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Abstract We attempt to establish geometrical methods for amino acid sequences. To
measure the similarities of these sequences, a kernel on strings is defined using only
the sequence structure and a good amino acid substitution matrix (e.g. BLOSUM62).
The kernel is used in learning machines to predict binding affinities of peptides to
human leukocyte antigen DR (HLA-DR) molecules. On both fixed allele (Nielsen and
Lund in BMC Bioinform. 10:296, 2009) and pan-allele (Nielsen et al. in Immunome
Res. 6(1):9, 2010) benchmark databases, our algorithm achieves the state-of-the-art
performance. The kernel is also used to define a distance on an HLA-DR allele set
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based on which a clustering analysis precisely recovers the serotype classifications
assigned by WHO (Holdsworth et al. in Tissue Antigens 73(2):95–170, 2009; Marsh
et al. in Tissue Antigens 75(4):291–455, 2010). These results suggest that our kernel
relates well the sequence structure of both peptides and HLA-DR molecules to their
biological functions, and that it offers a simple, powerful and promising methodology
to immunology and amino acid sequence studies.

Keywords String kernel · Peptide binding prediction · Reproducing kernel Hilbert
space · Major histocompatibility complex · HLA DRB allele classification

Mathematics Subject Classification 62P10 · 68T05 · 92B15 · 92C40

1 Introduction

Large scientific and industrial enterprises are engaged in efforts to produce new vac-
cines from synthetic peptides. The study of peptide binding to appropriate MHC II
molecules is a major part of this effort. Our goal here is to support the use of a certain
“string kernel” for peptide binding prediction as well as for the classification of super-
types of the major histocompatibility complex (MHC) alleles. We hope that this will
contribute to the prediction of vaccines and the understanding of organ transplants.
This work actually could be applied to any other receptor-binding system where large
binding sets are available.

Part of our innovation and philosophy is our attitude and our relationship towards
multiple sequence alignments and the associated gaps with their introduction of er-
rors. This paper is alignment-free except for the use of BLOSUM62 (see below).
Note that Waterman, who originally played a big role in alignments, is now writing
papers about alignment-free theory [49].

Our point of view is that some key biological information is contained in just two
places: first, in a similarity kernel (or substitution matrix) on the set of the fundamen-
tal amino acids; and second, on a good representation of the relevant alleles as strings
of these amino acids.

This is achieved with great simplicity and predictive power. Along the way we find
that emphasizing peptide binding as a real-valued function rather than a binding/non-
binding dichotomy clarifies the issues. We use a modification of BLOSUM62 fol-
lowed by a Hadamard power. We also use regularized least squares (RLS) in contrast
to support vector machines as the former is consistent with our regression emphasis.

We next briefly describe the construction (more details also in Sect. 2) of our main
kernel K̂3 on amino acid sequences, inspired by local alignment kernels (see e.g.
[36, 47]) as well as an analogous kernel in vision (see [44]) begins.

For the purposes of this paper, a kernel K is a symmetric function K : X×X → R

where X is a finite set. Given an order on X, K may be represented as a matrix (think
of X as the set of indices of the matrix elements). Then it is assumed that K is positive
definite (in such a representation).

Let A be the set of the 20 basic (for life) amino acids. Every protein has a repre-
sentation as a string of elements of A .
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Step 1. Definition of a kernel K1 : A × A → R.
BLOSUM62 is a similarity (or substitution) matrix on A used in immunol-
ogy [16]. In the formulation of BLOSUM62, a kernel Q : A × A → R is
defined using blocks of aligned strings of amino acids representing proteins.
One can think Q as the “raw data” of BLOSUM62. It is symmetric, positive-
valued, and it is a probability measure on A × A . (We have in addition
checked that it is positive definite.)
Let p be the marginal probability defined on A by Q. That is,

p(x) =
∑

y∈A

Q(x,y).

Next, we define the BLOSUM62-2 matrix, indexed by the set A , as

[BLOSUM62-2](x, y) = Q(x,y)

p(x)p(y)
.

We list the BLOSUM62-2 matrix in Appendix. Suppose β > 0 is a pa-
rameter, usually chosen about 1

8 or 1
10 (still mysterious). Then a kernel

K1 : A × A → R is given by

K1(x, y) = ([BLOSUM62-2](x, y)
)β

. (1)

Note that the power in (1) is of the matrix entries, not of the matrix.
Step 2. Let A 1 = A and define A k+1 = A k ×A recursively for any k ∈ N. We say

s is an amino acid sequence (or string) if s ∈ ⋃∞
k=1 A k , and s = (s1, . . . , sk)

is a k-mer if s ∈ A k for some k ∈ N with si ∈ A . Consider

K2
k (u, v) =

k∏

i=1

K1(ui, vi)

where u,v are amino acid strings of the same length k, u = (u1, . . . , uk),
v = (v1, . . . , vk); u,v are k-mers. K2

k is a kernel on the set of all k-mers.
Step 3. Let f = (f1, . . . , fm) be an amino acid sequence. Denote by |f | the length

of f (so here |f | = m). Write u ⊂ f whenever u is of the form u =
(fi+1, . . . , fi+k) for some 1 ≤ i + 1 ≤ i + k ≤ m. Let g be another amino
acid sequence, then define

K3(f, g) =
∑

u⊂f,v⊂g
|u|=|v|=k

all k=1,2,...

K2
k (u, v),

for f and g in any finite set X of amino acid sequences. Here, and in all
of this paper, we abuse the notation to let the sum count each occurrence
of u in f (and of v in g). In other words we count these occurrences “with
multiplicity”. While u and v need to have the same length, not so for f and
g. Replacing the sum by an average gives a different but related kernel.
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We define the correlation kernel K̂ normalized from any kernel K by

K̂(x, y) = K(x,y)√
K(x,x)K(y, y)

.

In particular, let K̂3 be the correlation kernel of K3.

Remark 1 K̂3 is a kernel (see Sect. 2.2). It is symmetric, positive definite, positive-
valued; it is basic for the results and development of this paper. We sometimes say
string kernel. The construction works for any kernel (at the place of K1) on any finite
alphabet (replacing A ).

Remark 2 For some background see [15, 19, 23, 35, 37, 51]. But we use no gap
penalty or even gaps, no logarithms, no implied round-offs, and no alignments (except
the BLOSUM62-2 matrix which indirectly contains some alignment information).

Remark 3 For complexity reasons one may limit the values of k in Step 3 with a
small loss of accuracy, or even choose the k-mers at random.

Remark 4 The chains (sequences) we use are proteins and peptides. Peptides are
short sequence fragments of proteins.

Associated to a gene are a number of variants called alleles.1 An allele could be
said to be the representative of the gene in an individual. The alleles give differ-
ent characteristics the these individuals, for example, resistance to diseases. Thus in
WHO data bases, [28], one has WHO nomenclature of an allele; before the asterisk
is the gene and after the asterisk is the detailed code of the allele.

MHC II and MHC I are sets of alleles which are associated with immunological
responses to viruses, bacteria, peptides and related entities. See [13, 26] for good
introductions. In this paper we only study HLA II, the MHC II in human beings.
HLA-DRB (or simply DRB) describes a subset of HLA II alleles which play a central
role in immunology, as well as in this paper. Alleles have representations as amino
acid sequences.

1.1 First Application: Binding Affinity Prediction

Peptide binding to a fixed HLA II (and HLA I as well) molecule (or an allele) a is a
crucial step in the immune response of the human body to a pathogen or a peptide-
based vaccine. Its prediction is computed from data of the form (xi, yi)

m
i=1, xi ∈ Pa

and yi ∈ [0,1], where Pa is a set of peptides (i.e. sequences of amino acids; in this
paper we study peptides of length 9 to 37 amino acids, usually about 15) associated to
an HLA II allele a. Here yi expresses the strength of the binding of xi to a. The pep-
tide binding problem occupies much research. We may use our kernel K̂3 described
above for this problem since peptides are represented as strings of amino acids. Our

1Allele: an alternative form of a gene that occurs at a specified chromosomal position (locus) [22].
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prediction thus uses only the amino acid sequences of the peptides, a substitution
matrix, and some existing binding affinities (as “data”).

Following RLS supervised learning with kernel K = K̂3, the main construction is
to compute

fa = arg min
f ∈HK

m∑

i=1

(
f (xi) − yi

)2 + λ‖f ‖2
K. (2)

Here λ > 0 and the index β > 0 in K̂3 are chosen by a procedure called leave-one-
out cross-validation (defined in Sect. 2.3, see also [12]). Also HK is the space of
functions spanned by {Kx : x ∈ P} (where Kx(y) := K(x,y)) on a finite set P of
peptides containing Pa . An inner product on HK is defined on the basis vectors
as 〈Kx,Ky〉K = K(x,y), then in general by linear extension. The norm of f ∈ HK

induced by this inner product is denoted by ‖f ‖K . In (2), fa is the predicted peptide
binding function. We refer to this algorithm as “KernelRLS”.

For the set of HLA II alleles, with the best data available we have Table 1. The area
under the receiver operating characteristic curve (area under the ROC curve, AUC,
see Sect. 2.3 for definition) is the main measure of accuracy used in the peptide
binding literature. NN-W refers to the algorithm which up to now has achieved the
most accurate results for this problem, although there are many previous contributions
as [10, 24, 50]. In Sect. 2 there is more detail.

The following results compare ours with [29], “The method is evaluated on a large-
scale benchmark consisting of six independent data sets covering 14 human MHC
class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II
prediction methods”, directly quoted from the abstract of [29]. Since ours compares
very well with [29], see Table 1, we do not need to compare ours with the other
algorithms, including for example string kernel methods etc. Similar considerations
apply to the pan-allele case using reference [31].

We note the simplicity and universality of the algorithm that is based on K̂3,
which itself has this simplicity with the contributions from the substitution matrix
(i.e. BLOSUM62-2) and the sequential representation of the peptides. There is an
important generalization of the peptide binding problem where the allele is allowed
to vary. Our results on this problem are detailed in Sect. 3.

We have found the third decimal point useful for comparison of algorithms, and
understanding nuances of algorithms, but always keeping in mind the danger of over-
fitting. What is a good AUC score has a very large range depending on the setting.

