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SPLINE INTERPOLATION AND SMOOTHING ON THE SPHERE®*

GRACE WAHBAT

Abstract. We extend the notion of periodic polynomial splines on the circle and thin plate splines on
Euclidean d-space to splines on the sphere which are invariant under arbitrary rotations of the coordinate
system. We solve the following problem: Find u € %,,(S), a suitably defined reproducing kernel (Sobolev)
space on the sphere S to, A) minimize J,,(u) subjectto u(P;))=z,i=1,2,---,n, and B) minimize

12 2
= Z 1P —z) wAaluln).

nj=1

where

Jm(u}"J‘ J. (A™2u(6, $))*sin 6 d6 do, m even

A(m—l)/!
—-I I {( g 8")“”4—(./_\‘"'“”2;;)3} sin 6 d8 do, m odd.

Here A is the Laplace—Beltrami operator on the sphere and J,,,(u) is the natural analogue on the sphere, of the
quadratic functional j'ozfr (#'"’(8))? dé on the circle, which appears in the definition of periodic polynomial
splines. J,.(u) may also be considered to be the analogue of

L) ==

appearing in the definition of thin plate splines on the plane. The solution splines are obtained in the form of
infinite series, which do not appear to be convenient for certain kinds of computation. We then replace J,,, in
A) and B) by a quadratic functional Q,,, which is topologically equivalent to J,,, on #,,(S) and obtain closed
form solutions to the modified problems which are suitable for numerical calculation, thus providing practical
pseudo-spline solutions to interpolation and smoothing problems on the sphere. Convergence rates of the
splines and pseudo-splines will be the same. A number of results established or conjectured for polynomial
and thin plate splines can be extended to the splines and pseudo-splines constructed here.

Key words. splines on the sphere, spherical harmonics, smoothing on the sphere

1. Introduction. This work is motivated by the following problem. The 500
millibar height (the height above 'sea level at which the pressure is 500 millibars) is
measured (with error) at a large number n of weather stations distributed around the
world. It is desired to find a smooth function u = u (6, ¢) defined on the surface of the
earth (@ = latitude, ¢ = longitude) which is an estimate of the 500 millibar height at
position (8, ¢). There are many ways that this can be done. In this paper we develop
what appears to be the natural generalization to the sphere of periodic interpolating and
smoothing splines on the circle (see Golomb [12], Wahba [27]) and thin plate splines on
Euclidean d-space (see Duchon [6], Meinguet [18], Wahba [28]).

To obtain a periodic interpolating or smoothing spline on the circle C one seeks the
solution to one of the problems: Find u € 5¢,,,.(C) to minimize

A) Jm(uw) subjecttou(t;y)=2z;, i=1,2,---,n
or

B) - Z (u(t:) — z:)* + AT (u).

i=1
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Here
2
(1.1) TmG) = [ @™ @)? a,
8]
t:€[0,27] and 9,.(C)={u:u,u’', -+, u"""" abs. cont., 5 e B0, 2ml Py
u(’)(Zfr), Jj=0,1,---,m—1}. To find a thin plate interpolating or smoothing spline on

Euclidean d-space E¢, one finds u < #,.(E?) to minimize A) or B) above, where now
[ = (xlis X & & g xdf)GEd and

d. a"‘u 2
(1.2) T e 3 j ( ) ey b= =~ dliy.
EovaimX Ed =G > ax‘m

2V axi[ axi2’ >

.. (E%)is defined in Meinguet [18]. To obtain a thin plate interpolating or smoothing
spline it is necessary that 2m —d >0, since otherwise the evaluation functionals
u = u(¢;) will not be bounded in %, (E?) and thus will not have representers which are
used in the construction of the solution.

Duchon has called the solutions to problems involving J,,, in Euclidean d-space thin

plate splines, because, in two dimensions with rm — 2.
2

oo c© azu 2 azu aZu 2
sar= | G260 () [
is the bending energy of a thin plate. Interpolating and smoothing thin plate splines have
been computed in a number of examples by Franke, Utreras, Wahba, Wahba and
Wendelberger, and Wendelberger for data given in the form of an analytic function
which is evaluated by computer at ¢, t2, - - -, 1, [9], for function data with simulated
errors [26], [28], [30] and for measured S00 millibar height data [31], with very
satisfying results. Fisher and Jerome in a classic early paper [8] answered some
important questions concerning interpolation problems on ) a bounded set in R¢

associated with general elliptic operators.

