) Experimenters will likely want
to focus on the actual distribution if they are interested
in a single mouse and on the theoretical distribution
if they consider a single mouse as a member of some
‘‘superpopulation.”’

We present the results of four Monte Carlo studies. In
each of the studies six replicates were performed. A rep-
licate consists of drawing a sample of tumors, slicing the
block, recording the observed cross-sectional radiuses,
and computing the estimatg fx.

Experiment 1 was roughly designed to mimic the num-
ber density and theoretical size density f5 of six exper-
imental mice, one of which has been described in Section
3. The theoretical f3 was taken as a Weibull density that
approximates the data of Figure 6. R in this experiment
was 690 microns. (R in the definition of J(-) and in Figure
1 have been taken to be the same.) The number of tumors
replicated in the entire block averaged 115 with about
49% of them having recorded intersections. The number
of observed cross sections averaged 204. Figure 7 shows
the results of the six replications. The solid curve in the
upper-left plot is the theoretical Weibull curve, the his-
tograms represent the actual size distributions, and the
broken lines are the estimates fx. Although the overall
shape of the estimate is good, a tendency to underesti-
mate the density near the cutoff is evident in four of the
six replicates. Experiment 2 (see Figure 8) studies a den-
sity with different behavior near €. f is a truncated
density. The average number of tumors in the block was
113, of which about 60% had recorded intersections; the
average number of observed cross-sectional radiuses was
426. In this experiment most replicates overestimated f3
near €, and overall, the shape of f; is quite good, partic-
ularly for larger r. In Experiment 3 we wished to examine
the ability of the estimate to resolve distinct peaks. It is
of some interest to know to what extent this is possible.
The theoretical f; was a mixture of two truncated normal
densities. R = 450. Figure 9 shows the results of six rep-
lications for Experiment 3. The average number of tumors
in the block was 80 with about 70% having recorded in-
tersections, and the average number of observed cross-
sectional radiuses was 341. Although in all of the six rep-
licates excellent recovery of the two peaks of f; was ob-
tained, the estimate of the replicate in the lower-left cor-
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ner demonstrated ‘‘flaky’’ behavior near e. Inspection of
the observational data reveals that the five well-behaved
estimates had no observations in the smallest observation
bin whereas the flaky estimate had two. In Experiment
4 we wished to see the effect of increasing sample size
in Experiment 3. The same f3, but with a tumor number
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density five times as big as that of Experiment 3, was
used. The average number of tumors in the block was
460 with about 70% having recorded intersections, and
the average number of observed cross-sectional radiuses
was 1,781. Figure 10 gives the results of this experiment.
Extremely good recovery of f3¢ is seen.
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We were also interested in the properties of this smooth
estimate in the limiting case when the slicing region is
sliced an infinite number of times. For an example, we
used the size distribution of the 53 tumors from the mouse
of Figure 1 and assumed that all of the tumors were ac-
tually contained within the sample. It is not difficult to
show in this case that the appropriate data are the ex-
pected values of the profile histogram for this discrete
distribution (Nychka 1983). A plot of f ; appears in Figure
11, superimposed on a histogram of the theoretical dis-
tribution.
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5. MODIFICATIONS FOR END EFFECTS

We conclude that this approach is quite successful on
the random-spheres problem, although the behavior of
the estimate is not as good as might be hoped near e for
small sample sizes. We believe that this is a problem pri-
marily of the data (as opposed to the estimate), since due
to the length-biased sampling, and the fact that large tu-
mors have small cross sections as well as large ones, there
is very little information in the data concerning the be-
havior of f; near €. It should be recognized, however,
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that the estimate extrapolates smoothly from data-rich
values of r to data-poor values of r, where smoothness is
essentially determined by the choice of penalty functional
J(-), which has been taken in this article as J(f) = [%
(f"(r))*dr. The null space of J(-) is the linear functions;
thus, where there is insufficient information in the data,
extrapolation will be linear. In this problem, the penalty
functional could have been replaced by, say, J(f) = [
(f"(r))*dr, in which case the extrapolation would have
been quadratic. If prior information concerning the be-

