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Abstract Motivated by the setting of reproducing kernel
Hilbert space (RKHS) and its extensions considered in ma-
chine learning, we propose an RKHS framework for image
and video colorization. We review and study RKHS espe-
cially in vectorial cases and provide various extensions for
colorization problems. Theory as well as a practical algo-
rithm is proposed with a number of numerical experiments.

Keywords Function extension · Vector-valued reproducing
kernel Hilbert spaces · Nonlocal kernels · Image
colorization · Least square regression · Color inpainting

1 Introduction and Motivation

Let D ⊂ � ⊂ R
n be nonempty sets, and W a Hilbert space

(for now assume W = R
n). Suppose that we are given an f :

D → W with f belonging to some function space X1(D).
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An important problem in mathematics is to construct an
F : � → W such that F belongs to some function space
X2(�) with F ≈ f on D. The choice of X2(�) imposes a
certain regularity on F . We refer to this problem as an ex-
tension problem. Image colorization can be viewed as an
instance of this extension problem. The term “colorization”
was introduced by Wilson Markle who first processed the
gray scale moon image from the Apollo mission. This term
was used to describe the process of adding color to grayscale
movies or TV broadcasting program [9]. Recently in [22],
this colorization problem was motivated by recovering fres-
coes paintings by A. Mantegna in an Italian church which
was destroyed during World War II. There are photos of the
full frescoes available in black and white, while only a few
real pieces of frescoes with the original colors are remain-
ing. The objective is to reconstruct the original color of the
frescoes (image) from the few remaining real pieces of the
original (with color) and the full black and white gray scale
photos of the frescoes.

In a variational approach, an extension F is computed via
minimizing the following functional

inf
F∈X2(�)

{F (F ) = γ F2(F ) + F1(F − f )}, (1)

where F1 and F2 are functionals defined on X1(D) and
X2(�) respectively and γ > 0 is a tuning parameter.

Some variational approaches for image colorization are
proposed and mathematically studied in [21–23, 30]. The
work in [22] uses a variational functional with a nonlin-
ear function F2 to fit the grayscale data, and the exis-
tence of minimizers is studied in [23]; calibration method
is used in [21]; a couple of different variational models us-
ing chromaticity and brightness color system are also pro-
posed in [30]. Closely related to these variational methods
are partial differential equation based approaches. In [43],
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Sapiro recognized the similarity between image coloriza-
tion and image inpainting [4], and proposed to inpaint the
colors by minimizing the difference between the gradient of
luminance and the gradient of color. In [56], the authors uti-
lized Dijkstra’s shortest path algorithm for fast computation.
The idea of adding color to a gray scale image or a movie
(even if by hand) is as old as photography itself and many
computer-assisted works have been studied in computer vi-
sion and graphics literature, such as [25, 27, 41, 55, 56].
More related works using segmentation, matting and proba-
bility frameworks can be found in [6, 15, 26, 28, 33, 38, 49,
50] and some other recent works include [19, 34].

A number of other recent approaches for colorization use
the similarity information. For example, in [33], the authors
recognized that the neighboring pixels in space and time
with similar intensities should have similar color, and op-
timized a quadratic cost function for colorization. In [7], the
authors proposed an anisotropic diffusion with an a-priori-
defined diffusion direction for conditional color diffusion,
where neighborhood filter is proposed for numerical com-
putation. In [35, 40], manifold learning techniques are used.
In [35], the authors used locally linear embedding and com-
pared grayscale manifold and color manifold for coloriza-
tion, and [40] considers geometry of local image patches.
In [6], principle component analysis (PCA)-based learning
techniques is proposed using probabilistic PCA and regres-
sive PCA.

In machine learning, reproducing kernel Hilbert spaces
(RKHS) have recently emerged as a powerful paradigm,
both from algorithmic and theoretical perspectives (see for
example [52], [45], [46] for comprehensive treatment) . The
goal of machine learning is to make inferences and gen-
eralizations based on limited sampled data. Thus machine
learning algorithms can be very useful for solving the prob-
lem of function extension ([17] is one recent RKHS-based
approach). In this paper, we will consider RKHS to model
X2(�). We will exploit different choices of the reproducing
kernel to obtain different regularity conditions on F . For nu-
merical work, we will employ a version of the well-known
regularized least square algorithm in RKHS (see for exam-
ple [54], [18] for the scalar version).

We start this paper with a brief introduction to RKHS,
the abstract theory for which was developed by Aronszajn
in [1]. Let D be an arbitrary nonempty set. Let K : D ×
D → R be a symmetric function, i.e. K(x,y) = K(y,x),
satisfying: for any finite set of points {xi}Ni=1 in D and real
numbers {ai}Ni=1,

N∑

i,j=1

aiajK(xi, xj ) ≥ 0.

K is said to be a positive definite kernel on D. Then, there
exists a unique Hilbert space HK of functions f : D → R

satisfying:

1. Kx ∈ HK for all x ∈ D, where Kx(t) = K(x, t);
2. span{Kx}x∈X is dense in HK ;
3. the inner product 〈·, ·〉HK

of HK satisfies:

f (x) = 〈f,Kx〉HK
(reproducing property),

for all f ∈ HK and all x ∈ D. On the dense set span{Kx},
the inner product is defined by
〈∑

i

aiKxi
,
∑

j

bjKyj

〉

HK

=
∑

i,j

aibjK(xi, yj ).

The Hilbert space HK is called the RKHS with reproduc-
ing kernel K and norm ‖ · ‖HK

. The reproducing property
means that HK is a Hilbert space of functions on D, which
are well-defined pointwise. If we apply the Cauchy-Schwarz
inequality, we get

|f (x)| ≤ ‖f ‖HK
‖Kx‖HK

= √
K(x,x)‖f ‖HK

.

This means that at each point x, the evaluation operator
Ex : f → f (x) is bounded (as an operator from HK to R)
with norm

√
K(x,x). Conversely, if H is a Hilbert space of

functions on D where Ex is bounded for all x ∈ D, then H
is an RKHS. In fact, by the Riesz Representation Theorem,
for each x ∈ D there is a unique Kx ∈ H such that

Exf = f (x) = 〈f,Kx〉H.

Then H is an RKHS with reproducing kernel K(x,y) =
〈Kx,Ky〉H . This kernel can also be shown to be unique.
There is thus a 1-to-1 correspondence between the category
of positive definite kernels on D×D and that of the RKHS’s
of functions on D.

The boundedness of the evaluation operators means that
in particular, if the kernel is uniformly bounded on D, that
is κ = supx∈D

√
K(x,x) < ∞, then |f (x)| ≤ κ‖f ‖HK

for
all x ∈ D, and thus all functions f ∈ HK are bounded,
with ‖f ‖∞ ≤ κ‖f ‖HK

. One example is the Gaussian ker-

nel K(x,y) = exp(−‖x−y‖2

σ 2 ) in R
n (or similar translation-

invariant kernels), where κ = 1 (or a finite constant, respec-
tively).

Remark 1 The preceding property does not hold in general.
If K(x,y) = 〈x, y〉d , d ≥ 1, d ∈ N, then K(x,x) on R

n is
unbounded, and the functions in HK are unbounded, being
polynomials of degree d , even if for each fixed x ∈ R

n the
operator Ex : HK → R is bounded. In this paper, we will
focus on translation-invariant kernels, which induce RKHS
of bounded functions.