For the analysis of meteorological data, we would like to be able to compute
smoothing splines on the sphere. To motivate the definition of J.. for the sphere, we first
take a look at the Sobolev spaces 70 (C) of periodic functions on the circle. o (C) s
the collection of square integrable functions « on [0, 277] which satisfy

(1..3) ag+ Y v*"a’+ ¥ »27p2 < oo,
v=1 v=1
where
1 2
R — cos vOu(6) de, v=0,1,~+~,
J;Io
1 2
b, =— sin »0u (@) d6, v=1,2, -
|
We have
2 s e
(1.4) In@)= [ @™©)? do= T v"ai+ T p2mp2
0 v=1 v=1

for ue 2, (C). 3,.(C) is thus a space of (periodic, square integrable) functions whose
Fourier coefficients {a,, b,} decay sufficiently fast to satisfy (1.3). The functions
{cos »6, sin »8} are the (periodic) eigenfunctions of the operator D™ (D?*"y = e
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which appears when J,,,(«) of (1.1) is integrated by parts and u is sufficiently smooth and
periodic:

2w

Jm(u)=J u-D*™udb.

(0]

If one formally integrates (1.2) by parts, and u is sufficiently smooth and decreases to 0
at infinity, then one obtains

Jm(u)=(—1)mI 2 2 I w-A"udxy - dxa,
Ed

where Au is the Laplacian,

- ’u u 3%u
Au - 2 —2+ 2Bl + 2 .
dxi O0x3 ox 4

The analogue of A on the sphere is the Laplace—Beltrami operator defined by

1
sin” @

(sin Qug)s,

Au = Wpp +—
S1

neé

where 6 € [0, =] is latitude and ¢ €[0, 27] is longitude. This is the restriction of the
Laplacian in 3-space to the surface of the sphere; see Courant and Hilbert [3.Chapt. V;
VII], and Whittaker and Watson [32]. The role of the eigenfunctions
{(1/¥'m) cos v6, (1/¥m) sin v} in %,.(C) is played in 2,.(S), (S is the sphere) by the
normalized spherical harmonics {Y,'f (6, $)}o-0 k=—. (defined in § 2), which are
the (periodic) eigenfunctions of the Laplace—Beltrami operator A™, and the role
of the eigenvalues {¢*™, v?™}_, of D?™ is played by the eigenvalues of A™. A™ has
the single square integrable periodic eigenfunction Y9(6, ¢) =1, corresponding to the
eigenvalue 0. We now define %,,(S) as the space of square integrable functions ¥ on S
with

2

(1-5) Iu00'<m’ Z Zp: :yk'::m"
v=1 k=—p N\ pk
where
(1.6) Upre = f YS(P)u(P) dP
s

and{A 2}, (Ad = [»(v + 1)]%) are the eigenvalues of A™ corresponding to {YX}. 9£..(S)
is thus a space of square integrable functions whose Fourier Bessel coefficients with

respect to the spherical harmonics decay sufficiently fast to satisfy (1.5). Let T BE
defined by

27 w
Jm(u)=j J' (A™?u)? sin 6 d6 do, m even,
0 0
(1'7) 2 W(A(H‘Iﬁl)/zu)z
=I J' ——2+ (A" V2,)2sin 0 d6 dob, m odd.
0 0 sin” @