havior of f3; near € were available from some external
source, then this information could be included in the
cross-validated spline estimate by appropriately modi-
fying J(-). For example, suppose it was known that f3
behaves like a particular negative exponential density g,
say. This information may be incorporated in the estimate
by replacing J(f) = [ (f"(r)*dr by, for example, J(f)
= | P.f |PQ, where P,f is the projection of f onto the
orthocomplement of span {g, &1, &»}. Then extrapolation
from data-rich to data-poor regions (i.e., near €) will pro-
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ceed via Bayesian information that the true f has negative
exponential behavior there. (We are compelled to report,
however, that for the mouse liver problem, behavior of
f3* near € was something of a surprise.) The abstract idea
behind this approach may be found in Wahba (1978, sec-
tion 3). For details of the application to this problem, see
Nychka (1983); also see the remarks in Silverman (1983),
where a normal density is in the null space of his penalty
functional. For a different approach to modifying bound-
ary behavior, see Gasser and Muller (1979). Bias near the
boundaries in certain spline estimates that extrapolate lin-

x10-3
12.

10.

100. 150. 200. 250. 300. 350. 400.

~

] | l 1 ]
100. 150. 200. 250. 300. 350. 400.

50.

, \
/ \ / ht
n , \I_J

1 I r< i | |
S0. 100. 150. 200. 250. 300. 350. 400.

- Joumnal of the American Statistical Association, December 1984

early has recently been discussed by Rice and Rosenblatt
(1983). However, despite the apparent bias near the left
boundary in the real data and in Experiment 1, GCV ap-
pears to be doing its job well (see Figures 4 and 7).

6. QUANTITATIVE “ILL POSEDNESS,” EIGENSEQUENCE
PLOTS, AND THE CHOICE OF n

Since the cost of the numerical calculations increase
rapidly with n (for the first estimate computed), it is
tempting to choose n fairly small. If n is much less than
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the number of observations, it may act as a smoothing
parameter. Using » as a smoothing parameter can be jus-
tified theoretically, from an asymptotic point of view
(e.g., see Wahba 1975). It is our numerical experience,
however, that when there is a relatively small amount of
information about the solution available in the data, then
smoothing by binning can result in loss of fine structure
in the estimate that would be observable if A were allowed
to do most of the smoothing. Thus we set out in this
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problem to choose n large enough so that little or no
smoothing is done at the binning step.

Since this problem is ill posed, however, increasing n
beyond some point will not retain much more informa-
tion, even if the sample size were infinite.

Inspection of the computed eigenvalues b,2 (v = 1, 2,
. .., h — 2)can be a valuable procedure in studying this
question, and we describe how next. First, given the bins,
let I ,, be the operator with domain % and range E,,, which
maps ftoH,.f = (Lif,...,L,f). Then X, is analogous
to the design matrix X in the usual regression problem y
= XB + €, and the role of XX’ is played by the n X n
gram matrix 3 with ijth entry (v;, m,). Inspection of the
eigenvalues of 2 thus provides important information on
the effective dimension of the range of ¥, when the do-
main of ¥, is ¥. In some ill-posed problems, 3 is theo-
retically of full rank but has fewer than » eigenvalues that
are actually larger than machine double-precision 0. For
an extreme example, see Wahba (1979). Now, since m;
= & + and: + and, for some a;;, an, the matrix 2 can
be obtained from the matrix K with ijth entry (§&;, £;) by
the addition of some rank 2 matrix, which is not important
to our problem. (The a;; depend on the definition of (¢,,,
b.), b, v = 1, 2, which is irrelevant to the estimate being
studied.) Furthermore, if v, = y, = --- = v,, are the ei-
genvalues of K, and 8; = &, = --- = §,,_, are the eigen-
values of QKQ', then y,_, = 8, = v,. Now as part of
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the calculations for Sections 3 and 4 we have computed
b2 = -+ = b,_,%, which are the eigenvalues of QKQ’,
K being the n x n matrix with ijth entry (Pné§;, Pn§)).
The b,?’s satisfy b,2 < v, (i =1,2,...,n — 2), and
the number of nonzero b,%’s cannot be bigger than the
dimension of the range of Py. In the limit as N — «, b,?
— v,. If N is too small, it, too, can act as a smoothing
parameter.