Remark 2 Note that L2 spaces are not RKHS in general be-
cause they are spaces of equivalence classes of functions
which are the same almost everywhere, whereas functions
in RKHS are defined everywhere.
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Next we would like to present some well-known exam-
ples of kernels and RKHS in R

n.
The most popular kernel in practice is the Gaussian ker-

nel K(x,y) = exp(−‖x−y‖2

σ 2 ) on R
n. One of its general-

izations is K(x,y) = exp(−‖x−y‖p

σ 2 ), which was shown by
Schoenberg [44] to be positive definite iff 0 ≤ p ≤ 2. We
will discuss the cases p = 1 and p = 2 in more detail below.

The Sobolev space Hs(Rn), s > n/2, is a RKHS. Recall
that f ∈ Hs(Rn) if

‖f ‖2
Hs(Rn) = ‖(I − �)s/2f ‖2

L2(Rn)

= 1

(2π)n

∫

Rn

|(1 + |ξ |2)s/2f̂ (ξ)|2 dξ < ∞,

with inner product in Hs(Rn) defined by

〈f,g〉Hs(Rn) := 1

(2π)n

∫

Rn

[(1 + |ξ |2)s f̂ (ξ)ĝ(ξ)].

Here f̂ (ξ) denotes the Fourier transform of f if f ∈
L1(Rn), which is defined by

f̂ (ξ) =
∫

Rn

f (x)e−i〈ξ,x〉dx.

If f ∈ L2(Rn), then f̂ (ξ) denotes the Fourier-Plancherel
transform of f (see [29], Chap. 13). Since s > n/2, each
f ∈ Hs(Rn) is continuous and f̂ ∈ L1(Rn). By the Fourier
Inversion Theorem,

f (x) = 1

(2π)n

∫

Rn

f̂ (ξ)ei〈x,ξ〉dξ

= 1

(2π)n

∫

Rn

(1 + |ξ |2)s f̂ (ξ)

[
e−i〈ξ,x〉

(1 + |ξ |2)s
]
dξ.

Under the assumption s > n/2, let k(x) = 1
(2π)n

1̂
(1+|ξ |2)s (x)

and Kx(y) = k(x − y), then K̂x(ξ) = e−i〈ξ,x〉
(1+|ξ |2)s and Kx(y) ∈

Hs(Rn). It follows then that for all f ∈ Hs(Rn) and all
x, y ∈ R

n,

f (x) = 〈f,Kx〉Hs(Rn),

〈Kx,Ky〉Hs(Rn) = 1

(2π)n

∫

Rn

e−i〈ξ,x−y〉

(1 + |ξ |2)s dξ = k(x − y).

Thus Hs(Rn) is a RKHS with the reproducing kernel
K(x,y) = k(x − y).

Remark 3 The reproducing kernel K above is the kernel that
corresponds to the Bessel potential (I − �)−s . (See [48]
Chap. V, Sect. 3 where an explicit formula is given.)

An explicit example for this type of kernels is the Lapla-
cian kernel K(x,y) = exp(−a|x − y|) = k(x − y), a > 0,

on R
n. Here k(x) = e−a|x|, with

k̂(ξ ) = C(n)a

(a2 + |ξ |2)(n+1)/2
, C(n) = 2nπ

n−1
2 	

(
n + 1

2

)
,

where 	 denotes the gamma function, defined by

	(a) =
∫ ∞

0
xa−1 exp(−x)dx, 0 < a < ∞.

The RKHS induced by K is

HK =
{
f ∈ C0(R

n) ∩ L2(Rn) :

‖f ‖2
HK

= 1

(2π)n

1

aC(n)

×
∫

Rn

(a2 + |ξ |2) n+1
2 |f̂ (ξ)|2dξ < ∞

}
,

(2)

which is a Sobolev space of order s = n+1
2 . Consider the

Gaussian kernel K(x,y) = exp(−|x−y|2
σ 2 ) again. On R

n, the
RKHS it induces is

HK =
{
f ∈ C0(R

n) ∩ L2(Rn) :

‖f ‖2
HK

= 1

(2π)n(σ
√

π)n

∫

Rn

e
σ2|ξ |2

4 |f̂ (ξ)|2dξ

< ∞
}
. (3)

Note that for an f ∈ HK with the latter choice of K , f̂ (ξ)

decays exponentially, which shows that ∂kf

∂xk ∈ L2(Rn) for
all k ≥ 0, hence f is in C∞(Rn). The space HK here can be
viewed as a Sobolev space of infinite order.

We see that the Laplacian kernel given in (2) provides less
smoothing effects than the Gaussian kernel (3). The smooth-
ing properties of functions in RKHS, as seen in these ex-
amples, make them particularly suitable for regularization
problems. In practice, there are two ways to define a RKHS.
The first is to define a kernel K explicitly and then derive
the form of the norm and its smoothing properties. The sec-
ond, as in [54] for smoothing splines problems, is to define
the norm first and then compute the kernel. Each approach
has its own advantage: the former tends to be more efficient
computationally since the kernel has a closed form, the latter
tends to be much clearer analytically. More related literature
can be found in [3, 37, 42, 53, 54] and the numerous refer-
ences they contain.

The main contribution of this paper is to apply the the-
ory of RKHS of vector-valued functions and RKHS-based
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function extension to image and video colorization. By us-
ing the RKHS approach, the kernel (nonlocal) can be cho-
sen appropriately for various applications. We will also give
comparisons with non-local diffusion using neighborhood
similarities.

This paper is organized as follows: in Sect. 2, we discuss
the extension of RKHS to the vector-valued case, in Sect. 3,
we present the application to colorization, then various nu-
merical results will be presented in Sect. 4.

2 Vector-Valued Reproducing Kernel Hilbert Spaces

The study of RKHS has been extended to vector-valued
functions and further developed and applied in machine
learning (see [10, 13, 36] and references therein). In the fol-
lowing, denote by D a nonempty set, W a real Hilbert space
with the inner product 〈·, ·〉W , L(W) the Banach space of
bounded linear operators on W .

Let W D denote the vector space of all functions f :
D → W . A function K : D × D → L(W ) is said to be an
operator-valued positive definite kernel if for each pair
(x, y) ∈ D × D, K(x,y) ∈ L(W ) is a self-adjoint operator
and

N∑

i,j=1

〈wi,K(xi, xj )wj 〉W ≥ 0 (4)

for every finite set of points {xi}Ni=1 in D and {wi}Ni=1 in
W , where N ∈ N. As in the scalar case, given such a K ,
there exists a unique W -valued RKHS HK with reproducing
kernel K (a proof can be found in [13]). The construction
of the space HK proceeds as follows. For each x ∈ D and
w ∈ W , we form a function Kxw = K(., x)w ∈ W D defined
by

(Kxw)(y) = K(y,x)w for all y ∈ D.

Consider the set

H0 = span{Kxw | x ∈ D, w ∈ W } ⊂ W D.

For f = ∑N
i=1 Kxi

wi , g = ∑N
i=1 Kyi

zi ∈ H0, we define

〈f,g〉HK
=

N∑

i,j=1

〈wi,K(xi, yj )zj 〉W .

Taking the closure of H0 gives us the Hilbert space HK . The
reproducing property is

〈f (x),w〉W = 〈f,Kxw〉HK
for all f ∈ HK. (5)

As in the scalar case, applying Cauchy-Schwarz inequality
gives

|〈f (x),w〉W | ≤ √‖K(x,x)‖‖f ‖HK
‖w‖W .

Thus for each x ∈ D, each w ∈ W , the evaluation opera-
tor Ex|w : f → 〈f (x),w〉W is bounded as a linear operator
from HK to R. As in the scalar case, the converse is true by
the Riesz Representation Theorem.