Since our manuscript was submitted, Andreatta [1] writes that he has tried our
kernel method on MHC I peptide binding. We quote from his page 80, the “kernel
method showed performance comparable to state-of-the-art methods for MHC class
I prediction”.

1.2 Second Application: Clustering and Supertypes

We consider the classification problem of DRB (HLA-DR β sequence) alleles into
groups called supertypes as follows. The understanding of DRB similarities is very
important for the designation of high population coverage vaccines. An HLA gene
can generate a large number of allelic variants and this polymorphism guarantees a
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Table 1 The algorithm performance of RLS on each fixed allele in the benchmark [29]. If a is the allele in
column 1, then the number of peptides in Pa is given in column 2. The root-mean-square error (RMSE)
scores are listed (see Sect. 2.3). The AUC scores of the RLS and the NN-W algorithm are listed for
comparison, where a common threshold θ = 0.426 is used [29] in the final thresholding step into binding
and non-binding (see Sect. 2.3 for the details). The best AUC in each row is marked in bold. In all the
tables the weighted average scores are given by the weighting on the size #Pa of the corresponding
peptide sets Pa

List of alleles, a #Pa KernelRLS NN-W in [29]

RMSE AUC AUC

DRB1*0101 5166 0.18660 0.85707 0.836

DRB1*0301 1020 0.18497 0.82813 0.816

DRB1*0401 1024 0.24055 0.78431 0.771

DRB1*0404 663 0.20702 0.81425 0.818

DRB1*0405 630 0.20069 0.79296 0.781

DRB1*0701 853 0.21944 0.83440 0.841

DRB1*0802 420 0.19666 0.83538 0.832

DRB1*0901 530 0.25398 0.66591 0.616

DRB1*1101 950 0.20776 0.83703 0.823

DRB1*1302 498 0.22569 0.80410 0.831

DRB1*1501 934 0.23268 0.76436 0.758

DRB3*0101 549 0.15945 0.80228 0.844

DRB4*0101 446 0.20809 0.81057 0.811

DRB5*0101 924 0.23038 0.80568 0.797

Average 0.21100 0.80260 0.798

Weighted average 0.20451 0.82059 0.810

population from being eradicated by a single pathogen. See Sect. 1.2 of [26]. Fur-
thermore, there are no more than twelve HLA II alleles in each individual [20] and
each HLA II molecule binds only to specific peptides [40, 53]. As a result, it is dif-
ficult to design an effective vaccine for a large population. It has been demonstrated
that many HLA molecules have overlapping peptide binding sets and there have been
several attempts to group them into supertypes accordingly [3, 6, 25, 32, 39, 42, 43].
The supertypes are designed so that the HLA molecules in the same supertype will
have a similar peptide binding specificity.

The Nomenclature Committee of the World Health Organization (WHO) [28] has
given extensive tables on serological type assignments to DRB alleles which are
based on the works of many organizations and labs throughout the world. In par-
ticular the HLA dictionary 2008 by Holdsworth et al. [17] acknowledges especially
the data from the WHO Nomenclature Committee for Factors of the HLA system,
the International Cell Exchange and the National Marrow Donor Program. The text
in Holdsworth et al., 2008 [17] indicates also the ambiguities of such assignments
especially in certain serological types.
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We define a set N of DRB alleles as follows. We downloaded 820 DRB allele
sequences from the IMGT/HLA Sequence Database [33].2 Then 14 non-expressed
alleles were excluded and there remained 806 alleles. We use two markers “RFL”
and “TVQ” (which are strings in the standard alphabetical code of amino acids given
in Table 9), each of which consists of three amino acids to identify the polymorphic
part of a DRB allele. For each allele, we only consider the amino acids located be-
tween the markers “RFL” (the location of the first occurrence of “RFL”) and “TVQ”
(the location of the last occurrence of “TVQ”). One reason is the majority of polymor-
phic positions occur in exon 2 of the HLA class II genes [14], and the amino acids
located between the markers “RFL” and “TVQ” constitute the whole exon 2 [46].
The DRB alleles are encoded by six exons. Exon 2 is the most important component
constituting an HLA II–peptide binding site. The other reason is in the HLA pseudo-
sequences used in the NetMHCIIpan [30], all positions of the allele contacting with
the peptide occur in this range.

Thus each allele is transformed into a normal form. We should note that two dif-
ferent alleles may have the same normal form. For those alleles with the same normal
form, we only consider the first one. The order is according to the official names
given by WHO. We collect the remaining 786 alleles with no duplicate normal forms
into a set, we call N . This set not only includes all alleles listed in the tables of [17],
but also contains all new alleles since 2008 until August 2011.

Thus N may be identified with a set of amino acid sequences. Next impose the
kernel K̂3 above on N where β = 0.06, we call the kernel K̂3

N .

On N we define a distance derived from K̂3
N by

DL2(x, y) =
(

1

#N

∑

z∈N

(
K̂3

N (x, z) − K̂3
N (y, z)

)2
)1/2

, ∀x, y ∈ N . (3)

Here and in the sequel we denote #A the size of a finite set A.
The DRB1*11 and DRB1*13 families of alleles have been the most difficult to

deal with by WHO and for us as well. Therefore we will exclude the DRB1*11 and
DRB1*13 families of alleles in the following cluster tree construction with the ev-
idence that clustering of these two groups is ineffective. See [26] for a discussion.
They are left to be analyzed separately.3

The set M consists of all DRB alleles except for the DRB1*11 and DRB1*13
families of alleles. M is a subset of the set N . We produce a clustering of M
based on the L2 distance defined on N in (3), DL2 , restricted to M , and use the
OWA (Ordered Weighted Averaging) [52] based linkage (see Sect. 4.1 for definition)
instead of the “single” linkage in the hierarchical clustering algorithm.

This clustering uses no previous serological type information and no alignments.
We have assigned supertypes labeled ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, ST9,
ST10, ST51, ST52 and ST53 to certain clusters in the Tree shown in Fig. 1 based on

2ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/DRB_prot.fasta.
3We have found from a number of different experiments that “they do not cluster”. (Perhaps the geometric
phenomenon here is in the higher dimensional scaled topology, i.e. the Betti numbers βi > 0, for i > 0
[4].)

ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/DRB_prot.fasta
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Fig. 1 Cluster tree on 559 DRB alleles. The diameters of the leaf nodes are given at the bottom of the
figure. The numbers given in the figure are the diameters of the corresponding unions of clusters

contents of the clusters described in Table 6. Peptides have played no role in our
model. Differing from the artificial neural network method [17, 27], no “training
data” of any previously classified alleles are used in our clustering. We make use of
the DRB amino acid sequences to build the cluster tree. Only making use of these
amino acid sequences, our supertypes are in exact agreement with WHO assigned
serological types [17], as can be seen by checking the supertypes against the clusters
in Table 6.

For a cluster, i.e. leaf of the tree, one retrieves the serotype by checking the alleles
in that cluster and then use the WHO labeling. See Sect. 4 for details.

This second application is given in some detail in Sect. 4.

2 Kernel Method for Binding Affinity Prediction

In this section we describe in detail the construction of our string kernel. The mo-
tivation is to relate the sequence information of strings (peptides or alleles) to their
biological functions (binding affinities). A kernel works as a measure of similarity
and supports the application of powerful machine learning algorithms such as RLS
which we use in this paper. For a fixed allele, binding affinity is a function on peptides
with values in [0,1]. The function values on some peptides are available as the data,
according to which RLS outputs a function that predicts for a new peptide the binding
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affinity to the MHC II molecule. The method is generalized in the next section to the
pan-allele kernel algorithm that takes also the allele structure into account.

2.1 Kernels

We suppose throughout the paper that X is a finite set. We now give the definition of
a kernel, of which an important example is our string kernel.

Definition 1 A symmetric function K : X × X → R is called a kernel on X if it is
positive definite, in the sense that by choosing an order on X, K can be represented
as a positive definite matrix (K(x, y))x,y∈X .

Kernels have the following properties [2, 7, 41].

Lemma 1

(i) If K is a kernel on X then it is also a kernel on any subset X1 of X.
(ii) If K1 and K2 are kernels on X, then K : X × X → R defined by

K
(
x, x′) = K1

(
x, x′) + K2

(
x, x′)

is also a kernel.
(iii) If K1 is a kernel on X1 and K2 is a kernel on X2, then K : (X1 × X2) × (X1 ×

X2) → R defined by

K
(
(x1, x2),

(
x′

1, x
′
2

)) = K1
(
x1, x

′
1

) · K2
(
x2, x

′
2

)

is a kernel on X1 × X2.
(iv) If K is a kernel on X, and f is a real-valued function on X that maps no point

to zero, then K ′ : X × X defined by

K ′(x, x′) = f (x)K
(
x, x′)f

(
x′)

is also a kernel.
(v) If K is a kernel on X, then the correlation normalization K̂ of K given by

K̂
(
x, x′) = K(x,x′)√

K(x,x)K(x′, x′)
(4)

is also a kernel.

Proof (i), (ii), and (iv) follows the definition directly. (iii) follows the fact that the
Kronecker product of two positive definite matrices is positive definite; see [18] for
details. The positive definiteness of a kernel K guarantees that K(x,x) > 0 for any x

in X, so (v) follows (iv). �

Remark 5 Notice that with correlation normalization we have K̂(x, x) = 1 for all
x ∈ X. This is a desired property because the kernel function is usually used as a
similarity measure, and with K̂ we can say that each x ∈ X is similar to itself.
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Define the real-valued function Kx on X by Kx(y) = K(x,y). The function
space HK = span{Kx : x ∈ X} is a Euclidean space with inner product 〈Kx,Ky〉K =
K(x,y), extended linearly to HK . The norm of a function f in HK is denoted as
‖f ‖K .

Remark 6 The kernel can be defined even without assuming X is finite; in this gen-
eral case the kernel is referred to as a reproducing kernel [2]. If X is finite then a
reproducing kernel is equivalent to our “kernel”. The theory of reproducing kernel
Hilbert spaces plays an important role in learning [7, 38, 48].

On a finite set X there are two notions of distance derived from a kernel K . The
first one is the usual distance in HK , that is,

DK

(
x, x′) = ‖Kx − Kx′ ‖K,

for two points x, x′ ∈ X. The second one is the L2 distance defined by

DL2

(
x, x′) =

(
1

#X

∑

t∈X

(
K(x, t) − K

(
x′, t

))2
)1/2

.