Figure 12 gives a plot of the first 68 b,%’s on a log-log
plot, with n = 80, N = 80. (The vertical unit is arbitrary
and depends on the units in which r is carried in the com-
puter. It is reasonable to choose these units so that b2
~ 1.) For comparison, an arrow marks nk = 80 x 107>.
Recall that the eigenvalues of A(\) are (1, 1, b,2/(b® +
AN), . .., bu_2*/(bu—> + n\)). A(\) plays the role of
the influence matrix X(X'X + nAI)X' in the regression
problem when a ridge estimate is used for B.

Based on trying several values of n and N, it is our
belief that at least the first 30 or 40 b,?’s approximate the
d,’s very well and that increasing N would have no ap-
preciable effect on the resulting estimate fx. If n is in-
creased, our unpublished plots as well as recent analytical
work suggest that the slope of (the major part of) the
eigensequence log-log plot will tend to a limit (e.g., see
Utreras 1981 and Wahba 1977). Note that b4o2/b,? is al-
ready down to 10~7. We conclude that increasing n (with
N = n) much past 80 would not change fx, certainly not
to plot accuracy, and that we have thus succeeded in
choosing n and N so that they are not acting as smoothing
parameters.

Eigensequence plots can provide insight about practi-
cal limits on the amount of information concerning f€ in
the data, and we suggest that these plots be routinely
examined in problems of this sort. It is seen that with \
= 1073, the eigenvalues b,%/(b,> + n\) of the influence
matrix A(N\) have decreased to .5 by about the eighth
eigenvalue (v = 6).

7. RELATED ESTIMATES AND THEIR
SMOOTHING PARAMETERS

Another approach to the approximate numerical cal-
culation of the minimizer of (2.2) in # is to minimize (2.2),
in a convenient approximating subspace ¥5 = span{B,},
say.

Then one finds 4, of the form 4\ = >,,0,B; to minimize
(2.2). In the problems studied here, a space of cubic B
splines (see deBoor 1978) would be appropriate. If the
basis functions have compact support, this would be con-
sidered to be a finite-element method.

Given € = 5o < §1 < *** < sy = R, let Syh be that
function in ¥ that minimizes J(&) subject to (Snh)(s) =
h(s)) (I = 0, 1, ..., N) and (Snxh)' (so) = h'(s0),
(Sng) (sn) = h'(sn). Snk is the cubic spline interpo-
lating to & at so, S1,. .., S~, and to i’ at so and sn. Let
¥~ be a set of N + 3 cubic B splines whose span is the
range of Sn (e.g., see deBoor 1978, chap. 9). Then the
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minimizer of the exact expression

1 n
n > (mi b = z)* + N(h), 7.1
i=1

in the approximating subspace Y, is the same as the
minimizer of the approximate expression

1 n

~ 2 (i, Snh) = 207 + M(h) (7.2)

i=1

in ¥. This can be shown without difficulty by writing A
= Syh + (I — SN)h = 2,0,B; + (I — Sn)h for some
{8,} and using the property of the cubic spline interpolant
TR (Snh)'((I — Sn)h)" = 0 to obtain J(h) = J(Syh) +
J( — Sn)h). It can then be shown that the minimizer
of (7.2) must be in ¥ 5. Upon observing that Sxh = h for
any h in & (spline interpolation is idempotent), it follows
that problems (7.1) and (7.2) are the same. For compar-
ison with (2.12) we can write (7.2) as

1 n

n igl
where Lih = (Sn*ni, h), Sn* being the adjoint operator
to S ~. The cross-validation function V() for the problem
(7.3) can also be readily obtained.

The minimizer of the exact problem (7.1) in some space
¥~ of B splines is the ‘‘hybrid estimate’’ proposed by
Wahba (1980) and mentioned by Mendelsohn and Rice
(1983). If the dimension of ¥ is chosen large, then this
hybrid estimate will, numerically, be a good approxi-
mation to the original cross-validated spline estimate
(minimizer of (2.2) in ¥). On the other hand, if $x is
relatively small, then N will act as a smoothing param-
eter. Thus there will be a pair of smoothing parameters
(A, N), which, in principle, could be chosen objectively

by GCV. Mendelsohn and Rice (1983) solved the problem
mentioned in (1.7) by using the minimizer of

(L:h — 2. + NJ(h), (7.3)

1 n
- 2 (Lih - Zi)2
ni-

in $x. In their work, n was very large, and N was the
only smoothing parameter.