Let Kx : W → HK be the linear operator with Kxw de-
fined as above, then

‖Kxw‖2
HK

= 〈K(x,x)w,w〉W ≤ ‖K(x,x)‖‖w‖2
W ,

which implies that

‖Kx : W → HK‖ ≤ √‖K(x,x)‖,

so that Kx is a bounded operator for each x ∈ D. Let K∗
x :

HK → W be the adjoint operator of Kx , then from (5), we
have

f (x) = K∗
x f for all x ∈ D,f ∈ HK. (6)

From this we deduce that for all x ∈ D and all f ∈ HK ,

‖f (x)‖W ≤ ‖K∗
x‖‖f ‖HK

≤ √‖K(x,x)‖‖f ‖HK
,

that is for each x ∈ D, the evaluation operator Ex :
HK → W defined by Exf = K∗

x f is a bounded linear op-
erator. In particular, if κ = supx∈D

√‖K(x,x)‖ < ∞, then
‖f ‖∞ = supx∈D ‖f (x)‖W ≤ κ‖f ‖HK

for all f ∈ HK . In
this paper, we will be concerned with kernels for which
κ < ∞.

2.1 Extension of Vector-Valued Functions

Let D ⊂ � be closed subsets in a complete separable met-
ric space, and W be a separable Hilbert space. Our aim is
to extend a function f : D → W to a function F : � → W ,
which is as close to f as possible on D, and at the same
time reasonably well-behaved on the larger set �. We will
describe two algorithms here for function extension using
RKHS, the first for a general set D, and the second specifi-
cally for the case D is discrete.

2.1.1 Function Extension via Eigenfunctions—the Spectral
Algorithm

In [17], Coifman and Lafon discussed scalar-valued func-
tion extension using eigenfunctions of the given reproduc-
ing kernel. We will extend their approach given in [17] to
the vector-valued case here.

Suppose that K : � × � :→ L(W ) is a positive def-
inite kernel, then K induces a RKHS HK(�) of func-
tions g : � → W . Let further μ be a finite Borel measure
on D. Let L2

μ(D; W ) be the space of measurable functions

f : D → W such that ‖f ‖2
W is μ-integrable, with norm

‖f ‖L2
μ(D;W ) =

(∫

D

‖f (x)‖2
W dμ(x)

)1/2

.
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Assumption 1 We shall assume throughout the paper that
K(x,x) ∈ L(W ) is a compact operator for each x ∈ � and
that κ = supx∈�

√‖K(x,x)‖ < ∞.

First consider the integral operator LK,D : L2
μ(D; W ) →

L2
μ(D; W ) defined by

LK,Df (x) =
∫

D

K(x, y)f (y)dμ(y).

Here we have adopted the notation of [18] and [47], where
this operator shows its crucial role in learning theory. By As-
sumption 1, this operator is symmetric, positive, and com-
pact (we refer to [12, 13] for the detailed treatment) so that
the eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ 0 with limk→∞ λk = 0.
Let {φk}∞k=1 be the corresponding eigenfunctions of LK,D ,
then φk’s can be normalized to form an orthonormal basis
for L2

μ(D; W ).

Assumption 2 We shall assume throughout the remainder
of this section (Sect. 2.1.1) that Kxw ∈ C(�; W ) for all
x ∈ �, w ∈ W , where C(�; W ) denotes the space of con-
tinuous functions mapping � into W . If � is discrete, then
this assumption is not needed.

The following is Mercer’s theorem for the vector-valued
case (see [12]).

Theorem 1 Let K be a positive definite kernel satisfying
Assumptions 1 and 2. Furthermore, assume also that μ has
support supp(μ) = D, then

K(x,y) =
∞∑

k=1

λkφk(x) ⊗ φk(y), (7)

for all x, y ∈ D, where the series converges in the operator
norm of L(W ). Here w1 ⊗w2 denotes the rank-one operator
in L(W ), with

(w1 ⊗ w2)v = 〈v,w2〉W w1 for w1,w2, v ∈ W .

A consequence of Mercer’s theorem is that

HK(D) = Im(L
1/2
K,D)

=
{

f ∈ L2
μ(D; W )

∣∣∣

∞∑

k=1,λk>0

〈f,φk〉L2
μ(D;W )

λk

< ∞
}

.

In particular, this shows that LK,Df ∈ HK(D) for all f ∈
L2

μ(D; W ) and that {√λkφk}∞k=1 is an orthonormal basis for
HK(D).

To perform an extension from D to �, note that by re-
placing D by �, we have LK,�f ∈ HK(�) for all f ∈
L2

μ(�; W ). By considering a function f ∈ L2
μ(D; W ) as

one in L2
μ(�; W ) with support in D, we have the following

well-defined integral operator LK : L2
μ(D; W ) → HK(�),

with

LKf (x) =
∫

D

K(x, y)f (y)dμ(y), (8)

for every x ∈ �. In our context, it defines a pointwise func-
tion LKf on the larger domain � from an L2

μ function f

defined on the smaller domain D, i.e. LK is an extension
operator.

Lemma 1 The adjoint operator L∗
K : HK(�) → L2

μ(D; W )

is the restriction operator from HK(�) to L2
μ(D; W ). I.e.

in the L2
μ(D; W ) sense of equality,

L∗
KF = f,

for all F ∈ HK(�), where f = F |D .

Proof For every g ∈ L2
μ(D; W ), we have

〈L∗
KF,g〉L2

μ(D;W )

= 〈F,LKg〉HK(�)

= 〈F,

∫

D

K(., y)g(y)dμ(y)〉HK(�)

=
∫

D

〈F,K(., y)g(y)〉HK(�)dμ(y)

=
∫

D

〈F(y), g(y)〉W dμ(y)

(by the reproducing property)

= 〈f,g〉L2
μ(D;W ).

This shows that L∗
KF = f as L2

μ functions. �

Given an f ∈ L2
μ(D; W ), we are interested in extending

f to F ∈ HK(�) by minimizing the following functional
(see [47] for a related scalar version):

inf
F∈HK(�)

‖f − L∗
KF‖2

L2
μ(D;W )

+ γ ‖F‖2
HK(�), (9)

for some γ > 0. This is a standard least square Tikhonov
regularization problem in Hilbert spaces, which has a unique
minimizer Fγ satisfying the normal equation (see for exam-
ple [20])

(LKL∗
K +γ I)Fγ = LKf ⇐⇒ Fγ = (LKL∗

K +γ I)−1LKf.

(10)

 Author's personal copy 



54 J Math Imaging Vis (2010) 37: 49–65

As in the scalar case in [17], for λk > 0, using (8), we can
extend the eigenfunction φk on D to k on � by

k(x) = LKφk(x)

λk

= 1

λk

∫

D

K(x, y)φk(y)dμ(y), for x ∈ �. (11)

For x ∈ D, we have k(x) = φk(x). The extension opera-
tion gives LKφk = λkk and LKL∗

Kk = λkk as point-
wise functions. The restriction operation gives L∗

Kk = φk

and L∗
KLKφk = λkφk in the L2

μ sense. These relations im-

ply that 〈k,j 〉HK(�) = δjk

λk

so that {√λk k}∞k=1 form

an orthonormal system in HK(�).
Using eigenfunction expansion, the following result is

immediate.

Lemma 2 Let f = ∑∞
k=1,λk>0 akφk ∈ L2

μ(D; W ) with∑∞
k=1 a2

k < ∞. Then the minimizer Fγ for (9) is given by

Fγ =
∞∑

k=1,λk>0

λk

λk + γ
akk. (12)

Moreover, we have

‖L∗
KFγ − f ‖2

L2
μ(D;W )

=
∞∑

k=1,λk>0

γ 2

(λk + γ )2
a2
k , (13)

‖Fγ ‖2
HK(�) =

∞∑

k=1,λk>0

λk

(λk + γ )2
a2
k . (14)

Remark 4 As a multiscale extension, as in [17], we can con-
sider extending f on D to Fδ on �, for some δ > 0, where
Fδ = ∑

λk>δ akk . Thus we have

‖L∗
KFδ − f ‖2

L2
μ(D;W)

=
∑

λk≤δ

a2
k . (15)

The multiscale property in (13) is determined by the para-
meter γ instead of δ as in (15).