Important examples of the kernels discussed above are our kernel K3 and its nor-
malization K̂3, both defined on any finite X ⊂ ⋃

k≥1 A k .

2.2 Kernel on Strings

We start with a finite set A called the alphabet. In the work here A is the set of 20
amino acids, but the theory in this section applies to any other finite set. For example,
as the name suggests, it can work on text for semantic analysis with a similar setting.
See also [44] for the framework in vision.

To measure a similarity among the 20 amino acids, Henikoff and Henikoff [16]
collect families of related proteins, align them and find conserved regions (i.e. regions
that do not mutate frequently or greatly) as blocks in the families. The occurrence of
each pair of amino acids in each column of every block is counted. A large num-
ber of occurrences indicate that in the conserved regions the corresponding pair of
amino acids substitute each other frequently or, in other words, that they are similar.
A symmetric matrix Q indexed by A × A is eventually obtained by normalizing
the occurrences, so that

∑
x,y∈A Q(x,y) = 1 and Q(x,y) indicates the frequency of

occurrences. See [16] for details. The BLOSUM62 matrix is constructed accordingly.
Define K1 : A × A → R as

K1(x, y) =
(

Q(x,y)

p(x)p(y)

)β

, for some β > 0,

where p : A → [0,1] given by

p(x) =
∑

y∈A

Q(x,y),
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is the marginal probability distribution on A . When β = 1, recall that the matrix
(K1(x, y))x,y∈A is BLOSUM62-2 (one takes logarithm with base 2, scales it with
factor 2, and rounds the obtained matrix to integers to obtain the BLOSUM62 matrix).
Notice that if one chooses simply Q = 1

m
Im×m, then one obtains the matrix Im×m as

the analogue of the BLOSUM62-2, and the corresponding K3 of the Introduction is
called the spectrum kernel [23].

In matrix language K1 is the Hadamard power of the BLOSUM62-2 matrix, where
for a matrix M = (Mi,j ) with positive entries and a number β > 0, we denote M◦β
as the βth Hadamard power of M and log◦ M as the Hadamard logarithm of M , and
their (i, j) entries are, respectively,

(
M◦β)

i,j
:= (Mi,j )

β,
(
log◦ M

)
i,j

:= log(Mi,j ).

Theorem 1 (Horn and Johnson [18]) Let A be an m × m positive-valued symmetric
matrix. The Hadamard power A◦β is positive definite for any β > 0 if and only if the
Hadamard logarithm log◦ A is conditionally positive definite (i.e. positive definite on
the space V = {v = (v1, . . . , vm) ∈R

m : ∑m
i=1 vi = 0}).

Proposition 1 Every positive Hadamard power of BLOSUM62-2 is positive definite.
Thus the above defined K1 is a kernel for every β > 0.

Proof One just shows the eigenvalues of the Hadamard logarithm on V are all posi-
tive. One checks this by computer (see Appendix for data). �

Theorem 2 Based on any kernel K1, the functions K2
k , K3, and K̂3 defined as in the

Introduction are all kernels.

Proof The fact that K2
k is a kernel for k ≥ 1 follows from Lemma 1(iii). We now

prove that K3 is positive definite on any finite set X of strings, which then implies
the same for K̂3 by Lemma 1(v). From Lemma 1(i) it suffices to verify the cases
that X = Xk = ⋃k

i=1 A i for k ≥ 1. When k = 1, K3 is just K1 and hence positive
definite. We assume now that K3 is positive definite on Xk with k = n.

We claim that the matrices indexed by Xn+1,

K3
i,Xn+1

(f, g) =
⎧
⎨

⎩

∑
u⊂f,v⊂g
|u|=|v|=i

K2(u, v) if |f |, |g| ≥ i,

0 if |f | < i or |g| < i,

are all positive semi-definite. In fact, for any 1 ≤ i ≤ n,

K3
i,Xn+1

= PiK
2
i P T

i , (5)

where K2
i is the matrix (K2

i (u, v))u,v∈A i , and Pi is a matrix with Xn+1 as the row
index set and A i as the column index set, and for any f ∈ Xn+1 and u ∈ A i , Pi(f,u)

counts the number of times u occurs in f . Let us explain Eq. (5) a little more. For f
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and g in Xn+1, from the definition of Pi we have

(
PiK

2
i P T

i

)
(f, g) =

∑

u,v∈A i

Pi(f,u)Pi(g, v)K2
i (u, v)

=
∑

u⊂f,v⊂g
|u|=|v|=i

K2
i (u, v), ∀i. (6)

Summing Eq. (6) above over i ∈ N gives the definition of K3(f, g).
For i = n + 1, we have

K3
n+1,Xn+1

(f, g) =
{

0 f /∈ A n+1 or g /∈ A n+1,

K2
n+1(f, g) otherwise.

Therefore K3
n+1,Xn+1

is positive definite on A n+1, and is zero elsewhere. Since

K3(f, g) =
n∑

i=1

K3
i,Xn+1

(f, g), ∀f,g ∈ Xn,

we know that the sum of K3
i,Xn+1

with i = 1, . . . , n are positive definite on Xn, and
positive semi-definite on Xn+1. Because

K3(f, g) =
n+1∑

i=1

K3
i,Xn+1

(f, g), ∀f,g ∈ Xn+1,

we see that K3 is positive definite on Xn+1. �

Corollary 1 Our kernels K2
k , K3 and K̂3 are discriminative. That is, given any two

strings f,g in the domain of K , as long as f �= g, we have DK(f,g) > 0. Here K

stands for any of the three kernels.

2.3 First Application: Peptide Affinities Prediction

We first briefly review the RLS algorithm inspired by learning theory. Let K be a
kernel on a finite set X. Write HK to denote the inner product space of functions on
X defined by K . Suppose z̄ = {(xi, yi)}mi=1 is a sample set (called the training set)
with xi ∈ X and yi ∈R for each i. The RLS uses a positive parameter λ > 0 and z̄ to
generate the output function fz̄,λ : X →R, defined as

fz̄,λ = arg min
f ∈HK

{
1

#z̄

∑

(xi ,yi )∈z̄

(
f (xi) − yi

)2 + λ‖f ‖2
K

}
. (7)

Since HK is of finite dimension, one solves (7) by representing f linearly by func-
tions Kx with x ∈ X and finding the coefficients. See [7, 38] for details.
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Remark 7 The RLS algorithm (7) is independent of the choice of the underlying
space X where the function space HK is defined, in the sense that the predicted
values fz̄,λ(x) at x ∈ X will not be changed if we extend K onto a large set X′ ⊃ X

and re-run (7) with the same z̄ and λ. This is guaranteed by the construction of the
solution. See, e.g. [7, 38].

Five-fold cross-validation is a procedure to evaluate the performance of an algo-
rithm. Suppose z̄ = {(xi, yi)}mi=1 is partitioned into five divisions (we assume m ≥ 5,
which is always the case in this paper). Five-fold cross-validation is the procedure
that validates an algorithm (with fixed parameters) as follows. We choose one of the
five divisions of the data for testing, train the algorithm on the remaining four di-
visions, and predict the output function on the testing division. We do this test for
five rounds so that each division is used in one round as the testing data and thus
every sample xi is labeled with both yi from data and the predicted value ỹi . The
algorithm performance is obtained by comparing the two values over all the sample
set. Similarly one defines the n-fold cross-validation for any n ≤ m. As an important
special instance, the m-fold case is also referred to as leave-one-out cross-validation.
Cross-validations are also used to tune parameters.

One important step of RLS is parameter selection. As for KernelRLS, we have two
parameters, the power β used to define our kernel, and λ in (7). They are selected from
an optional set Λ, by leave-one-out cross-validation on the training data. We never
use testing data for parameter selection which is under the risk of over-fitting. We
refer to the whole procedure, both selecting the parameter, and finding the minimizer
of (7) with the best parameter, as the training of KernelRLS. (A similar notion is used
also for KernelRLSPan, which will be studied later.)

Binding affinity measures the strength that a peptide binds to an MHC II molecule,
and is represented by the IC50 score (see [21] for more details). Usually an IC50
score lies between 0 and 50,000 (nano molar). A widely used IC50 threshold de-
termining binding and non-binding is 500 (“binding” if the IC50 value is less than
500). The bioinformatics community usually normalizes the scores by the function
ψb : (0,+∞) → [0,1] with a base b > 1,

ψb(x) :=

⎧
⎪⎨

⎪⎩

0 x > b,

1 − logb x 1 ≤ x ≤ b,

1 x < 1.

(8)

Without introducing any ambiguity we will in the sequel refer to the normalized IC50
value as the binding affinity using an appropriate value of b.

We evaluate KernelRLS on the IEDB benchmark data set published in [30]. The
data set covers 14 DRB alleles, each allele a with a set Pa of peptides. For any
p ∈ Pa , its sequence representation and the [0,1]-valued binding affinity ya,p to the
molecule a are both given. On this data set we compare KernelRLS with the state-of-
the-art NN-align algorithm proposed in [29]. In [29] for each allele a, the peptide set
Pa was divided into five parts for validating the performance.4

4Both the data set and the 5-fold partition are available at http://www.cbs.dtu.dk/suppl/immunology/
NetMHCII-2.0.php.

http://www.cbs.dtu.dk/suppl/immunology/NetMHCII-2.0.php
http://www.cbs.dtu.dk/suppl/immunology/NetMHCII-2.0.php
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Now fix an allele a. Set X = P ⊃ Pa (Remark 7 shows that one may select any
finite P that contains Pa here). Define the kernel K̂3 on X through the steps in the
Introduction (leaving the power index β to be fixed). We use the same 5-fold partition
Pa = ⋃5

t=1 Pa,t as in [30], and use five-fold cross-validation to test KernelRLS
(7) with K = K̂3. In the t th test (t = 1, . . . ,5) four parts of Pa are merged to be
the training data, denoted as P(t)

a = Pa\Pa,t , and Pa,t is left as the testing data.
For fixed t and a, we train KernelRLS on P(t)

a with Λ being the product space
of the geometric sequence {0.001, . . . ,10} of length 30 (for β), and the geometric
sequence {e−17, . . . , e−3} of length 15 (for λ). After five rounds of tests on allele
a, for each t = 1, . . . ,5, each peptide p in the division Pa,t has a predicted affinity
f

P(t)
a ,λ

(t)
a ,β

(t)
a

(p). Since Pa = ∪5
t=1Pa,t , we combine all these predictions and denote

by ỹa,p the predicted affinity for each p ∈ Pa .
The RMSE score is therefore evaluated as

RMSEa =
√√√√ 1

#Pa

∑

p∈Pa

(ỹa,p − ya,p)2.