It is not hard to show that, for u € %,.(S),

2
Uk

(1.8) Fu)=F ¥

v=1k=—p A;,-,‘.‘;
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A number of results which are known or conjectured for polynomial splines on the
circle and thin plate splines on E¢ will carry over to the thin plate splines and
pseudo-splines on the sphere. They include optimality properties of the generalized
cross-validation estimate of A and m [4], [25], convergence rates for smoothing splines
with noisy data, properties of associated orthogonal series density estimates, and
interpretation of interpolating and smoothing splines as Bayes estimates when u is
modeled as the solution to the stochastic differential equation A™? i = “‘white noise.’
Details and further references may be found in Wahba [29]. The corresponding splines
when u« is modeled as a general stationary autoregressive moving average process on S
are also given in Wahba [29], as well as possible models encompassing nonstationarity
(anisotropy). The reader interested in meteorological applications may be interested in
consulting Stanford [24], where ensembles of {u2Z;} defined in (1.6) have been
computed from measured satellite radiance data and are suggestive of an appropriate
choice of m in certain meteorological applications. The results here also show that
variational techniques for meteorological data analysis similar to these pioneered by
Sasaki [21] and others can be carried out on the sphere; see also Wahba and.
Wendelberger [30]. Part of the importance of the present work is in its potential
applicability to important meteorological problems, some of which are mentioned

near the end of § 2.
We seek u € 3,,(S) to minimize

A) J(u) subjectto u(P;)=z;, s W AR

B) % > (B =P AT ),

i=1

where P; € S, and J,, is defined by (1.7).
We cannot solve these problems for m1 = 1 for the same reason they cannot be

solved in E? for 2m —d = 0, that is, because the evaluation functions are not continuous
in 7¢:(S), that is, 9,(S) is not a reproducing kernel space. However, for m = 20 PER R
we will give the explicit solution to those two problems, which we will call thin plate
splines on the sphere. It is actually not hard to obtain the solutions, since we can
construct a reproducing kernel for 7, (S), with J,.(-) as a seminorm, from the well-
known eigenfunctions and eigenvalues of the Laplace—Beltrami operator. Given the
reproducing kernel [2], the solutions to such problems are well known, and in fact
problems A) and B) can be solved with u (P;) replaced by L1, where L; is any continuous
linear functional on %.(S). See, for example, Kimeldorf and Wahba [17] and
references cited there. 7
Unfortunately we only know the aforementioned reproducing kernels in the form
of infinite series. It appears that no closed form expression exists which is convenient for
computational purposes. Wendelberger [31] has computed the reproducing kernels
given below for m from 2 to 10 by evaluating the infinite series, and it is likely that
- satisfactory computational procedures for interpolation and smoothing splines on the
sphere can be developed based on the infinite series. However, for general continuous
linear functionals it may be important to have a reproducing kernel in closed form.
Furthermore, to compute certain functionals of the solution, for example, derivatives, it
may be important to have a closed form solution. For this reason we suggest replacing
J.»(-) by another quadratic functional Q,,.(-) which is topologically equivalent to J,,(-)
in the sense that there exist @ and B, 0 <a < 8 < oo such that

ol ) =0 (u)y=BF.(0), &l ue H..08).



SPLINE INTERPOLATION AND SMOOTHING ON THE SPHERE 9

We give the reproducing kernel associated with Q,, in closed form. It involves only
logarithms and powers of monomials of sines and cosines, and appears quite suitable for
the numerical computation of the solutions of A) and B) and related problems with J,,
replaced by Q... We will call the resulting interpolating and smoothing functions thin
plate pseudo-splines on the sphere. Convergence rates for the thin plate pseudo-splines
will be the same as those for the thin plate splines on the sphere because of the
topological equivalence of J,,, and Q,,.

In § 2 we derive the thin plate spline solutions to problems A) and B); and in § 3
we obtain the thin plate pseudo-spline solutions, where J,, is replaced by Q,,.

We remark that the development of § 2 can no doubt be generalized to establish
splines associated with the Laplace—Beltrami operator on compact Riemannian mani-
folds other than the circle and the sphere; see Gine [10], Hannan [14], Yaglom [33]}and
Schoenberg [23]. However this is not pursued further.