Remark 5 In practice, the computation of k may be nu-
merically difficult when λk is small. One should combine
equations (11) and (12) and compute directly

Fγ (x) =
∞∑

k=1

ak

λk + γ

∫

D

K(x, y)φk(y)dμ(y). (16)

This formula also takes care of the case λk = 0, when k is
not defined. Note that for φk with λk = 0, LKφk(x) = 0 for
all x ∈ D. In general, eigenfunctions corresponding to very

small eigenvalues tend to be highly oscillatory and their ex-
tensions may not be numerically reliable, so one may con-
sider excluding them. For some analytic formulas of kernel
spectra, see [37].

We now have the following algorithm for extending f ∈
L2

μ(D;W) to the larger domain � using the kernel K and
its induced RKHS of functions on �.

Function Extension—Spectral Algorithm

(1) Compute the eigenvalues and eigenfunctions {(λk,φk)}
of LK,D .

(2) Compute the expansion coefficients ak’s of f in the ba-
sis {φk}.

(3) Compute Fγ using equation (16) (or alternatively Fδ as
mentioned above).

2.1.2 Regularized Least Square Algorithm

Let us now describe an algorithm with the true flavor of
RKHS-based machine learning. Suppose now that D is dis-
crete and is given by D = {xi}mi=1. We are given a set of
values z = {(xi,wi = f (xi))}mi=1, wi ∈ W . In this case, a
big advantage of the kernel method is that the extension of
f will be explicitly expressed in terms of basis functions in
HK(�) at the points xi ’s. Here we compute

Fγ = arg min
F∈HK(�)

1

m

m∑

i=1

‖F(xi) − wi‖2
W + γ ‖F‖2

HK(�).

(17)

This is the vector-valued version of the well-known reg-
ularized least square algorithm in RKHS (see for exam-
ple [18], [54]). To cast this into the standard Tikhonov
form (10), we can consider an approach as in [11]. Con-
sider the sampling operator Sx : HK(�) → W m defined by
Sx(F ) = (F (x1), . . . ,F (xm)). By definition, we have for
any F ∈ HK(�) and w = (w1, . . . ,wm) ∈ W m,

〈SxF,w〉W m =
m∑

i=1

〈Sxi
F,wi〉W =

m∑

i=1

〈F,S∗
xi

wi〉HK(�)

=
m∑

i=1

〈F,Kxi
wi〉HK(�)

=
〈
F,

m∑

i=1

Kxi
wi

〉

HK(�)

.

It follows that the adjoint operator S∗
x : W m → HK(�) is

given by S∗
x w = S∗

x (w1, . . . ,wm) = ∑m
i=1 Kxi

wi , and the
operator S∗

xSx : HK(�) → HK(�) is given by S∗
xSxF =
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∑m
i=1 Kxi

F (xi). We can now cast expression (17) into the
form

Fγ = arg min
F∈HK(�)

1

m
‖SxF − w‖2

W m + γ ‖F‖2
HK(�).

This problem has a unique solution, given by

Fγ = (S∗
xSx + mγ I)−1S∗

x w =
(

1

m
S∗

xSx + γ I

)−1 1

m
S∗

x w.

(18)

Proposition 1 The unique solution Fγ of problem (17) has
the form

Fγ =
m∑

i=1

Kxi
ai , with Fγ (x) =

m∑

i=1

K(x,xi)ai,

where the vectors ai ∈ W satisfy the m linear equations

m∑

j=1

K(xi, xj )aj + mγai = wi

for 1 ≤ i ≤ m.

Proof Expression (18) is equivalent to (S∗
xSx + mγ I)Fγ =

S∗
x w. Using the definition of Sx and S∗

x , we obtain

m∑

i=1

Kxi
Fγ (xi) + mγFγ =

m∑

i=1

Kxi
wi.

This implies that

Fγ =
m∑

i=1

Kxi

wi − Fγ (xi)

mγ
=

m∑

i=1

Kxi
ai,

where ai = wi−Fγ (xi )

mγ
. We now have

Fγ (xi) =
m∑

j=1

(Kxj
aj )(xi) =

m∑

j=1

K(xi, xj )aj .

It follows that ai = wi−∑m
j=1 K(xi ,xj )aj

mγ
, or equivalently∑m

j=1 K(xi, xj )aj + mγai = wi . �

This result was first reported in [36] via a different deriva-
tion. Our derivation follows directly from expression (18)
and is a natural generalization of the scalar case in [18].

Example 1 Consider the scalar case W = R. Then, Fγ (x) =∑m
i=1 aiK(xi, x), where a = (ai, . . . , am) is the solution of

the system of linear equations (K[x] + γmI)a = w, where
K[x] is the m × m matrix defined by K[x]ij = K(xi, xj )

(see [18]).

2.1.3 Comparisons between the Two Algorithms

From the theoretical viewpoint, the Spectral Algorithm is
more general, since it is for D either continuous or dis-
crete. Let us consider the case D is discrete, of size m,
with μ being the uniform probability measure on D. Then
the two algorithms are the same analytically, since they
both solve the same minimization problem. In fact, we have
then LK = 1

m
S∗

x and LKL∗
K = 1

m
S∗

xSx. From the numerical
viewpoint, the Regularized Least Square Algorithm (here-
after referred to as Least Square) is simpler to implement
and should be expected to be more stable. For example, for
W = R, it involves solving a well-conditioned system of lin-
ear equations, in contrast to the eigenvalues and eigenfunc-
tions that need to be found and extended in the case of the
Spectral Algorithm.

2.2 Vector-Valued Diagonal Kernel

Let D be an arbitrary nonempty subset of R
m, and let

W = R
n. In the following, all vectors in R

n will be treated
as column vectors, unless stated otherwise. One example of
operator-valued kernels K : D × D → R

n can be defined as

K(x,y) = diag(k1(x, y), . . . , kn(x, y)), (19)

where each ki(x, y) is a positive definite real-valued kernel.
In this case, the RKHS induced by K can be described ex-
plicitly in terms of those induced by the scalar components
of K . As we shall see below, in this case, the solution of the
minimization problem (17) has a particularly simple repre-
sentation. Each basis function in HK is defined by

Kxw(y) = K(x,y)w = (w1k1(x, y), . . . ,wnkn(x, y)),

for any w ∈ R
n and any x, y ∈ D. Let D be closed

and μ be a finite Borel measure on D, with support
supp(μ) = D. Assume that κ = max1≤i≤n κi < ∞ where
κi = supx∈D ki(x, x). We have the Hilbert space

L2
μ(D;R

n) =
{

f = (f1, . . . , fn) : D → R
n |

‖f ‖2
L2

μ(D;Rn)

=
n∑

i=1

∫

D

|fi(x)|2dμ(x) < ∞
}

,

and the integral operator LK : L2
μ(D;R

n) → L2
μ(D;R

n),
defined by

LKf (x) =
∫

D

K(x, y)f (y)dμ(y)

=
(∫

D

ki(x, y)fi(y)dμ(y)

)n

i=1

= (Lki
fi(x))ni=1,

which is self-adjoint, compact, and positive (since each
component Lki

is).
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Lemma 3 Assume that φi is an eigenfunction of Lki
with

corresponding eigenvalue λi , then ψ = (0, . . . , φi, . . . ,0) is
an eigenfunction of LK corresponding to the same eigen-
value.