A smaller RMSE score indicates a better algorithm performance. Since the affin-
ity labels in this data set are transformed with ψb=50,000, there is a threshold θ =
ψ50,000(500) ≈ 0.426 in [29] dividing the peptides p ∈ Pa into “binding” if ya,p > θ

and “non-binding” otherwise, to the molecule a. Denote Pa,B = {p ∈ Pa : ya,p > θ}
and Pa,N = Pa\Pa,B . Then the AUC index is defined to be

AUCa = #{(p,p′) : p ∈ Pa,B, p′ ∈ Pa,N , ỹa,p > ỹa,p′ }
(#Pa,B)(#Pa,N )

∈ [0,1]. (9)

A higher AUC indicates a better performance.
The sequence of ideas leads to Table 1. We simply take the weighted average of

all the optimal β’s,

β∗
peptide := 1∑

a #Pa

∑

a

{
(#Pa)

(
1

5

5∑

t=1

β(t)
a

)}
= 0.11387, (10)

and use it to define kernel for peptides in the next section.

Remark 8 We take the point of view that peptide binding is a matter of degree and
hence is better measured by a real number, rather than the binding–non-binding di-
chotomy. Thus RMSE is a better measure than AUC. The results in Table 1 also
demonstrate that the regression-based learning model works well.

The following issue is not standard in the subject and is not intended to yield
predictions. It is a preliminary step in giving some confidence to the peptide binding
results dealt with in this paper. We are concerned with the “well-posedness” of the
problem and give a context to the question: if the input (peptide) varies by a small
amount, then does the output (predicted binding function) vary by a small amount?
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Table 2 The module of continuity of the predicted values

Allele a Ωa Allele a Ωa Allele a Ωa

DRB1*0101 1.7047 DRB1*0301 1.2950 DRB1*0401 1.4663

DRB1*0404 1.2905 DRB1*0405 1.0745 DRB1*0701 1.4940

DRB1*0802 1.2767 DRB1*0901 1.5940 DRB1*1101 1.3537

DRB1*1302 0.9970 DRB1*1501 1.3017 DRB3*0101 1.0696

DRB4*0101 1.4039 DRB5*0101 1.4092

Remark 9 Our philosophy is that there is a kernel structure on the set of amino acid
sequences related to their biological functions (e.g. the correspondent distances on
peptides relates to their affinities to each MHC II molecule). The kernel should not
depend on the alignment information, which is a source of noise. The performance
of our kernel K̂3 is reflected in the modulus of continuity of the predicted values,
namely,

Ωa := max
p,p′∈Pa

|ỹa,p − ỹa,p′ |
d(p,p′)

,

where

d
(
p,p′) = ∥∥K̂3

p − K̂3
p′

∥∥
K̂3 =

√
2 − 2K̂3

(
p,p′)

is the distance in the space H
K̂3 on peptides, and the kernel K̂3 is defined with

β = β∗
peptide. We list the values of Ωa for the 14 alleles in Table 2.

The modulus of continuity can be extended to a bigger peptide set P ′ which
contains the neighborhood of each peptide p ∈ P with respect to the metric d .

3 Kernel Algorithm for pan-Allele Binding Prediction

We now define a pan-allele kernel on the product space of alleles and peptides. The
binding affinity data is thus a subset of this product space. The main motivation is
that by the pan-allele kernel we predict affinities to those MHC II molecules with few
or no binding data available: this is often the case because the MHC II alleles form a
huge set (the phenomenon is often referred to as MHC II polymorphism), and the job
of determining experimentally peptide affinities to all the alleles is immense. Also,
in the pan-allele setting, one puts the binding data to different molecules together
to train the RLS. This makes the training data set larger than that was available in
the fixed allele setting, and thus helps to improve the algorithm performance. This is
verified in Table 4.

Let L be a finite set of amino acid sequences representing the MHC II alleles.
Using a positive parameter βallele we define a kernel K̂3

L on L following the steps
in the Introduction. Let P be a set of peptides. In the sequel we denote by βpeptide
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Table 3 The performance of KernelRLSPan. For comparison we list the AUC scores of NetMHCIIpan-
2.0 [31]. The best AUC in each row is marked in bold

Allele, a #Pa KernelRLSPan NetMHCIIpan-2.0

RMSE AUC AUC

DRB1*0101 7685 0.20575 0.84308 0.846

DRB1*0301 2505 0.18154 0.85095 0.864

DRB1*0302 148 0.21957 0.71176 0.757

DRB1*0401 3116 0.19860 0.84294 0.848

DRB1*0404 577 0.21887 0.80931 0.818

DRB1*0405 1582 0.17459 0.86862 0.858

DRB1*0701 1745 0.17769 0.87664 0.864

DRB1*0802 1520 0.18732 0.78937 0.780

DRB1*0806 118 0.23091 0.89214 0.924

DRB1*0813 1370 0.18132 0.88803 0.885

DRB1*0819 116 0.18823 0.82706 0.808

DRB1*0901 1520 0.19741 0.82220 0.818

DRB1*1101 1794 0.16022 0.88610 0.883

DRB1*1201 117 0.22740 0.87380 0.892

DRB1*1202 117 0.23322 0.89440 0.900

DRB1*1302 1580 0.19953 0.82298 0.825

DRB1*1402 118 0.20715 0.86474 0.860

DRB1*1404 30 0.18705 0.64732 0.737

DRB1*1412 116 0.26671 0.89967 0.894

DRB1*1501 1769 0.19609 0.82858 0.819

DRB3*0101 1501 0.15271 0.82921 0.85

DRB3*0301 160 0.26467 0.86857 0.853

DRB4*0101 1521 0.16355 0.87138 0.837

DRB5*0101 3106 0.18833 0.87720 0.882

Average 0.20035 0.84109 0.846

Weighted average 0.19015 0.84887 0.849

specifically the parameter used to define the kernel K̂3
P on P . We define the pan-

allele kernel on L × P as

K̂3
pan

(
(a,p),

(
a′,p′)) = K̂3

L

(
a, a′)K̂3

P

(
p,p′). (11)

Let there be given a set of data {(pi, ai, ri)}mi=1. Then for each i, ai ∈ L , pi ∈ P ,
and ri ∈ [0,1] is the binding affinity of pi to ai . The RLS is applied as in Sect. 2. The
output function F : L × P → R is the predicted binding affinity.

Remark 10 When we choose L = {a} for a certain allele a, the setting and the algo-
rithm reduce to the fixed allele version studied in Sect. 2.
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Table 4 The performance of KernelRLSPan on the fixed allele data. For defining AUC, the transform
ψ50,000 is used as in Table 1

Allele, a RMSE AUC allele, a RMSE AUC

DRB1*0101 0.17650 0.86961 DRB1*0301 0.16984 0.85601

DRB1*0401 0.20970 0.82359 DRB1*0404 0.17240 0.88193

DRB1*0405 0.18425 0.84078 DRB1*0701 0.17998 0.90231

DRB1*0802 0.16734 0.88496 DRB1*0901 0.23562 0.71057

DRB1*1101 0.17073 0.91022 DRB1*1302 0.23261 0.75960

DRB1*1501 0.21266 0.80724 DRB3*0101 0.16011 0.79778

DRB4*0101 0.18751 0.84754 DRB5*0101 0.18904 0.89585

Average: RMSE 0.18916, AUC 0.84200

Weighted average: RMSE 0.18496, AUC 0.85452

We test the pan-allele kernel with RLS (we call the algorithm “KernelRLSPan”)
on Nielsen’s NetMHCIIpan-2.0 data set (we also denote by this name the algorithm
published in [31] with the data set), which contains 33,931 peptide-allele pairs. For
peptides, amino acid sequences are given, and for alleles, DRB names are given so
that we can find out the sequence representations in N as defined in Sect. 1.2. Each
pair is labeled with a [0,1]-valued binding affinity. There are 8083 peptides and 24
alleles in N in total that appear in these peptide-allele pairs. The whole data set is
divided into 5 parts in [31].5

We choose the following setting. Let L = N and P be a peptide set large enough
to contain all the peptides in the data set. We use β∗

peptide = 0.11387 as suggested in

(10) to construct K̂3
P and leave the power index βallele for K̂3

N to be fixed later. This

defines K̂3
pan. We test the RLS algorithm by five-fold cross-validation according to

the 5-part division in [31]. In each test we merge four parts of the samples as the
training data and leave the other part as the testing data. We train KernelRLSPan with
the optional parameter set Λ = {(βallele, λ) : βallele ∈ {0.02 × n : n = 1,2, . . . ,8}, λ ∈
{en : n = −17,−16, . . . ,−9}}. The procedures are the same as used in Sect. 2.3 ex-
cept we now do cross-validation for the peptide-allele pairs. In all the five tests, the
pair βallele = 0.06 and λ = e−13 uniformly achieves the best performance in the train-
ing data. We now use the threshold θ = ψ15,000(500) ≈ 0.3537 to evaluate the AUC
score, because the affinity values in the data set are obtained by the transform ψ15,000.
The results of these computations are shown in Table 3, where we see that the two
algorithms are comparable. We do not assert on this test that the ours is better.

We implement KernelRLSPan on the fixed allele data set used in Table 1. Recall
that the data set is normalized with ψ50,000 and has the five-fold division defined
by [30]. The performance is listed in Table 4, which is better than that of KernelRLS
as listed in Table 1.