2. Spherical harmonics and the solution to problems A) and B) on the sphere. The
spherical harmonics {U£ (6, ¢)} are defined by

Uz (8, ¢)=cos k¢P%(cos 6), m=1,2,,w
= sin k¢ P (cos 6), k=-1,-2,---,—»
= P,(cos 6), k=0, v»v=0,1,2,---,
where Pf(z) are the Legendre functions of the kth order,
Pi(z) = (1—23"*( dkk)P.Az),
dz

and P,(z) is the vth Legendre polynomial. Recursion formulas for generating the P%
may be found in Abramowitz and Stegun [1].

It is well known that the {US, k=—v,---,2,v=0,1,---} form an %(S)-
complete set of eigenfunctions of the Laplace—Beltrami operator of (1.4) satisfying
AU =—v(r+1)US, =—y,- - ,v, »=0,1,---.

See Courant and Hilbert [3], Sansone [22]. Let

g |
Y‘3=\/2: 5T S T T
o

2v+1 (v—EM .
47 w+k) 7

Then (Sansone [22, p. 264, 268))

Yk=2

[[ore@nrar=-1,
S

and we have the addition formula

Y YR YE@P)=

k=—v

Ze¥l
: P, (cos y (P, ')},

where y(P, P’) is the angle between P and P’. The {Y X} form an orthonormal basis for

Z>(S). Jones [16] has used a finite set of spherical harmonics to estimate 500 millibar

heights by regression methods. The spherical harmonics are also utilized in several
numerical weather prediction models [11].
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Let 5¢2,(S) be the subset of £>(S) with an expansion of the form

2.1) W(PV=T S ua YD,

v=1 k=—vp

where
Uk —[ u(P)Y (P)dp,

satisfying
(= =} v 2
Y ¥ <o,
v=1 k=—p Avk -
where
(2.7 Ave =[v(@+D]™™

Functions in #2,(S) satisfy
J u{P) dP=10.
s

since the 0, Oth term Yg§ =1 has been omitted from the expansion (2.1).
. (S) is clearly a Hilbert space with the norm defined by
2

(2.3) fulf=3 - T Yz

pml km—y Ak

for any m =0. For m > 1, define K(P, P'), (P, P') S xS by

KB, P)=K.(P,P)=Y 3 AnY5(@)Y“(P)

v=1 k=—v

- R = 2r+1 ;
_47,_ u‘y;:l P'm(V"‘l)m PJ—’(COS ‘Y(P, P ))-

(2.4)

Since |P,.(z)|=1 for |z|=1 (Sansone [22, p. 187]), the series converges uniformly for
any m >1 and K (P, P’) is a well-defined positive definite function on S X S with

(K(P,-), K(P', ))m = K(P, P"),
where (-, - ),, is the inner product induced by (2.3). Furthermore, it is easily verified that,
for m an integer >1,

J K(P,R)AR)K(P',R)dR =K (P, P,

where A(R, means the operator A™ applied to the variable R. This follows since
ATY S =A.lYE Thus, for m an integer >1, K (-, -) reproduces under the inner product

induccd by the norm J”2 (-), and

pat e Ayl

2
Uk

with

B =J‘ u(P)YS(P)dP for any u € %2,
>

. (S) is therefore the reproducing kernel Hilbert space (r k A s) with reproducing
kernel (rk)K (-,
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The space %,.(S) in which one wants to solve problems A) and B) is
¥ (S) = 37.(S)D{1},

where {1} is the one-dimensional space of constant functions. 0. (S) and {1} will be

orthogonal subspaces in %,,.(S) if we endow # (S) with the norm defined by
2

||u||2=fm<u)+$(jsuuv) ap) .

The following theorem is an immediate consequence of these facts and Kimeldorf and

Wahba [17, Lemmas 3.1, 5.1].
THEOREM 1. The solutions u,, ., and Un.m.a t0o problems A) and B) on the sphere are

given by

(2.5) trmr(P)= 3 K (P, P)+d,
where ¢c=(ci, - -+, Cn ) and d are given by
(2.6) c= (K, +nAl)7 I - T(T' (K, + nAI) ' T) ' T (K, + nAI) ']z,
(2.7 d =T T} T R kD) e,
where K, is the n X n matrix with j, kth entry (K.,); given by
(2.8) (K,)ij =K (P, P)),
(2.9) I e TV
and
z2=(z21, -, z,).
Also