Proof This follows from LKψ = (0, . . . ,Lki
φi, . . . ,0) =

(0, . . . , λiφi, . . . ,0) = λiψ. �

The following theorem is a version of Mercer’s theorem
adapted to the setting of a diagonal kernel.

Theorem 2 Assume that each ki is continuous (the con-
tinuity assumption is not needed if D is discrete). Let
{λi

k,φ
i
k}∞k=1 be an L2

μ(D) orthonormal spectrum of Lki
:

L2
μ(D) → L2

μ(D). For each 1 ≤ i ≤ n and k ∈ N fixed,

let ψi
k = (0, . . . , φi

k, . . . ,0), with ψi
k(x) ∈ R

n considered
as a column vector for each x ∈ D. Then the system
{{λi

k,ψ
i
k}∞k=1}ni=1 form an orthonormal spectrum of LK :

L2
μ(D;R

n) → L2
μ(D;R

n). Furthermore,

K(x,y) =
n∑

i=1

∞∑

k=1

λi
kψ

i
k(x)ψi

k(y)T ,

where for each pair (x, y) ∈ D × D, the series converges in
the operator norm of L(Rn).

Proof Let ei = (0, . . . ,1, . . . ,0) ∈ R
n be the column vector

with only one nonzero entry at the ith position. Then eie
T
i is

the matrix whose only nonzero entry is at the (i, i) position,
so that K(x,y) = ∑n

i=1 ki(x, y)eie
T
i . Mercer’s theorem for

the scalar case states that ki(x, y) = ∑∞
k=1 λi

kφ
i
k(x)φi

k(y),

therefore ki(x, y)eie
T
i = ∑∞

k=1 λi
kψ

i
k(x)ψi

k(y)T , from
which the series summation follows. �

Corollary 1 For

f =
n∑

i=1

∞∑

k=1

ai
kψ

i
k ∈ HK,

g =
n∑

i=1

∞∑

k=1

bi
kψ

i
k ∈ HK,

the inner product in HK is given by

〈f,g〉HK
=

n∑

i=1

∞∑

k=1

ai
kb

i
k

λi
k

.

Proof Let ei = (0, . . . ,1, . . . ,0) ∈ R
n. By definition

Kxei(y) = K(x,y)ei =
(

n∑

j=1

∞∑

k=1

λ
j
kψ

j
k (y)ψ

j
k (x)T

)
ei

=
∞∑

k=1

λi
kψ

i
k(y)φi

k(x)

for all x, y ∈ D, from which we have

Kxei =
∞∑

k=1

λi
kφ

i
k(x)ψi

k.

For w = ∑n
i=1 wiei ∈ R

n,

Kxw =
n∑

i=1

wi
∞∑

k=1

λi
kφ

i
k(x)ψi

k,

so that the Hilbert space HK is

HK = span{Kxei : x ∈ D,1 ≤ i ≤ n}.

For x, y ∈ D by definition we have

〈Kxei,Kyei〉HK
= 〈ei,K(x, y)ei〉Rn = ki(x, y)

=
∞∑

k=1

λi
kφ

i
k(x)φi

k(y).

From this we infer that if f = ∑∞
k=1 ai

kψ
i
k and g =

∑∞
k=1 bi

kψ
i
k are in HK , then 〈f,g〉HK

= ∑∞
k=1

ai
kb

i
k

λi
k

. The

general formula follows similarly. �

Corollary 2 The Hilbert space HK is the direct sum of n

orthogonal complementary subspaces:

HK = ⊕n
i=1 HK,i,

where HK,i = span{Kxei : x ∈ D}.

Remark 6 Corollary 2 also follows directly from the defini-
tion of the inner product in HK , as we have

〈Kxei,Kyej 〉HK
= 〈ei,K(x, y)ej 〉Rn = δij ki(x, y)

for all x, y ∈ D. However, the eigendecomposition arising
from Mercer’s theorem is of interest in its own right and is
useful if we wish to use the Spectral Algorithm.

For the Least Square Algorithm, for f = (f1, . . . , fn) ∈
HK and wi = (w1

i , . . . ,w
n
i ) ∈ W , we have

‖f (xi) − wi‖2
W =

n∑

j=1

|fj (xi) − w
j
i |2,

‖f ‖2
HK

=
n∑

j=1

‖fj‖2
HK,j

.
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It follows that the minimization problem (17) becomes

Fγ = arg min
f ∈HK(�)

n∑

j=1

(
1

m

m∑

i=1

|fj (xi) − w
j
i |2

+ γ ‖fj‖2
HK,j (�)

)
.

It is clear then that Fγ = (F i
γ )ni=1, where

Fj
γ = arg min

fj ∈HK,j (�)

(
1

m

m∑

i=1

|fj (xi) − w
j
i |2

+ γ ‖fj‖2
HK,j (�)

)
.

Thus in the diagonal case, the vector-valued minimizer is
obtained by solving the minimization problems for all the
scalar components separately, using the same regularization
parameter γ .

With the theory on vector-valued kernels and RKHS ex-
plored in this section, we set up the function extension for
the colorization problem in the following section.

3 Colorization Using Vector-Valued RKHS

Let � ⊂ R be the image domain, and D ⊂ � be a non-
empty subset of �. Colorization typically assumes that the
complete black and white (gray scale) image is given in
the entire domain �. We denote this gray scale image as
g : � → R. Let the small patches where the color is given
be the domain D, and f be the given color image, i.e.
f : D → R

3. We consider color images as RGB (red, green,
blue channels) which is a 3 dimensional vector. The objec-
tive is to colorize the whole domain �: to find F : � → R

3

such that F |D≈ f , i.e. an extension from f : D → R
3 to

F : � → R
3.

From the variational approach, we consider the following
functional for colorization,

inf
F

{γ ‖F‖2
HK(�) + ‖F − f ‖2

L2(D;R3)
}, (20)

with HK(�) being the RKHS with the reproducing kernel
K depending on the grayscale image g. In particular, we
would like to explore the kernel which utilizes the non-local
similarity information in a multiscale fashion. For example
for each x, y ∈ � and some t > 0 and 0 < p ≤ 2, the scalar
kernel function k : � × � → R is defined as

k(x, y) = exp

(
−|g(x) − g(y)|p

4t

)
, ∀x, y ∈ �. (21)

Here two pixels are similar if they have similar grayscale
levels and the parameter t > 0 acts as a weight factor influ-
encing the degree of similarity.

We will also consider kernels inspired by those in [8],
defined as

k(x, y) = exp

(−(Gr ∗ |g(x − ·) − g(y − ·)|)p
4t

)
, (22)

where

Gr ∗ |g(x − ·) − g(y − ·)|

=
[

1

|Br |
∫

Br (x)

|g(x − z) − g(y − z)|2 dz

]1/2

. (23)

In the multiscale case, let {g1, . . . , gm} be a multiscale
representation of g. Here, we pick a few meaningful dis-
crete scales gi , i = 1, . . . ,m. For each x, y ∈ � and some
t1, . . . , tm > 0, the kernel k : � × � → R is defined as

k(x, y) = exp

(
−

m∑

i=1

[ |gi(x) − gi(y)|p
4ti

])
, ∀x, y,∈ �,

(24)

or a similar variation as in (22).
Since the color image is a vector function, we consider

the vector-valued kernel: K : � × � → R
3 which depends

on the gray-scale image g,

K(x,y) := diag(k(x, y), k(x, y), k(x, y)) = k(x, y)I3×3,

(25)

where I3×3 is an identity matrix of size 3 by 3, and k(x, y) is
as in (21) or (24). For different applications, one may want to
define K = (k1, k2, k3), where ki is different for each color
channel. This is our proposed colorization model, and in the
following we present the details of how to compute F nu-
merically.