5Both the data set and the 5-part partition are available at http://www.cbs.dtu.dk/suppl/immunology/
NetMHCIIpan-2.0.

http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-2.0
http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-2.0
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Next, we use the whole NetMHCIIpan-2.0 data set for training, and test the al-
gorithm performance on a new data set. A set of 64798 triples of MHC II–peptide
binding data is downloaded from IEDB.6 We pick from the set the DRB alleles,
having IC50 scores, and having explicit allele names and peptide sequences. Those
items that also appear in the NetMHCIIpan-2.0 data set are deleted. For the dupli-
cated items (same peptide-allele pair and same affinity) only one of them are kept.
All the pieces with the same peptide-allele pair yet different affinities are deleted.
We deleted those with peptide length less than 9. (The KernelRLSPan can handle
these peptides, while the NetMHCIIpan-2.0 cannot. The short peptides therefore are
deleted to make the two algorithms comparable.) For some alleles the data in the set
is insufficient to define the AUC score (i.e. the denominator in (9) becomes zero), so
we delete tuples containing them. Eventually we obtained 11334 peptide-allele pairs
labeled with IC50 binding affinities, which are further normalized by ψ15,000 as in
the NetMHCIIpan-2.0 data set.

Now define K̂3
pan on N × P as in (11) with βallele = 0.06 as suggested by the

above computation and βpeptide = 0.11387 as suggested in (10). We train on the
NetMHCIIpan-2.0 data set both KernelRLSPan and NetMHCIIpan-2.0.7 We train
KernelRLSPan with the optional parameter set Λ = {λ = en, n = −18, . . . ,−8}
(since other parameters are fixed). (The result shows that λ = e−13 uniformly per-
forms best.) The algorithm performance of the two algorithms are compared on Ta-
ble 5.

In this section KernelRLSPan is tested. Tables 3, 4, and 5 suggest that compared
with KernelRLS, KernelRLSPan performs much better. Also, the kernel method
uses only the substitution matrix and the sequence representations without direct
alignment information but yields comparable performance with the state-of-the-art
NetMHCIIpan-2.0 algorithm.

4 Clustering and Supertypes

In this section, we describe in detail the construction of our cluster tree and our classi-
fication of DRB alleles into supertypes. We compare the supertypes identified by our
model with the serotypes designated by WHO and analyze the comparison results in
detail.

4.1 Identification of DRB Supertypes

We classify DRB alleles into disjoint subsets by using DRB amino acid sequences and
the BLOSUM62 substitution matrix. No peptide binding data or X-ray 3D structure
data are used in our clustering. We obtain a classification in this way into subsets
(a partition) which we call supertypes.

6The data set was downloaded from http://www.immuneepitope.org/list_page.php?list_type=mhc&
measured_response=&total_rows=64797&queryType=true, on May 23, 2012.
7The code is published in http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netMHCIIpan.

http://www.immuneepitope.org/list_page.php?list_type=mhc&measured_response=&total_rows=64797&queryType=true
http://www.immuneepitope.org/list_page.php?list_type=mhc&measured_response=&total_rows=64797&queryType=true
http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netMHCIIpan
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Table 5 The performance of KernelRLSPan and NetMHCIIpan-2.0 trained on the NetMHCIIpan-2.0
benchmark data set, tested on a new data set downloaded from the IEDB. The best performance of both
AUC and RMSE scores of each row is marked in bold

Allele, a #Pa kernelRLSpan NetMHCIIpan-2.0

RMSE AUC RMSE AUC

DRB1*0101 1024 0.25519 0.79717 0.24726 0.82988

DRB1*0102 7 0.39748 0.58333 0.62935 0.58333

DRB1*0103 41 0.33159 0.83333 0.32204 0.83333

DRB1*0301 883 0.21760 0.80276 0.23975 0.82384

DRB1*0401 1122 0.19610 0.79930 0.19363 0.82456

DRB1*0402 48 0.23912 0.67321 0.27352 0.65714

DRB1*0403 43 0.16381 0.70443 0.15868 0.66995

DRB1*0404 494 0.21689 0.79344 0.20219 0.82517

DRB1*0405 462 0.19617 0.78941 0.19387 0.80611

DRB1*0406 14 0.19516 0.53846 0.19497 0.61538

DRB1*0701 724 0.20853 0.80876 0.20039 0.84786

DRB1*0801 24 0.37281 0.72500 0.34767 0.71250

DRB1*0802 404 0.17403 0.80407 0.17181 0.81085

DRB1*0901 335 0.21204 0.79524 0.21029 0.80489

DRB1*1001 20 0.28082 0.74000 0.24335 0.92000

DRB1*1101 811 0.24195 0.83219 0.23838 0.85071

DRB1*1104 10 0.43717 0.76190 0.57082 0.57143

DRB1*1201 795 0.25786 0.83178 0.24984 0.82685

DRB1*1301 147 0.27014 0.65077 0.30202 0.70722

DRB1*1302 499 0.22194 0.82118 0.21284 0.84258

DRB1*1501 856 0.21580 0.83563 0.20869 0.84902

DRB1*1502 3 0.013186 1.00000 0.20061 1.00000

DRB1*1601 16 0.19556 0.84615 0.18740 0.76923

DRB1*1602 12 0.32238 0.68571 0.30431 0.60000

DRB3*0101 437 0.16568 0.74058 0.17860 0.77182

DRB3*0202 750 0.16021 0.82543 0.16453 0.84191

DRB4*0101 563 0.20594 0.80575 0.21383 0.78734

DRB5*0101 774 0.25934 0.78701 0.25849 0.81950

DRB5*0202 16 0.23013 0.71429 0.40554 0.57143

Average 0.24046 0.76987 0.25947 0.77151

Weighted average 0.21853 0.80309 0.21816 0.82216

In Sect. 3, we have defined the allele kernel on N as K̂3
N ; the L2 distance derived

from K̂3
N is defined as

DL2(x, y) =
(

1

#N

∑

z∈N

(
K̂3(x, z) − K̂3(y, z)

)2
)1/2

, ∀x, y ∈ N .
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The authors have found very generally that the L2 distance is preferable to the sim-
ple kernel distance and the two give different results. For one thing the L2 distance
exploits a measure, perhaps even uniform. But this is a long story and this is not the
place for that story.

The OWA-based linkage, defined as follows is used to measure the proximity be-
tween clusters X and Y .8 Let U = (dxy)x∈X,y∈Y , where dxy = DL2(x, y). After or-
dering (with repetitions) the elements of U in descending order, we obtain an ordered
vector V = (d ′

1, . . . , d
′
n), n = |U |. A weighting vector W = (w1, . . . ,wn) is associ-

ated with V , and the proximity between clusters X and Y is defined as

DOWA(X,Y ) =
n∑

i=1

wid
′
i .

Here the weights W are defined as follows [34]:

w′
i = ei/μ

μ
, i = 1,2, . . . , n,

wi = w′
i∑n

j=1 w′
j

, i = 1,2, . . . , n,

where μ = γ (1 + n) and γ is chosen to be 0.1 as suggested by experiments and
the work of [34]. This weighting gives more importance to pairs (x, y) which have
smaller distance.

Hierarchical clustering [8] is applied to build a cluster tree. A cluster tree is a tree
on which every node represents the cluster of the set of all leaves descending from
that node. The L2 distance DL2 is used to measure the distance between alleles x

and y, x, y ∈ M and OWA-based linkage is used to measure the proximity between
clusters X and Y , X,Y ⊆ M instead of “single” linkage. This algorithm is a bottom-
up approach. At the beginning, each allele is treated as a singleton cluster, and then
successively one merges two nearest clusters X and Y into a union cluster, the process
stopping when all unions of clusters have been merged into a single cluster.

This cluster tree, associated to M , has thus 559 leaves. We cut the cluster tree at
16 clusters, an appropriate level to separate different families of alleles. The upper
part of this tree is shown in Fig. 1. The contents of the clusters are given in Table 6.
We assign supertypes to certain clusters in the cluster tree based on the contents of
the clusters described in Table 6. A supertype is based on one or two clusters in
Table 6. If two clusters in Table 6 are closest in the tree, and the alleles in which are
in the same family, they are assigned an identical supertype. Thirteen supertypes are
defined in this way, which we name ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, ST9,
ST10, ST51, ST52, and ST53. The corresponding cluster diameters are 0.11, 0.13,
0.15, 0.14, 0.11, 0.18, 0.08, 0.14, 0.08, 0.02, 0.09, 0.13, and 0.05, respectively.

The diameter of a cluster Z is defined as

diameter(Z) = max
x,y∈Z

DL2(x, y). (12)

8Another way of measuring distance between clusters is the Hausdorff distance.
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Table 6 Overview of clusters of HLA-DR alleles with split serological types assigned by WHO

Super-type Allele Sero-type Allele Sero-type Allele Sero-type

ST52 Cluster 1

DRB3*0101(2) DR52 DRB3*0108(U.) – DRB3*0212(U.) –

DRB3*0106(s.s.) DR52 DRB3*0102(s.s.) – DRB3*0226 –

DRB3*0110(s.s.) DR52 DRB3*0112 – DRB3*0222(U.) –

DRB3*0301 DR52 DRB3*0105(U.) – DRB3*0204(U.) –

DRB3*0209 DR52 DRB3*0103(s.s.)(U.) – DRB3*0213(U.) –

DRB3*0302(s.s.) DR52 DRB3*0113 – DRB3*0215(U.) –

DRB3*0107(s.s.) DR52 DRB3*0111(U.) – DRB3*0218(U.) –

DRB3*0203(s.s.) DR52 DRB3*0114 – DRB3*0205(U.) –

DRB3*0211 DR52 DRB3*0303 – DRB3*0225 –

DRB3*0201(2) DR52 DRB3*0109(U.) – DRB3*0219(U.) –

DRB3*0202(2) DR52 DRB3*0206(s.s.) – DRB3*0216(U.) –

DRB3*0210 DR52 DRB3*0220(U.) – DRB3*0221(U.) –

DRB3*0208(s.s.) DR52 DRB3*0223 – DRB3*0227 –

DRB3*0207(s.s.) DR52 DRB3*0217(U.) –

DRB1*0338 – DRB3*0214(U.) –

ST3 Cluster 2

DRB1*0323 DR3 DRB1*0334 – DRB1*0358 –

DRB1*0301(2) DR17 DRB1*0364 – DRB1*0308 –

DRB1*0305 DR3 DRB1*0361 – DRB1*0326 –

DRB1*0311 DR17 DRB1*0332 – DRB1*0313 –

DRB1*0304 DR17 DRB1*0328 – DRB1*0360 –

DRB1*0306 DR3 DRB1*0362 – DRB1*0324 –

DRB1*0307 DR3 DRB1*0346 – DRB1*0352 –

DRB1*0314 DR3 DRB1*0336 – DRB1*0365 –

DRB1*0315 DR3 DRB1*0357 – DRB1*0329 –

DRB1*0312(s.s.) DR3 DRB1*0339 – DRB1*0327 –

DRB1*0302 DR18 DRB1*0333 – DRB1*0353 –

DRB1*0303 DR18 DRB1*0319 – DRB1*0321 –

DRB1*0310 DR17 DRB1*0348 – DRB1*0343 –

DRB1*0342 – DRB1*0363 – DRB1*0330 –

DRB1*0345 – DRB1*0322 – DRB1*0325 –

DRB1*0355 – DRB1*0309 – DRB1*0344 –

DRB1*0359 – DRB1*0337 – DRB1*0331 –

DRB1*0354 – DRB1*0351 – DRB1*0335 –

DRB1*0320 – DRB1*0347 – DRB3*0115 –

DRB1*0356 – DRB1*0318 – DRB1*0316(s.s.) –

Cluster 3

DRB1*1525 – DRB1*0340 – DRB1*0317 –

DRB1*0349 – DRB1*0341 –
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Table 6 (Continued)