Upnm = Up,m,0-

The continuous linear functionals L;u = u(P;) may be replaced in the problem
statements by any set of n iinearly independent continuous linear functionals on 9, (S)
which are not all identically O on {1}. Then, as is usual in 7k theory, to obtain the solution
one replaces K (P, P;)in (2.5) by LK (P, -), K (P, P;)in (2.8), by L;(p) L pnK (P, P'), and
the ith component of 7 in (2.9) by L;,(1). (See Kimeldorf and Wahba [17].) One
example of useful L; is L;u = js,- u(P) dP;i.e., the data functionals are regional averages
(see Dyn and Wahba [5]). Furthermore, if z, = L;u+ g;, where u is fixed, unknown
function in 3¢,,(S) and the {&;} can be modeled as i.i.d. N'(0, o?) random variables, then
(provided A is chosen properly; see [4], [30]) an estimate of Lu for I any continuous
linear functional on %, (S) is provided by Lu . . .. Lu = sin Ous(P) and Lu = u,(P) are
continuous linear functionals on 9,.(S) for m = 3. Therefore, this provides a technique
for estimating meteorological properties of interest involving the derivatives of u, for
example, the geostrophic wind; see [30]. Other potential applications are to the
estimation of budgets (Johnson and Downey [15]), and the geostrophic vorticity

(Haltiner and Martin [13]).
We remark that the equations (2.6) and (2.7) for ¢ and d can be readily verified to

be equivalent to
(2.10) (Kp+nADDe+dT =2z,

(2:11) T'c=0.
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If we assume K, and T are given, then (2.10) and (2.11) lend themselves more readily to
numerical solution than the computation of (2.6) and (2.7). See Paihua Montes [19],

Wahba [28], Wendelberger [31].
In order to have a closed form expression for K () it is necessary to sum the series

o 2rv+1

(2:12) k...(z)-v):“ o+ 1)

A closed form expression for m = 1 (z # 0) can be obtained but does not interest us

here.
To attempt to sum (2.12) for m = 2, we note that

et

(2.13) :,%—":—j'ﬁ,zsf—(p-—*_%iej‘o‘ logh(l-i—)h"dk, g
Using the generating formula for Legendre polynomials (Sansone [22, p. 169]),
(2.14) :\f h*P.(2)=(1—=2hz+h?*)"?=1, -1<h<1,
gives o

: 1 1
(2.15) kz(z)==L logh(l-z)(J1_2h2+h2—1) dh.

Repeated attempts to integrate this by parts using formulas for indefinite integrals
involving expressions of the form V1 —2zh + h*, and related integrals to be found in
Pierce and Foster [20] and Dwight [7], led us to terms with a closed form expression plus
a term involving Dwight [7, formula 731.1] whose right-hand side is an infinite series.
This exercise, plus a helpful conversation with R. Askey who suggested that the sum
could be reduced to a dilogarithm, convinced us that no readily computable closed form
expression was to be found. For this reason we seck to change the problem slightly so
that readily computable interpolating and smoothing formulas can be obtained. We do

this in the next section.
3. Thin plate pseudo-splines on the sphere. We seek a norm Q)% («) on %#°/(S)

which is topologically equivalent to J,/” («) on ¥,.(S) and for which the reproducing
kernel can be obtained in closed form convenient for computation.

Define
o » uzh
Q=3 ¥ 22 wu=[ upvip)ap,

ol kow-—y ka s

where
1 -1
(3.1) e.k=[(y+§)(y+1)(p+z)---(p+2m—1)] .
Since
1 1 1
m:"lkaSAykse.‘k' ”_1,2,"'. k=_y’...‘vs m=2-3,""

we have

;%Qm(u)ﬁlm(u)ﬁom(u), ue I, (S),
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and, thus the norms J./?(-) and QL% (-) are topologically equivalent on #%(S). The
reproducing kernel R (P, P’) for ..(S) with norm QL/? (-) is then

R(P,P)=R.(P.P)=3 3 £.Y5P)\Y (P

vl k=—
L= E 1
2.1 (v+1D)@+2) - (v+2m—1)

(3.2)
P lcos (B P)).