When N is the only smoothing parameter, the optimal
integrated mean-squared error (IMSE) value of N grows
very slowly with n. (For certain regression problems N
= 0(n"”?); see Agarwal and Studden 1980.) When # is very
large and the data is nearly exact, then one can sometimes
profitably use N as the sole smoothing parameter, since
the optimal N will be large enough so that recoverable
structure in the solution will not be lost. (An N-only es-
timate is the easiest to compute.) In Mendelsohn and
Rice’s (1983) problem, n was several hundred and the data
could be considered extremely ‘‘exact,”” since 10° ob-
servations were in the n bins. They found an N of 12
subjectively. In our problem with much ‘‘noisier’’ data,
we conjecture that the optimal N in an N-only estimate
would result in N of more like 3—-6, and in general the



Nychka et al.: Spline Methods for the Estimation of Size Distributions

estimate would not show the peak resolution that is ev-
ident in Figures 9 and 10 unless the true solution was
actually in ¥ . Efficient numerical methods for the hy-
brid estimate for problems with very large N (as might
occur in image processing, for example) can be found in
Bates and Wahba (1982).

We see now that there are actually three possible
smoothing parameters—\, n, and N. In the matched-
quadrature method, it is natural to have N > n, and the
computing load is sensitive to n and insensitive to N. In
the hybrid method it is natural to take N < n, and the
computing load will be sensitive to N and insensitive to
n. In the matched-quadrature method, one could easily
use n and \ as joint smoothing parameters, and in the
hybrid method one could easily use N and \ as joint
smoothing parameters. (There may, however, be a region
in (A, n) or (A, N) space in which decreasing both pa-
rameters simultaneously will have little effect on the
IMSE.) In the problem at hand, where the data is very
noisy (because the sample size is small) and the problem
is somewhat ill posed, we believe that one can do a better
job of recovering structure in the solution if one lets A do
all or most of the smoothing and one chooses n and N
just large enough so that they are not doing appreciab's,
smoothing. When there is a very large amount of infor-
mation in the data, using n or N to do (some of) the
smoothing, can be very cost effective.

APPENDIX A: FORMULA FOR &(r) AND 74,
£&i(r) = L(O1(-, 1) = $(Pi—1, r) — Y(P;, r), where

W(P, 1) = (t_—ze)z},(e,P,P,R) - 0_—26)310(P,P,R),
est=P
_¢ > 9 4,(e, P, P, 1) - I;(e, P, P, 1)
U > © §.(e,P,1,R) (—t_6—€)310(P,P,R),
P=t=R,
where

b
Ik(x,a,b)=f WNE = xPdu,  x=ak=0,1,2,3,

k
Jule,x,a,b) = > (f) e“~'I(x,a,b), k=0,1,2,3.

i=0

The definite integrals I, have closed-form analytic rep-

resentation (see Selby’s 1979 formulas 156, 167, 168, an2,
170, p. 425) Ti = Io(P,'_l, P,'..l, R) - Io(P,-, Pi, R) and

T2 = }I(Pi—ly P;_,R) - ~}1(1"1', P;, R).

APPENDIX B: COMPUTATION OF Pyg; AND K,

Since &;(0) = &'(0) = 0, and Q, is the reproducing
kernel for the subspace of ¥ satisfying these boundary
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conditions, we must have
N

PnEi = 2 au0C, sk)

k=1

for some o; = (a1, &2, - . - , ainv). The a;; are chosen
so that the interpolation conditions are satisfied; that is,

£i(s1)

Esw)

where Q is the N X N matrix with ijth entry Q(s;, s,).
Since @ is positive definite, the o; can be efficiently com-
puted via a Cholesky factorization of O (see Dongarra
et al. 1979, chap. 3). Now

kij = (PnEis PnE) = D au > a0 (QC, s1), QC, 51))
3 7

Qai =

b

= a,-'Qaj.

[Received June 1983. Revised May 1984.]