Super-type Allele Sero-type Allele Sero-type Allele Sero-type

ST6 Cluster 4

DRB1*1410 DR14 DRB1*1482 – DRB1*1472 –

DRB1*1401(4) DR14 DRB1*1462 – DRB1*14101 –

DRB1*1426 DR14 DRB1*1470 – DRB1*1434 –

DRB1*1407 DR14 DRB1*1438 – DRB1*1423 –

DRB1*1460 DR14 DRB1*14112 – DRB1*1445 –

DRB1*1450 DR14 DRB1*1490 – DRB1*1443 –

DRB1*1404 DR1404 DRB1*1486 – DRB1*1456 –

DRB1*1449 DR14 DRB1*1497 – DRB1*14103 –

DRB1*1411 DR14 DRB1*1435 – DRB1*1444 –

DRB1*1408 DR14 DRB1*1455 – DRB1*1496 –

DRB1*1414 DR14 DRB1*1431 – DRB1*14100 –

DRB1*1405 DR14 DRB1*1493 – DRB1*1436 –

DRB1*1420 DR14 DRB1*1428 – DRB1*1465 –

DRB1*1422 DR14 DRB1*1471 – DRB1*1464 –

DRB1*1416 DR6 DRB1*1468 – DRB1*1495 –

DRB1*1439 – DRB1*1432 – DRB1*1459 –

DRB1*1499 – DRB1*14111 – DRB1*1491 –

DRB1*1461 – DRB1*14104 – DRB1*1441 –

DRB1*14117 – DRB1*1458 – DRB1*1437 –

DRB1*1487 – DRB1*1473 – DRB1*1457 –

DRB1*1475 – DRB1*1479 – DRB1*14105 –

DRB1*1488 – DRB1*14107 – DRB1*1474 –

DRB1*14110 – DRB1*1476 –

Cluster 5

DRB1*1419 DR14 DRB1*1452 – DRB1*1433 –

DRB1*1402 DR14 DRB1*14108 – DRB1*1424 –

DRB1*1429 DR14 DRB1*1483 – DRB1*14109 –

DRB1*1406 DR14 DRB1*1481 – DRB1*14115 –

DRB1*1418 DR6 DRB1*1494 – DRB1*1467 –

DRB1*1413 DR14 DRB1*1447 – DRB1*1498 –

DRB1*1421 DR14 DRB1*1451 – DRB1*1463 –

DRB1*1417 DR6 DRB1*14106 – DRB1*1485 –

DRB1*1427 DR14 DRB1*1489 – DRB1*1478 –

DRB1*1403 DR1403 DRB1*1430 – DRB1*1448 –

DRB1*1412 DR14 DRB1*1409 –

DRB1*1446 – DRB1*1480 –

ST8 Cluster 6

DRB1*1442(U.) –

Cluster 7
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Table 6 (Continued)

Super-type Allele Sero-type Allele Sero-type Allele Sero-type

DRB1*0809 DR8 DRB1*1477 – DRB1*0808 –

DRB1*1415 DR8 DRB1*1440 – DRB1*0844 –

DRB1*0814 DR8 DRB1*1484 – DRB1*0835 –

DRB1*0812 DR8 DRB1*0846 – DRB1*0836 –

DRB1*0803 DR8 DRB1*0848 – DRB1*0847 –

DRB1*0810 DR8 DRB1*0819 – DRB1*0825 –

DRB1*0817 DR8 DRB1*0827 – DRB1*0834 –

DRB1*0811 DR8 DRB1*0829 – DRB1*0828 –

DRB1*0801 DR8 DRB1*0837 – DRB1*0845 –

DRB1*0807 DR8 DRB1*0839 – DRB1*0830 –

DRB1*0806 DR8 DRB1*0822 – DRB1*0824 –

DRB1*0805 DR8 DRB1*0815 – DRB1*0820(U.) –

DRB1*0818 DR8 DRB1*0840 – DRB1*14116 –

DRB1*0816 DR8 DRB1*0838 – DRB1*14102 –

DRB1*0802 DR8 DRB1*0826 – DRB1*0842 –

DRB1*0804 DR8 DRB1*0843 – DRB1*0841 –

DRB1*0813 DR8 DRB1*0833 – DRB1*1425 –

DRB1*0821 – DRB1*0823 – DRB1*1469 –

ST4 Cluster 8

DRB1*0420(s.s.) DR4 DRB1*0438 – DRB1*0490 –

DRB1*0401 DR4 DRB1*0434 – DRB1*0487 –

DRB1*0464 DR4 DRB1*0475 – DRB1*0430 –

DRB1*0408 DR4 DRB1*0476 – DRB1*0448 –

DRB1*0416 DR4 DRB1*0472 – DRB1*0467 –

DRB1*0426 DR4 DRB1*0435 – DRB1*0483 –

DRB1*0442 DR4 DRB1*0443 – DRB1*0480 –

DRB1*0432(s.s.) DR4 DRB1*0479 – DRB1*0462 –

DRB1*0423 DR4 DRB1*0440 – DRB1*0457 –

DRB1*0404 DR4 DRB1*0470 – DRB1*0497 –

DRB1*0413 DR4 DRB1*0444 – DRB1*0463 –

DRB1*0431 DR4 DRB1*0456 – DRB1*0498 –

DRB1*0403 DR4 DRB1*0455 – DRB1*0449 –

DRB1*0407(2) DR4 DRB1*0433 – DRB1*04102 –

DRB1*0429 DR4 DRB1*0439 – DRB1*0441 –

DRB1*0424 DR4 DRB1*0460 – DRB1*0446 –

DRB1*0409 DR4 DRB1*0450 – DRB1*0485 –

DRB1*0405 DR4 DRB1*0496 – DRB1*0478 –

DRB1*0410 DR4 DRB1*0451 – DRB1*0465 –

DRB1*0428 DR4 DRB1*0471 – DRB1*0491 –

DRB1*0417 DR4 DRB1*04100 – DRB1*0468 –
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Table 6 (Continued)

Super-type Allele Sero-type Allele Sero-type Allele Sero-type

DRB1*0411 DR4 DRB1*0488 – DRB1*0477 –

DRB1*0422 DR4 DRB1*0493 – DRB1*0484 –

DRB1*0406 DR4 DRB1*0427 – DRB1*0447 –

DRB1*0421 DR4 DRB1*0452 – DRB1*0436 –

DRB1*0419 DR4 DRB1*04101 – DRB1*0454 –

DRB1*0425(s.s.) DR4 DRB1*0474 – DRB1*0437 –

DRB1*0414 DR4 DRB1*0495 – DRB1*0453 –

DRB1*0402 DR4 DRB1*0459 – DRB1*0418 –

DRB1*0415 DR4 DRB1*0473 – DRB1*0458 –

DRB1*0499 – DRB1*0461 – DRB1*0486 –

DRB1*0482 – DRB1*0445 – DRB1*0412 –

DRB1*0466 – DRB1*0489 – DRB1*0469 –

ST2 Cluster 9

DRB1*1501(2) DR15 DRB1*1533 – DRB1*1548 –

DRB1*1505 DR15 DRB1*1553 – DRB1*1512 –

DRB1*1506 DR15 DRB1*1524 – DRB1*1515 –

DRB1*1503 DR15 DRB1*1509 – DRB1*1557 –

DRB1*1508 DR2 DRB1*1549 – DRB1*1511 –

DRB1*1502(2) DR15 DRB1*1541 – DRB1*1538 –

DRB1*1504 DR15 DRB1*1540 – DRB1*1529 –

DRB1*1507 DR15 DRB1*1523 – DRB1*1545 –

DRB1*1602 DR16 DRB1*1518 – DRB1*1554 –

DRB1*1605(s.s.) DR16 DRB1*1537 – DRB1*1510 –

DRB1*1601 DR16 DRB1*1514 – DRB1*1521 –

DRB1*1609 DR16 DRB1*1544 – DRB1*1612 –

DRB1*1603 DR2 DRB1*1526 – DRB1*1617 –

DRB1*1604 DR16 DRB1*1539 – DRB1*1611 –

DRB1*1528 – DRB1*1530 – DRB1*1614 –

DRB1*1535 – DRB1*1531 – DRB1*1618 –

DRB1*1532 – DRB1*1556 – DRB1*1610 –

DRB1*1542 – DRB1*1555 – DRB1*1608 –

DRB1*1551 – DRB1*1516 – DRB1*1615 –

DRB1*1552 – DRB1*1522 – DRB1*1607 –

DRB1*1536 – DRB1*1546 – DRB1*1616 –

DRB1*1520 – DRB1*1547 – DRB1*1527 –

DRB1*1543 – DRB1*1558 – DRB1*1534 –

ST5 Cluster 10

DRB1*1202 DR12 DRB1*1215 – DRB1*1230 –

DRB1*1201(4) DR12 DRB1*1219 – DRB1*1207 –

DRB1*1203 DR12 DRB1*1216 – DRB1*1229 –
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Table 6 (Continued)