3.1 Numerical Algorithm

Following the theory developed in Sect. 2, in particu-
lar 2.1, we solve the minimizing functional (20) using the
Least Square and Spectral Algorithms. In this paper, even
within the general framework of operator-valued kernels, we
mostly consider the diagonal vector-valued kernels assum-
ing that the three channels, red, green, and blue, are indepen-
dent to each other and that each channel can be computed
separately.

Let D = {x1, . . . , xm} be a discrete domain and D ⊂ �.
Then similar to (17), we are interested in the solution

Fγ = arg min
F∈HK(�)

1

m

m∑

i=1

‖F(xi)−f (xi)‖2
R3 +γ ‖F‖2

HK(�).
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Least-Square Algorithm

• Input: gray-scale image g, domain D, and the given color f .
• Compute the partial kernels KD and KcD of the full kernel K:

1. Get �B(x):
�B(x) is the neighborhood vector for each x ∈ �, storing the intensity values of the neighborhood patch of size (2r + 1) × (2r + 1) centered
at x.

2. Get KcD and KD :
Use �B(x) to compute the kernel using (25), via (21), (24) or others.
KcD(x, y) is the NM × m matrix for x ∈ � and y ∈ D, and KD(x, y) is m × m for x, y ∈ D.

• Solve the linear system (KD + γmIm×m)Aj = f j .

Here f j is the j th channel of the given color f ∈ R
3 on D, as a column vector.

Aj is the m × 1 coefficient vector representing the j th-channel.
• Compute the explicit solution Fγ :

Compute for the j channel F
j
γ = KcDAj .

Using Proposition 1, the explicit solution can be computed
as

Fγ =
m∑

i=1

K(x,xi)ai (26)

where ai ’s are the solutions of
{

m∑

j=1

K(xi, xj )aj

}
+ mγai = f (xi). (27)

For practical computation, notice that the index i (or j ) is
from 1 to m which is the size of the domain D with the given
color. We need only to compute two kernel matrices here:
KD(x, y), where (x, y) ∈ D × D, for solving the system
of linear equations, and KcD(x, y), where (x, y) ∈ � × D,
for evaluating the result. We introduce these new notations
to clearly show the difference in the domains and simplify
the notation in the algorithm. The kernel matrix KD is of
size m × m and KcD is of size NM × m, where the size
of the discrete domain � is N × M . Notice that this sig-
nificantly reduces the computational cost, since there is no
need to compute the NM × NM full kernel matrix for col-
orization. In addition, by using the Least Square Algorithm
in RKHS , the solution (26) is computed explicitly without
any iteration which also helps to reduce the computational
cost.

We have also experimented with using the Spectral Algo-
rithm discussed in Sect. 2.1.1 and found that the numerical
results are quite similar to the Least Square Algorithm. We
will present the various numerical experiments in Sect. 4.

4 Various Applications in Colorization

We present various numerical results in this section. Let �

be a discrete image domain with size N × M , and D be

the region where the color is given with cardinality m. The
given image is denoted by Fo : � → R

3: where Fo |D= f ,
and for x ∈ �\D, F 1

o (x) = F 2
o (x) = F 3

o (x), i.e. all three
channels are equal and represent the gray scale. Let (2r +
1) × (2r + 1) be the size of a square patch used to represent
the neighborhood of a point: for each x ∈ � and a positive
integer l = (2r + 1)2, �x = (x1, . . . , xl) ∈ R

l as in (21) and
(22). When r = 0, this represents using only the intensity
value at the point. We experimented with different kernels
such as

k(x, y) = exp

(
−|g(�x) − g(�y)|p

2σ1(2r + 1)p

)
exp

(
−|x − y|p

σ2ρp

)
, (28)

here ρ is
√

N2 + M2. We experimented with 0 < p ≤ 2 and
various σ1 and σ2 values. When 0 < p < 2, the results can be
sharper and less blurry compared to p = 2. This is consistent
with the smoothing properties of the kernels as described by
the mathematical theory: for p = 2, the RKHS consist of
functions which are smoother than those when 0 < p < 2,
as we saw in Sect. 1, thus the resulting images tend to be
more blurry.

4.1 Texture Colorization and Color Transfer

One of the benefits of using the RKHS function extension is
in its flexibility of choice of kernel, and as seen in Sect. 6,
this approach is related to nonlocal diffusion. These meth-
ods can perform very well for texture colorization. Figures 1
and 2 show typical results using the proposed model. Fig-
ure 1 shows a complicated textured image with only 2%
of real color given (randomly chosen), and it gives a good
colorization result. The initial color points are chosen ran-
domly, which shows a possibility to perform color compres-
sion. Figure 2 shows another example of real image col-
orization. Notice that less than 0.5% of color is given from
the original image and the colorization result is realistic.
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Fig. 1 (a) The given image.
(b) The colorization result with
r = 10, p = 1.5 σ1 = 0.4,
σ2 = 10. Here a small set of
color, less than 2% compared to
the size of the image, is given
randomly

Fig. 2 (a) The given image.
(b) The colorization result with
p = 1, r = 2, σ1 = 0.5, σ2 = 10.
Less than 0.5% of color is
given: around the left eye,
middle of the nose, and right
bottom corner. The small D

makes the numerical
computation efficient, and the
colorization result is realistic

Note also due to the small size of given colored region, the
computation is quite efficient numerically (see the discus-
sion after (27)).

Another interesting application of colorization is color
transfer [41, 55]. From a given reference image, the color
information is transferred to a different gray-scale image.
In [55], the authors proposed to match the luminance of
two images, using texture information as a guide. Our work
along this line is an extension from [41] where the authors
matched two colored images. Our model is somewhat dif-
ferent from ordinary colorization methods in that a typi-
cal diffusion-based colorization will fail to diffuse the color
from one image to another. However, since we propose using
RKHS function extension, as long as we define the relation
(via Kernel) between the given colored image and any other
image, color transfer becomes a natural extension.

Figure 3 shows one such an example and it shows this
method can be generalized to video sequence colorization.
One of the easiest generalization is to extend the domain.
Let F1 be a given image defined on � with a small region of
color, and F2 be another image defined on � totally black

and white. One can consider the new image Fo = [F1,F2],
where F1 and F2 are next to each other with the image size
of N × 2M (in fact, the size of F2 does not have to be the
same as that of F1). Then, apply the vectorial RKHS func-
tion extension on the extended image domain. In Fig. 3, from
the given image (a) with partial color information, image (a)
and image (d) are both colorized at the same time. Notice
that images (a) and (d) are quite different and yet the method
gives a reasonable colorization.

4.2 Cartoon Colorization and Color Transfer

One typical application of colorization is cartoon coloriza-
tion as considered in [38, 55]. The proposed method can
be also applied to piece-wise constant images, not only im-
ages with complicated textures. Figure 4 shows an exam-
ple of cartoon image colorization given tiny regions of col-
ors. For this example, we used the intensity of each pixel,
that is r = 0, with p = 2, σ1 = 0.001, and σ2 = 10. Notice
that among many regions, only four dab of colors are given
(white background, one pink, yellow and green), and this
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Fig. 3 Image (a) and image (d) are the two given images: only some
part of image (a) is given as color and image (d) is totally gray scale.
(b) The colorization result of image (a). (c) The true image of (a).
(e) The colorization result of image (d). (f) The true image of (d).