REFERENCES

AGARWAL, G., and STUDDEN, W. (1980), ‘‘Asymptotic Integrated
Mean Square Error Using Least Squares and Bias Minimizing
Splines,’’ Annals of Statistics, 8, 1307-1325.

ANDERSSEN, R.S., and JAKEMAN, A.S. (1975), ‘‘Abel Type Inte-
gral Equations in Stereology, II: Computational Methods of Solution
and the Random Spheres Approximation,’” Journal of Microscopy,
105, 135-153.

BATES, D., and WAHBA, G. (1982), ‘‘Computational Methods for
Generalized Cross-Validation With Large Data Sets,”’ in Treatment
of Integral Equations by Numerical Methods, eds. C. T. H. Baker
and G. F. Miller, London: Academic Press, 283-296.

COX, D.R. (1970), Analysis of Binary Data, London: Chapman and
Hall.

COX, DENNIS (1983), ‘“Approximation of Method of Regularization
Estimators,”’ Technical Report 723, University of Wisconsin-Mad-
ison, Statistics Dept.

CHOVER, J., and KING, J. (1981), personal communication.

CRAVEN, P., and WAHBA, G. (1979), ‘‘Smoothing Noisy Data With
Spline Functions: Estimating the Correct Degree of Smoothing by the
Methods of Generalized Cross Validation,’’ Numerische Mathematik,
31, 377-403.

CRUMP, J.G., and SEINFELD, J.H. (1982), ‘‘A New Algorithm for
Inversion of Aerosol Size Distribution Data,”” Aerosol Science and
Technology, 1, 15-34.

DEBOOR, C. (1978), A Practical Guide to Splines, New York: Springer-
Verlag.

DIACONIS, P., and EFRON, B. (1983), ‘‘Computer-Intensive Methods
in Statistics,’’ Scientific American, 248, S, 116-130.

DONGARRA, J.J., BUNCH, J.R., MOLER, C.B., and STEWART,
G.W. (1979), LINPACK Users Guide, Philadelphia: Society for In-
dustrial and Applied Mathematics.

GASSER, T., and MULLER, M. (1979), ‘‘Kernel Estimation of Regres-
sion Functions,” in Smoothing Techniques for Curve Estimation
(Lecture Notes in Mathematics No. 757), eds. T. Gasser and M. Ro-
senblatt, New York: Springer-Verlag.

KEIDING, N., JENSEN, S.T., and RANEK, L. (1972), ‘‘Maximum
Likelihood Estimation of the Size Distribution of Liver Cell Nuclei
From the Observed Distribution in a Plane Section,”’ Biometrics, 28,
813-829.

KIMELDOREF, G., and WAHBA, G. (1971), ‘‘Some Results of Tche-
bycheffian Spline Functions,’’ Journal of Mathematical Analysis and
Applications, 33, 82-95.

KOEN, H., PUGH, T., and GOLDFARB, S. (1983), ‘‘Hepatocarcino-
genesis in the Mouse Combined Morphologic-Stereologic Studies,’’
American Journal of Pathology, 112, 89-100.

KUK, A.Y.C. (1982), ‘‘A Mixing Distribution Approach to Estimating



846

Particle Size Distributions,”” Technical Report 328, Stanford Uni-
versity, Statistics Dept.

LUKAS, M. (1981), Regularization of Linear Operator Equations, un-
published thesis, Australian National University.

MENDELSOHN, J., and RICE, J. (1983), ‘“‘Deconvolution of Micro-
fluorometric Histograms With B-splines,”” Journal of the American
Statistical Association, 77, 748-753.

MERZ, P. (1980), ‘‘Determination of Adsorption Energy Di =+ bution
by Regularization and a Characterization of Certain Adsorption Is-
otherms,”” Journal of Computational Physics, 38, 64-85. .

NICHOLSON, W.L. (1970), ‘‘Estimation of Linear Properties of Par-
ticle Size Distributions,”’ Biometrika, 57, 273-297.

(1976), ‘‘Estimation of Linear Functions by Maximum Likeli-
hood,”” Journal of Microscopy, 113, 113-239.

NICHOLSON, W.L., and MERCK, K.R. (1969), ‘‘Unfolding Particle
Size Distributions,”” Technometrics, 11, 707-720.