Super-type Allele Sero-type Allele Sero-type Allele Sero-type

DRB1*1205 DR12 DRB1*1221 – DRB1*1234 –

DRB1*1220 – DRB1*1208 – DRB1*1222 –

DRB1*1233 – DRB1*1212 – DRB1*1223 –

DRB1*1218 – DRB1*1225 – DRB1*1227 –

DRB1*1213 – DRB1*1211 – DRB1*1209 –

DRB1*1232 – DRB1*1228 – DRB1*1204 –

DRB1*1226 – DRB1*1214 – DRB1*0832(U.) –

ST53 Cluster 11

DRB4*0101(3) DR53 DRB4*0104(U.) – DRB4*0107(U.) –

DRB4*0105(s.s.) DR53 DRB4*0102(s.s.)(U.) – DRB4*0108 –

ST9 Cluster 12

DRB1*0901 DR9 DRB1*0912 – DRB1*0915 –

DRB1*0905 DR9 DRB1*0906 – DRB1*0911 –

DRB1*0910 – DRB1*0908 – DRB1*0914 –

DRB1*0916 – DRB1*0904 – DRB5*0112(U.) –

DRB1*0907 – DRB1*0903 – DRB1*0902 –

DRB1*0909 – DRB1*0913 –

ST7 Cluster 13

DRB1*0703 DR7 DRB1*0721 – DRB1*0708 –

DRB1*0701 DR7 DRB1*0716 – DRB1*0711 –

DRB1*0709 DR7 DRB1*0713 – DRB1*0717 –

DRB1*0704 DR7 DRB1*0714 – DRB1*0707 –

DRB1*0715 – DRB1*0712 – DRB1*0706 –

DRB1*0719 – DRB1*0720 –

DRB1*0705 – DRB1*0718 –

ST51 Cluster 14

DRB5*0101 DR51 DRB5*0104(U.) – DRB5*0106(U.) –

DRB5*0102 DR51 DRB5*0103(U.) – DRB5*0111(U.) –

DRB5*0107(s.s.) DR51 DRB5*0113(U.) – DRB5*0204(U.) –

DRB5*0202 DR51 DRB5*0109(s.s.)(U.) – DRB5*0203(U.) –

DRB5*0105(U.) – DRB5*0114 – DRB5*0205(U.) –

ST10 Cluster 15

DRB1*1001 DR10 DRB1*1003 – DRB1*1002 –

ST1 Cluster 16

DRB1*0107 DR1 DRB1*0120 – DRB1*0135 –

DRB1*0101 DR1 DRB1*0127 – DRB1*0111 –

DRB1*0102 DR1 DRB1*0112 – DRB1*0117 –

DRB1*0104 DR1 DRB1*0128 – DRB1*0118 –

DRB1*0109 DR1 DRB1*0136 – DRB1*0115 –
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Table 6 (Continued)

Super-type Allele Sero-type Allele Sero-type Allele Sero-type

DRB1*0103 DR103 DRB1*0131 – DRB1*0106 –

DRB1*0113 DR1 DRB1*0132 – DRB1*0126 –

DRB1*0122 – DRB1*0119 – DRB1*0137 –

DRB1*0124 – DRB1*0130 – DRB1*0123 –

DRB1*0110 – DRB1*0121 – DRB1*0108 –

DRB1*0129 – DRB1*0105 – DRB1*0114 –

DRB1*0134 – DRB1*0125 – DRB1*0116 –

The DRB alleles in the first ten supertypes are gathered from the DRB1 locus. The
DRB alleles in the ST51, ST52 and ST53 supertypes are gathered from the DRB5,
DRB3, and DRB4 loci, respectively.

4.2 Serotype Designation of HLA-DRB Alleles

There is a historically developed classification, based on extensive works of medi-
cal labs and organizations, that groups alleles into what are called serotypes. This
classification is oriented to immunology and diseases associated to gene variation in
humans. It uses peptide binding data, 3D structure, X-ray diffraction and other tools.
When the confidence level is sufficiently high, WHO assigns a serotype to an allele
as in Table 6 where a number prefixed by DR follows the name of that allele.

There are four DRB genes (DRB1/DRB3/DRB4/DRB5) in the HLA-DRB re-
gion [20]. The DRB1 gene/locus is much more polymorphic than the DRB3/DRB4/
DRB5 genes/loci [5]. More than 800 allelic variants are derived from the exon 2 of
the DRB genes in humans [11]. The WHO Nomenclature Committee for Factors of
the HLA System assigns an official name for each identified allele sequence, e.g.
DRB1*01:01. The characters before the separator “*” describe the name of the gene,
the first two digits correspond to the allele family and the third and fourth digits cor-
respond to a specific HLA protein. See Table 6 for examples of how the alleles are
named. If two HLA alleles belong to the same family, they often correspond to the
same serological antigen, and thus the first two digits are meant to suggest serologi-
cal types. So for those alleles which are not assigned serotypes by WHO, WHO has
suggested serotypes for them according to their official names or allele families.

4.3 Comparison of Identified Supertypes to Designated Serotypes

In Sect. 4.1, we have identified 13 supertypes and in Sect. 4.2 we have introduced the
WHO assigned serotypes. In the following, we compare these two classifications.

By using the cluster tree given in Fig. 1 and the contents of the clusters described
in Table 6, we have named our supertypes with prefix “ST” paralleled to the serotype
names. The detailed information of DRB alleles and serological types for these 13
supertypes is given in Table 6. Our supertype clustering recovers the WHO serotype
classification and provides further insight into the classification of DRB alleles which
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are not assigned serotypes. There are 559 DRB alleles in Table 6, and only 138 DRB
alleles have WHO assigned serotypes. Table 7 gives the relationship between the
broad serological types and the split serological types. As shown in Tables 6 and 7,
our supertypes assigned to these 138 DRB alleles are in exact agreement with the
WHO assigned broad serological types (see Table 7). Extensive medical/biological
information was used by WHO to assign serological type whereas solely DRB amino
acid sequences were used in our supertype clustering. All alleles with WHO assigned
DR52, DR3, DR6, DR8, DR4, DR2, DR5, DR53, DR9, DR7, DR51, DR10, and
DR1-serotype are classified, respectively, into the ST52, ST3, ST6, ST8, ST4, ST2,
ST5, ST53, ST9, ST7, ST51, ST10, and ST1-supertype. The other 461 alleles in
Table 6 are not assigned serotypes by WHO in [17]. However, WHO has suggested
serotypes for them according to their official names or allele families; that is, if two
DRB alleles are in the same family, they belong to the same serotype. Our clustering
confirms that this suggestion is reasonable, as can be checked from the clusters in
Table 6.

We make some remarks on Fig. 1 and Table 6 as follows.
ST52: This supertype consists of exactly the DRB3 alleles with the exception of

DRB1*0338 (a new allele and unassigned by WHO [17]).
ST3: This supertype consists of cluster 2 and cluster 3 in the cluster tree and con-

tains 63 DRB1*03 alleles with two exceptions: DRB3*0115 and DRB1*1525. The
DRB3*0115 is grouped with the DRB1*03 alleles in a number of different exper-
iments done by us, and the DRB1*1525 is a new allele and unassigned by WHO.
Here, the DR3-serotype is a broad serotype which consists of three split serotypes,
DR3, DR17 and DR18 (see Table 7).

ST6: This supertype consists of cluster 4 and cluster 5 and consists of exactly 102
DRB1*14 alleles. Here, the DR6-serotype is a broad serotype which consists of five
split serotypes, DR6, DR13, DR14, DR1403 and DR1404.

ST8: This supertype consists of cluster 6 and cluster 7 and mainly contains 46
DRB1*08 alleles (The serological designation of DRB1*1415 is DR8 by WHO.).
The unassigned alleles DRB1*1425, DRB1*1440, DRB1*1442, DRB1*1469,
DRB1*1477, and DRB1*1484 are DRB1*14 alleles, but they are classified into the
ST8 supertype. Both DRB1*14116 and DRB1*14102 are new allele sequences that
do not exist in the tables of [17, 28] and they are classified into the ST8 supertype
too.

Supertypes 52, 4, 2, 5, 53, 9, 7, 51, 10, and 1 correspond, respectively, to clusters
1, 8, 9, 10, 11, 12, 13, 14, 15, and 16 in the cluster tree.

ST4: This supertype consists of exactly 99 DRB1*04 alleles.
ST2: This supertype consists of 53 DRB1*15 alleles and 16 DRB1*16 alleles.

Here, the DR2-serotype is a broad serotype which consists of three split serotypes,
DR2, DR15, and DR16.

ST5: This supertype contains exactly 29 DRB1*12 alleles. The DRB1*0832 is
undefined by experts in [17], but its serological designation by the neural network
algorithm [27] is DR8 or DR12. We classify it into the ST5 supertype. The DR5-
serotype is a broad serotype which consists of two split serotypes, DR11 and DR12.

ST53: This supertype consists of exactly the DRB4 alleles.
ST9: This supertype contains exactly the DRB1*09 alleles with the exception of

DRB5*0112. The DRB5*0112 is undefined by experts in [17]. And from a number of
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Table 7 Overview of the broad serological types in connection with the split serological types assigned
by WHO. The serological type information listed in this table was extracted from the Tables 4 and 5 given
in [17]. This table summarizes the allele and serotype information given in the first and third columns of
Tables 4 and 5

HLA-DRB1 serological families

Broad Serotype Split serotype Alleles

DR1 DR1 DRB1*01

DR103 DRB1*0103

DR2 DR2 DRB1*1508, *1603

DR15 DRB1*15

DR16 DRB1*16

DR3 DR3 DRB1*0305, *0306, *0307, *0312, *0314,
*0315, *0323

DR17 DRB1*0301, *0304, *0310, *0311

DR18 DRB1*0302, *0303

DR4 DR4 DRB1*04

DR5 DR11 DRB1*11

DR12 DRB1*12

DR6 DR6 DRB1*1416, *1417, *1418

DR13 DRB1*13, *1453

DR14 DRB1*14, *1354

DR1403 DRB1*1403

DR1404 DRB1*1404

DR7 DR7 DRB1*07

DR8 DR8 DRB1*08, *1415

DR9 DR9 DRB1*09

DR10 DR10 DRB1*10

DRB3/4/5 serological families

Serotype Alleles

DR51 DRB5*01,02

DR52 DRB3*01,02,03

DR53 DRB4*01

different experiments done by us, DRB5*0112 is clustered with the DRB1*09 family
of alleles.