Both images are colorized at the same time using r = 4, p = 1 σ1 = 1,
σ2 = 10. Even if the two images are quite different the colorization
results are reasonable

Fig. 4 (a) The given grayscale image with small regions with color.
(b) The colorization result using the proposed method (r = 0, p = 2,
σ1 = 0.001, and σ2 = 10). Notice that only one dab of color is given for
each four different colors, and all the regions are colorized according
to the intensity similarity

proposed method is able to color all the regions which have
similar intensity.

This proposed method can be applied to color transfer as
before. Figure 5 shows such a result of color transfer, col-
orizing both image (a) and image (b) at the same time. No-
tice the new small flower without any color information in
image (b), which is also colorized automatically by blending
the given color information. From the brightness of this new
flower, it is reasonable to guess that its color could be close

to yellow yet different. The new color is given by the exten-
sion function via a weighted mixture of the given colors.

5 Chromaticity-Brightness Model and Stereographic
Projection

Since we are dealing with color images, we mention that
RGB is not the only color system available (see [25]). Typi-
cal linear models such as RGB (Red, Green and Blue chan-
nels) and CMY (Cyan, Magenta and Yellow) are widely
used, but in standard color TV broadcasting Luminance sep-
arated color systems such as YIQ (Luminance, Hue and Sat-
uration) are used. For digital video, YCbCr (Luminance,two
color-difference components) is widely used. There are also
nonlinear color representations closer to human color per-
ception such as HSV (Hue, Saturation and Value) and in
mathematical settings, color images can also be treated as
3-dimensional vectorial functions [5] as well as tensor prod-
ucts of different color components such as Chromaticity
and Brightness (CB). Many related literature can be found
in [14, 31, 39, 51].

For our proposed model, we also considered the nonlin-
ear color model Chromaticity and Brightness. From a given
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Fig. 5 (a) The same as Fig. 4(a), the given image. (b) A totally gray
scale image. (c) The colorization result using extended image domain:
r = 0, p = 2, σ1 = 0.001, and σ2 = 10. Notice that the new small
flower, without any color information, is also colorized automatically

by blending the given color information. From the brightness intensity
of this new flower, it is reasonable to guess that its color could be close
to Yellow but is different, i.e. this method gives a weighted mixture of
the given colors

RGB color image F(x) = (r(x), g(x), b(x)), the brightness
is typically defined by B(x) = √

r2 + g2 + b2, and the chro-
maticity by C(x) = F(x)

B(x)
, i.e. ‖C(x)‖�2 = 1 and C : � →

S2. The motivation is from [14], where the authors found
that color denoising is best achieved when it is treated in the
Chromaticity and Brightness model (or similarly, when the
color is represented by one component and the brightness
separately to give added flexibility for keeping details).

In this setting of colorization, we assume the brightness
B is given, and we compute the kernel K from B . Since we
consider the image F as the multiplication of the brightness
B and the Chromaticity C, we only need to find C : � → S2

from the given color c : D → S2 in the region D. The diffi-
culty comes from the fact that the Chromaticity component
lies on a unit sphere, and the set of S2-valued functions is
not a vector space, so the RKHS model cannot be directly
applied.

To resolve this issue, we apply the stereographic projec-
tion which maps points from S2 one-to-one onto the ex-
tended complex plane C ∪ {∞}. This allows us to get rid
of the normalized constraint ‖C‖l2 = 1 of the Chromatic-
ity and directly work on R

2 space. Since the color values
are all nonnegative, and to keep the symmetry of the colors,
we apply the stereographic projection with the projection
point being (− 1√

3
,− 1√

3
,− 1√

3
) and the projection plane be-

ing x + y + z = 0. Then, from the sphere x2 + y2 + z2 = 1
onto the plane X + Y + Z = 0, the projection is given by:

X = 3x − (x + y + z)√
3(x + y + z + √

3)
,

Y = 3y − (x + y + z)√
3(x + y + z + √

3)
,

Z = 3z − (x + y + z)√
3(x + y + z + √

3)
.

The inverse projection from the plane X + Y + Z = 0 onto
the sphere x2 + y2 + z2 = 1 is:

x = 2
√

3X + 1 − (X2 + Y 2 + Z2)√
3(1 + X2 + Y 2 + Z2)

,

y = 2
√

3Y + 1 − (X2 + Y 2 + Z2)√
3(1 + X2 + Y 2 + Z2)

,

z = 2
√

3Z + 1 − (X2 + Y 2 + Z2)√
3(1 + X2 + Y 2 + Z2)

.

Therefore, from the given color c : D → S2, we stereo-
graphically project this image onto x + y + z = 0 to get
cp(x) : D → R

2. Then we solve (20)

inf
Cp∈HK(�)

{γ ‖Cp‖2
HK(�) + ‖Cp − cp‖2

L2(D;R3)
},

for two channels, to get the extension Cp(x). Project back
this Cp(x) onto S2 to get C(x) : � → S2, then the coloriza-
tion result becomes F = BC.

Figure 6 shows this approach. Compared to using RGB
vector, especially if three channels are all independently
treated, the Chromaticity and Brightness model can give
much sharper results. This is due to keeping the sharp bright-
ness information and only recovering the color (see [30],
which also uses Chromaticity and Brightness model for col-
orization).

Another good feature of using Chromaticity and Bright-
ness model is the automatic color blending in the color
space. Figure 7 shows such a result blending the color nat-
urally. Notice that by using RKHS function extension, the
results are more realistic compared to other methods which
assume homogeneous colorization (cf. [30]). Some coloriza-
tion approaches use a look-up table or a color palette for
more natural colorization [25, 27, 56].
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Fig. 6 (a) The given image. (b) The colorization result using Chromaticity and Brightness model via Stereographic Projection. (c) The colorization
result using RGB channel. For both experiments p = 1, r = 2, σ1 = 0.5, and σ2 = 10 are used. Notice the sharper detail recovery in image (b)

Fig. 7 (a) The given image. (b) The colorization result using Chro-
maticity and Brightness model via Stereographic Projection: p = 2,
r = 2, σ1 = 0.1, and σ2 = 10. (c) The Chromaticity of the result. Note

that color blending is automatically achieved and from (c) the result is
more natural compared to typical homogeneous colorization

6 Connection with Nonlocal Methods

One benefit of using the kernel method for colorization is
that the kernel information is already fully given by the
brightness g : � → R. So depending on the different possi-
ble choices of the kernel function, one can experiment with
different effects of the diffusion process.

In this section, we explore the connection with nonlo-
cal methods, motivated from the nonlocal mean filter pro-
posed by Buades-Coll-Morel [8], and nonlocal methods
from Kindermann-Osher-Jones [32] and Gilboa-Osher [24],
among others. For each component, we consider the follow-
ing functional J as a regularization term:

J (F ) = 1

4

∫

�

∫

�

K(x, y)(F (x) − F(y))2 dxdy,

and the minimization for colorization to be

inf
F

{
F (F ) = γ J (F ) + 1

2
‖f − F‖2

L2(D)

= γ J (F ) + 1

2

∫

�

(PDf (x) − PDF(x))2 dx

}
, (29)

where

PDF(x) =
{
F(x) if x ∈ D,

0 otherwise.