NYCHKA, D. (1983), The Solution of Abel-Type Integral Equations
With an Application in Stereology, unpublished Ph.D. thesis, Uni-
versity of Wisconson-Madison, Statistics Dept.

O’SULLIVAN, F. (1983), The Analysis of Some Penalized Likelihood
Estimation Schemes, unpublished Ph.D. thesis, University of Wis-
consin—-Madison, Statistics Dept.

RICE, J., and ROSENBLATT, M. (1983), ‘‘Smoothing Splines: Regres-
sion, Derivatives and Deconvolution,’’ Annals of Mathematical Sta-
tistics, 11, 141-156.

SELBY, S. (ed.) (1979), CRC Standard Mathematical Tables (21st ed.),
Cleveland, Ohio: Central Rubber Company.

SILVERMAN, B. (1983), ‘‘On the Estimation of a Probability Density
Function by the Maximum Penalized Likelihood Method,”’ Annals
of Statistics, 10, 795-810.

SMITH, B.T., BOYLE, J.M., DONGARRA, J.J., GARBOW, B.S.,
IKEBE, Y., KLEMA, V.V, and MOLER, C.B. (1976), ‘‘Matrix Ei-
gensystem Routines—EISPACK Guide,” in Lecture Note =+: Com-
puter Science, New York: Springer-Verlag.

TALLIS, G.M. (1970), ‘‘Estimating the Distribution of Spherical and
Elliptical Bodies in Conglomerates From Plate Sections,’’ Biometrics,
26, 87-103.

UTRERAS, F. (1981), ‘‘Optimal Smoothing of Noisy Data Us =+ Spline
Functions,”” SIAM Journal of Scientific and Statistical Computing,
2, 349-362.

Joumal of the American Statistical Association, December 1984

VILLALOBOS, M. (1983), Multivariate Spline Estimates for the Pos-
terior Probabilities in the Classification Problem, unpublished Ph.D.
thesis, University of Wisconsin—Madison, Statistics Dept.

VILLALOBOS, M., and WAHBA, G. (1983), ‘‘Multivariate Thin Plate
Spline Estimates for the Posterior Probabilities in the Classification
Problem,”” Communications in Statistics, Part B—Simulation and
Computation, 12, 100-120.

WAHBA, G. (1975), ‘“‘Interpolating Spline Methods for Density Esti-
mation, I: Equispaced Knots,”” Annals of Statistics, 3, 30-48.

(1977), “‘Practical Approximate Solutions to Linear Operator

Equations When the Data Are Noisy,”” SIAM Journal of Numerical

Analysis, 14, 4.

(1978), ‘‘Improper Priors, Spline Smoothing and the Problem of

Guarding Against Model Errors in Regression,’” Journal of the Royal

Statistical Society, Ser. B, 40, 3.

(1979), ‘‘Smoothing and Ill Posed Problems,”’ in Solution Meth-

ods for Integral Equations With Applications, ed. Michael Golberg,

New York: Plenum Press, 183-194.

(1980), ‘‘Ill Posed Problems: Numerical and Statistical Methods

for Mildly, Moderately and Severely Ill Posed Problems With Noisy

Data,” Technical Report 595, University of Wisconsin-Madison, Sta-

tistics Dept.

(1982a), “‘Constrained Regularization for Ill Posed Linear Op-
erator Equations With Applications in Meteorology and Medicine,”’
in Statistical Design Theory and Related Topics: III (Vol. 2), eds. S.
S. Gupta and J. O. Berger, New York: Academic Press.

- (1982b), ““Cross Validated Spline Methods for Direct and In-
direct Sensing Experiments,”” Technical Report 694, University of
Wisconsin, Statistics Dept. '

WAHBA, G., and WENDELBERGER, J. (1980), ‘‘Some New Math-
ematical Methods for Variational Objective Analysis Using Splines
and Cross-Validation,’’ Monthly Weather Review, 108, 1122-1143.

WATSON, G.S. (1971), ““Estimating Functionals of Particle Size Dis-
tributions,”’ Biometrika, 58, 483.