ST7: This supertype consists of exactly 19 DRB1*07 alleles.
ST51: This supertype consists of exactly 15 DRB5 alleles.
ST10: This supertype is the smallest supertype and consists of exactly 3 DRB1*10

alleles.
ST1: This supertype consists of exactly 36 DRB1*01 alleles. Here, the DR1-

serotype is a broad serotype which consists of two split serotypes, DR1 and DR103.
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For the DRB alleles, there are 13 broad serotypes given by WHO, and our clus-
tering classifies all alleles which are assigned the same broad serotype to the same
supertype. For the alleles which are not assigned serotypes, our supertypes confirm
the nomenclature of WHO.

As can be seen from Fig. 1, the ST52 supertype is closest to the ST3 supertype.
The ST53 supertype is closest to the ST9 and ST7 supertypes. The ST51 supertype
is closest to the ST10 and ST1 supertypes.

4.4 Previous Work in Perspective

In 1999, Sette and Sidney asserted that all HLA I alleles can be classified into nine
supertypes [39, 43]. This classification is defined based on the structural motifs de-
rived from experimentally determined binding data. The alleles in the same supertype
comprise the same peptide binding motifs and bind to largely overlapping sets of pep-
tides. Essentially, the supertype classification problem is to identify peptides that can
bind to a group of HLA molecules. Besides many works on HLA class I supertype
classification, some works have been proposed to identify supertypes for HLA class
II. In 1998, through analyzing a large set of biochemical synthetic peptides and a
panel of HLA-DR binding assays, Southwood et al. [45] asserted that seven com-
mon HLA-DR alleles, e.g. DRB1*0101, DRB1*0401, DRB1*0701, DRB1*0901,
DRB1*1302, DRB1*1501, and DRB5*0101 had similar peptide binding specificity
and should be grouped into one supertype. Lund et al. [25] used the position specific
scoring matrices (PSSM) from the TEPITOPE method to do a functional clustering
of 50 HLA-DR alleles. Both of these studies used peptide binding data and this re-
sulted in the limited number of DRB alleles available for classification. The work of
Doytchinova and Flower [9], classified 347 DRB alleles into five supertypes by the
use of both protein sequences and 3D structural data. Ou et al. [32] defined seven
supertypes based on similarity of function rather than on sequence or structure. To
our knowledge, our study is the first to identify HLA-DR supertypes solely based on
DRB amino acid sequence data. However, the clustering of HLA-DR molecules into
functional groups has been made earlier using the NetMHCIIpan pan-specific predic-
tion methods [30]. This method is not limited to a fixed number of HLA-DR alleles,
and can be used to predict the binding specificity of any HLA-DR molecule with
known protein sequence, and has been used to correctly classify HLA-DR molecules
into groups of molecules with large functional overlap (including the mixed groups
of HLA-DRB1*08/HLA-DRB1*11, HLA-DRB1*11/HLA-DRB1*13 molecules).

The split serological types are obtained from [17]. The left column indicates the
supertypes defined by the cluster tree. Remark on the labels for the alleles: “(U.)”
stands for “undefined” marked by the experts in [17]; “(s.s.)” indicates that the normal
forms of the allele is shorter than 81 amino acids; “(n)” with n = 2,3, . . . indicates
that the normal form is shared by n alleles.

We are far from claiming to have any definitive answers or final statements on
these questions of peptide binding and serotype clustering. Many problems here are
left unresolved. For example, the serotype clustering result is more provocative than
otherwise and further studies are needed. One could look at more automatic choice
of the supertypes, or develop comparative schemes. One could also study problems
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of phylogenetic trees from this point of view as those of H5N1. Extending the frame-
work to 3D structures of proteins, instead of just amino acid sequences is suggested.
We intend to study these questions ourselves and hope that our study will persuade
others to think about these kernels on amino acid sequences. We make no claim that
our results are superior to what could be done with conventional alignment/phylogeny
based methods.
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Appendix: The BLOSUM62-2 Matrix

We list the whole BLOSUM62-2 matrix in Table 8. Table 9 explains the amino acids
denoted by the capital letters.

From the Introduction, we see that the matrix Q can be recovered from the
BLOSUM62-2 once the marginal probability vector p is available. The latter vec-
tor is obtained by

p = (
[BLOSUM62-2]

)−1
v1,

Table 8 The BLOSUM62-2 matrix

A R N D C Q E G H I

A 3.9029 0.6127 0.5883 0.5446 0.8680 0.7568 0.7413 1.0569 0.5694 0.6325

R 0.6127 6.6656 0.8586 0.5732 0.3089 1.4058 0.9608 0.4500 0.9170 0.3548

N 0.5883 0.8586 7.0941 1.5539 0.3978 1.0006 0.9113 0.8637 1.2220 0.3279

D 0.5446 0.5732 1.5539 7.3979 0.3015 0.8971 1.6878 0.6343 0.6786 0.3390

C 0.8680 0.3089 0.3978 0.3015 19.5766 0.3658 0.2859 0.4204 0.3550 0.6535

Q 0.7568 1.4058 1.0006 0.8971 0.3658 6.2444 1.9017 0.5386 1.1680 0.3829

E 0.7413 0.9608 0.9113 1.6878 0.2859 1.9017 5.4695 0.4813 0.9600 0.3305

G 1.0569 0.4500 0.8637 0.6343 0.4204 0.5386 0.4813 6.8763 0.4930 0.2750

H 0.5694 0.9170 1.2220 0.6786 0.3550 1.1680 0.9600 0.4930 13.5060 0.3263

I 0.6325 0.3548 0.3279 0.3390 0.6535 0.3829 0.3305 0.2750 0.3263 3.9979

L 0.6019 0.4739 0.3100 0.2866 0.6423 0.4773 0.3729 0.2845 0.3807 1.6944

K 0.7754 2.0768 0.9398 0.7841 0.3491 1.5543 1.3083 0.5889 0.7789 0.3964

M 0.7232 0.6226 0.4745 0.3465 0.6114 0.8643 0.5003 0.3955 0.5841 1.4777
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Table 8 (Continued)

A R N D C Q E G H I

F 0.4649 0.3807 0.3543 0.2990 0.4390 0.3340 0.3307 0.3406 0.6520 0.9458

P 0.7541 0.4815 0.4999 0.5987 0.3796 0.6413 0.6792 0.4774 0.4729 0.3847

S 1.4721 0.7672 1.2315 0.9135 0.7384 0.9656 0.9504 0.9036 0.7367 0.4432

T 0.9844 0.6778 0.9842 0.6948 0.7406 0.7913 0.7414 0.5793 0.5575 0.7798

W 0.4165 0.3951 0.2778 0.2321 0.4500 0.5094 0.3743 0.4217 0.4441 0.4089

Y 0.5426 0.5560 0.4860 0.3457 0.4342 0.6111 0.4965 0.3487 1.7979 0.6304

V 0.9365 0.4201 0.3690 0.3365 0.7558 0.4668 0.4289 0.3370 0.3394 2.4175

L K M F P S T W Y V

A 0.6019 0.7754 0.7232 0.4649 0.7541 1.4721 0.9844 0.4165 0.5426 0.9365

R 0.4739 2.0768 0.6226 0.3807 0.4815 0.7672 0.6778 0.3951 0.5560 0.4201

N 0.3100 0.9398 0.4745 0.3543 0.4999 1.2315 0.9842 0.2778 0.4860 0.3690

D 0.2866 0.7841 0.3465 0.2990 0.5987 0.9135 0.6948 0.2321 0.3457 0.3365

C 0.6423 0.3491 0.6114 0.4390 0.3796 0.7384 0.7406 0.4500 0.4342 0.7558

Q 0.4773 1.5543 0.8643 0.3340 0.6413 0.9656 0.7913 0.5094 0.6111 0.4668

E 0.3729 1.3083 0.5003 0.3307 0.6792 0.9504 0.7414 0.3743 0.4965 0.4289

G 0.2845 0.5889 0.3955 0.3406 0.4774 0.9036 0.5793 0.4217 0.3487 0.3370

H 0.3807 0.7789 0.5841 0.6520 0.4729 0.7367 0.5575 0.4441 1.7979 0.3394

I 1.6944 0.3964 1.4777 0.9458 0.3847 0.4432 0.7798 0.4089 0.6304 2.4175

L 3.7966 0.4283 1.9943 1.1546 0.3711 0.4289 0.6603 0.5680 0.6921 1.3142

K 0.4283 4.7643 0.6253 0.3440 0.7038 0.9319 0.7929 0.3589 0.5322 0.4565

M 1.9943 0.6253 6.4815 1.0044 0.4239 0.5986 0.7938 0.6103 0.7084 1.2689

F 1.1546 0.3440 1.0044 8.1288 0.2874 0.4400 0.4817 1.3744 2.7694 0.7451

P 0.3711 0.7038 0.4239 0.2874 12.8375 0.7555 0.6889 0.2818 0.3635 0.4431

S 0.4289 0.9319 0.5986 0.4400 0.7555 3.8428 1.6139 0.3853 0.5575 0.5652

T 0.6603 0.7929 0.7938 0.4817 0.6889 1.6139 4.8321 0.4309 0.5732 0.9809

W 0.5680 0.3589 0.6103 1.3744 0.2818 0.3853 0.4309 38.1078 2.1098 0.3745

Y 0.6921 0.5322 0.7084 2.7694 0.3635 0.5575 0.5732 2.1098 9.8322 0.6580

V 1.3142 0.4565 1.2689 0.7451 0.4431 0.5652 0.9809 0.3745 0.6580 3.6922

Table 9 The list of the amino
acids A Alanine L Leucine

R Arginine K Lysine

N Asparagine M Methionine

D Aspartic acid F Phenylalanine

C Cysteine P Proline

Q Glutamine S Serine

E Glutamic acid T Threonine

G Glycine W Tryptophan

H Histidine Y Tyrosine

I Isoleucine V Valine
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where v1 = (1, . . . ,1) ∈ R
20 is a vector with all its coordinate being 1. The ma-

trix Q can be obtained precisely from http://www.ncbi.nlm.nih.gov/IEB/ToolBox/
CPP_DOC/lxr/source/src/algo/blast/composition_adjustment/matrix_frequency_
data.c#L391.
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