Remark 7 Here we only assume that K is non-negative
pointwise. This is different from the RKHS setting, where K

is assumed to be positive definite (hence symmetric) but not
necessarily non-negative pointwise. Also, we do not want
the kernel K to be symmetric. Since the color is already
known for x ∈ D and the unknown colors should not af-
fect the known colors, one should have K(x,y) = 0 for all
y ∈ Dc. On the other hand, if x ∈ Dc, then to approximate
the color at x, we need the color information from y ∈ D.
Thus for each x ∈ Dc , K(x,y) �= 0 for some y ∈ D. For
example if we do not want to change the colors for x ∈ D,
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then

K(x,y) =
{

0, if y �= x

1, if y = x.
(30)

If one wants some denoising on the colors at x ∈ D, then
K(x,y) should be non-zero for some y ∈ D. (Cf. in the
RKHS setting, the values K(x,y) for x, y ∈ Dc were never
needed, and hence never computed.)

The differential ∂J (F )
∂F

in the direction of a test function
v is given by

∂J (F )

∂F
(v) = 1

2

∫

�

∫

�

K(x, y)(F (x) − F(y))

× (v(x) − v(y)) dxdy

:=
∫

�

[C(x)F (x) − LF(x)]v(x) dx,

where

C(x) =
∫

�

K(x, y) dy,

LF(x) =
∫

�

K(x, y)F (y)dy, and

K(x,y) = (K(x, y) + K(y,x))

2
.

Thus a minimizer Fγ of F defined in (29) satisfies

0 = ∂F (Fγ )

∂F
= γ (CFγ − LFγ ) − P ∗

D(f − PDFγ )

= γ (CFγ − LFγ ) − PD(f − Fγ ). (31)

Here we assume f = 0 in Dc, and used P ∗
D = PD , and P 2

D =
PD .

As mentioned in Remark 7, K(x,y) = 0 for all x, y ∈
Dc, so that K(x,y) = 0 for all x, y ∈ Dc. Then, for x ∈ Dc ,
if Fγ is a minimizer from (31) and using the definition of
PD , γ (CFγ (x) − LFγ (x)) = 0. In other words,

Fγ (x) = 1

C(x)

∫

�

K(x, y)Fγ (y) dy

= 1

C(x)

∫

D

K(x, y)Fγ (y) dy. (32)

If x ∈ D, then from (31),

γ (C(x)Fγ (x) − LFγ (x)) − f (x) + Fγ (x) = 0 ⇒

Fγ (x) = f (x) − γC(x)Fγ (x) + γ

∫

�

K(x, y)Fγ (y) dy.

We have
∫

�

K(x, y)Fγ (y) dy

=
∫

D

K(x, y)Fγ (y) dy +
∫

Dc

K(x, y)Fγ (y) dy

=
∫

D

K(x, y)Fγ (y) dy

+
∫

Dc

K(x, y)

[
1

C(y)

∫

D

K(y, z)Fγ (z) dz

]
dy,

where in the last term we use (32) for Fγ (y), y ∈ Dc. Fur-
ther defining

K̃(x, z) =
∫

Dc

K(x, y)K(y, z)

C(y)
dy

for the last term, the minimizer Fγ (x) for x ∈ D can be ex-
pressed as

Fγ (x) = f (x) − γC(x)Fγ (x) + γ

∫

D

K(x, y)Fγ (y) dy

+ γ

∫

D

K̃(x, y)Fγ (y) dy. (33)

Combining equations (32) and (33), we have

Fγ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
1+γC(x)

[f (x) + γ
∫
D

(K(x, y)

+ K̃(x, y))Fγ (y) dy] if x ∈ D,

1
C(x)

∫
D

K(x, y)Fγ (y) dy if x ∈ Dc.

(34)

Discretely, we can solve it in the following way. Suppose
D = {x1, . . . , xm} and denote fi = f (xi), and Ci = C(xi).
Letting ai = Fγ (xi), we have

ai = 1

1 + γCi

[
fi + γ

m∑

i=1

[K(xi, xj ) + K̃(xi, xj )]aj

]
,

which implies that ai satisfies the linear system

(1 + γCi)ai − γ

m∑

i=1

[K(xi, xj ) + K̃(xi, xj )]aj = fi. (35)

For all x ∈ Dc,

Fγ (x) = 1

C(x)

m∑

k=1

K(x,xi)ai . (36)

Let us compare this nonlocal regularization framework
of (35) and (36) with the RKHS setting in Sect. 3, (26)
and (27). Here the ai ’s represent the recovered values at the
known colored pixels in D, which are then used to com-
pute the values at the unknown colored pixels in Dc. In con-
trast, the ai ’s in the RKHS setting represent the coefficient
of an explicit function expansion that is valid throughout �,
which gives the color values at any pixel.

It is important to note here that it is not obvious when the
coefficient matrix of system (35) is invertible for any γ > 0.
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It is likely that further assumptions on K are needed, which
we will leave for a future work. This is in contrast with the
RKHS case, where it is immediate from the assumption of
positive definiteness that the coefficient matrix of system
(27) is always invertible for any γ > 0. More importantly,
in order to solve system (35), we need to evaluate the matrix
K̃ . This essentially involves multiplying two generally very
large matrices, each of size m× (NM −m), and is therefore
likely to be highly time consuming. We thus expect that this
method is not as numerically efficient as the RKHS frame-
work above.

Remark 8 In the discrete setting, the nonlocal framework
just proposed is also related to the literature on the graph
Laplacian (see for example [2, 16]). Let G be an undi-
rected graph with N vertices and W be its non-negative
symmetric weight matrix. Let D be the diagonal matrix with
Dii = ∑N

j=1 Wij . Then the unnormalized graph Laplacian is

defined to be � = D −W . It is precisely the operator C − L̄

above if the set � is discrete. For any y ∈ R
N we have

yT �y = 1

2

N∑

i,j=1

(yi − yj )
2Wij .

The Laplacian � always has as eigenvector the constant vec-
tor e1 = (1, . . . ,1), with corresponding eigenvalue 0. The
multiplicity of this eigenvalue is precisely the number of
connected components in G.

The matrix � is symmetric and positive definite, there-
fore possesses a non-negative spectrum. Let {ei}Ni=1 be an or-
thonormal basis of R

N consisting of eigenvectors of �, with
corresponding eigenvalues λi . Then for y = (y1, . . . , yN) in
this basis, we have

yT �y =
N∑

i=1

λiy
2
i .

This shows that on the row space row(�) = nul(�)⊥, yT �y
is a Hilbert space square norm, which is strictly convex. If
G is connected—guaranteed if Wij > 0 for all i, j—then
row(�) = {y : ∑N

i=1 yi = 0}. This is consistent with the
continuous version in Kindermann-Osher-Jones [32], where
(the example in Sect. 4), J (u)1/2 is a norm on the subspace
of functions satisfying

∫
�

u(x)dx = 0.

7 Concluding Remarks

Motivated by RKHS widely used in machine learning appli-
cations, we proposed extension methods for vector-valued
functions using vector-valued RKHS. We studied the vecto-
rial setting of RKHS, reformulated RKHS function exten-
sions in terms of operator-valued kernels and considered in

detail the diagonal case. One of the advantages of the pro-
posed model is the fact that the solution is given via the
minimization of a functional, and an explicit solution can
be easily and efficiently computed through solving a sim-
ple system of linear equations. The RKHS framework guar-
antees, via a straightforward manner, that there is a unique
global solution and no iteration is required. In addition, the
flexibility of different choices of kernel allows texture col-
orization as well as cartoon.

We see this project as the starting point for exploring vec-
torial kernel applications. As seen in the example of Sect. 5,
the color correlations are complicated and the extension to
non-diagonal vectorial kernel is non-trivial. We used the di-
agonal kernel, and considered both channel by channel case
of RGB color as well as chromaticity and brightness color
setting to deal with different color treatments and fully ex-
plored the benefits of RKHS. We believe there are inter-
esting extensions for the setting of non-diagonal vectorial
RKHS and are exploring different possibilities.
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