WENDELBERGER, J. (1981), “The Computation of Laplacian
Smoothing Splines With Examples,’’ Technical Report 648, Univer-
sity of Wisconsin, Statistics Dept.

WICKSELL, D.S. (1925), ““The Corpuscle Problem, Part I,”’ Biomet-
rika, 17, 87-97.




	Article Contents
	p.832
	p.833
	p.834
	p.835
	p.836
	p.837
	p.838
	p.839
	p.840
	p.841
	p.842
	p.843
	p.844
	p.845
	p.846

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 79, No. 388 (Dec., 1984), pp. 747-976
	Volume Information [pp.970-976]
	Front Matter [pp.747-747]
	A Century of Methodological Progress at the U.S. Bureau of Labor Statistics [pp.748-761]
	Applications
	Latent Structure Analysis of a Set of Multidimensional Contingency Tables [pp.762-771]
	Inference from Nonrandomly Missing Categorical Data: An Example from a Genetic Study on Turner's Syndrome [pp.772-780]

	Theory and Methods
	An Investigation of Some Estimators of Variance for Systematic Sampling [pp.781-790]
	Comparing Non-Nested Linear Models [pp.791-803]
	Sample Analogs to Multidimensional Coverages with Applications to Prediction [pp.804-806]
	The Many Faces of a Scatterplot [pp.807-822]
	On the Behavior of Some Estimators from Probability Plots [pp.823-831]
	Cross-Validated Spline Methods for the Estimation of Three-Dimensional Tumor Size Distributions from Observations on Two-Dimensional Cross Sections [pp.832-846]
	Approximate Inference in Location-Scale Regression Models [pp.847-852]
	Approximations for Standard Errors of Estimators of Fixed and Random Effect in Mixed Linear Models [pp.853-862]
	On Simultaneous Pairwise Comparisons in Analysis of Covariance [pp.863-866]
	Global Sensitivity Results for Generalized Least Squares Estimates [pp.867-870]
	Least Median of Squares Regression [pp.871-880]
	A Likelihood Ratio Test Regarding Two Nested but Oblique Order-Restricted Hypotheses [pp.881-886]
	Selecting the Best Population, Provided it is Better than a Standard: The Unequal Variance Case [pp.887-891]
	Common Principal Components in K Groups [pp.892-898]
	Linear Discriminant Analysis with Misallocation in Training Samples [pp.899-906]
	Measures of Conditional Linear Dependence and Feedback Between Time Series [pp.907-915]
	The Order of Differencing in ARIMA Models [pp.916-921]
	Hypothesis Tests for Markov Proces Models Estimated from Aggregate Frequency Data [pp.922-928]
	Small-Sample Comparisons for the Power Divergence Goodness-of-Fit Statistics [pp.929-935]
	Classification of Probability Laws by Tail Behavior [pp.936-939]

	Book Reviews
	[List of Book Reviews] [p.940]
	untitled [pp.941-942]
	untitled [p.942]
	untitled [pp.942-943]
	untitled [pp.943-945]
	untitled [pp.945-946]
	untitled [p.946]
	untitled [p.947]
	untitled [pp.947-948]
	untitled [pp.948-949]
	untitled [p.949]
	untitled [pp.949-951]
	untitled [p.951]
	untitled [pp.951-952]
	untitled [p.952]
	untitled [p.952]
	untitled [pp.952-953]
	untitled [pp.953-954]
	untitled [p.954]
	untitled [pp.954-955]
	untitled [p.955]
	untitled [p.955]
	untitled [pp.955-956]
	untitled [p.956]
	untitled [pp.956-957]
	untitled [p.957]
	untitled [p.957]
	untitled [pp.957-959]
	untitled [p.959]
	untitled [p.959]
	untitled [pp.959-960]
	untitled [p.960]
	untitled [p.960]
	untitled [p.961]
	untitled [p.961]
	untitled [pp.961-962]
	untitled [p.962]
	untitled [pp.962-963]
	untitled [p.963]
	untitled [p.963]
	untitled [pp.963-964]

	Publications Received [pp.964-965]
	Corrigenda: Publications Received [p.965]
	Corrigenda: Multiple Comparisons With the Best Treatment [p.965]
	Back Matter [pp.966-969]