A closed form expression can be obtained for R (P, P’) as follows. Since

1

> =0,1’2".-,
B TR TS ST :

1 1
—'j (1—h)h*dh=
r-Jo

then by using the generating function (2.14) for the Legendre polynomials we have

n_ 1 § 4
R(P’P)—27r ygl (r+1D)(w+2)---(r+2m —1)PV(Z)

(3.3)
e -
2 L2 —2)1 Tom—2 Cm—Dl’
where
z =cos y(P, P")
and
1
(3.4) qm(z)=f (1—h)"(1—2hz+h* "V dh, m=0,1, -
0

Formulas for Ih"‘(l —2hz + hz)_”2 dh,m =0,1,2 and recursion formulas for
general m in terms of the formulas for 1 —1 and m —2 can be found in Pierce and
Foster [20, pp. 165, 174, 177, 196]. gdm was obtained by hand for m =0, 1, 2 and 3. In
the middle of this dull exercise P. Bjornstad observed that the MACSYMA program at
MIT, which could be called from the computer science department at Stanford where
this exercise was taking place, could be used to evaluate qm(z) recursively. He kindly
wrote such a program and the results appear in Table 1. Thus, for example, R(P, P’) for
m = 2 involves g» and, from the table,

A(12W?—4W)—6CW +6W + 1
ql2]= > g

giving

aser=3m (VD125 4052 12 (159) o (159) 1)

Note that g[0] which appears in the 71 = 1 case does not lead to a proper rk since go(1) is

not finite. However, a proper rk exists for any m > 1, and the table can be used to define

3 5
Goim-—a fOr =35,2,58, =~ .6,

We collect these results in
THEOREM 2. The solutions u, .. and u, .. to the problems: Find u < . (S) to

3/2

A minimize Q,,(u) subjectto u(P)=z,i=1,2,---,n,

B') minim:t'zenl i (u(Pg)—z,)2+AQm(u),

i=1
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are given by

ﬁn.m T ﬁn,mo’ 'jn.m./\ (P) = Z CiR (P’ PJ) +dr

i=1

where R(P, P’) is defined by (3.3) and (3.4) and ¢ and d are determined by

(R, +nAlec—dT =z, T'e=0,

where R, is the n X n matrix with j, kth entry R(P,, P;)) and T=(1,---,1)".

TABLE 1
1
qm(z)=f (1—h)™(1—2hz+h*)"V? dh, m=0,1,---,10,
o

Key. qlml=qm(z], A=In(1+1/¥YW), C=2VW),W =(1-2)/2

q(0] \ - K Ye&
ql1] \ SAW =41 \
ql2] \ (A(12W2-4W)—6CW +6W +1)/2 \M
ql3] (A(NW’—%W Y+ 30W2+ C(BW —-30W3H)—-3W +1N)/3
ql4] (AB4OW* —T720W3X72W2) +420W> + C(220W?2—420W?3) - 15S0W R4 W +3)/12
- (A(7560W°> —8400 +1800W3)+3780W*+ C(—3780W" +2940 W3 —-256 W?)
5
. 2310W3+60W2—-5W +6)/30
- (A(27,720W°—37800W?> + 12,600 W* —600W?>)+ 13,860 W>
q
+C(—13,860W> + 14,280Wf‘—2 2W2)—11970W*+ 1470 W3+ 15W2—-3W +5)/30
(A(360,360 W7 +582,120 W% 264,600 W> + 29,400 W*) + 180,180 W*° \
q(7] +C(—180,180W*° +231,000W°—-71,316 W*+3072W?)
—200,970WS3 +46,830W* -8 25W? +21W?—-7W +15)/105
(A(IQ.810,800W8—20,180,160W7+ 11,642400W°%+2,116,800W?>+58,800W*)
q[8] +5,405,200W7 + C(—5,405,400 W~ + 8,288,280 W\ 3,538,920 W°®+ 363,816 W*)
—7,387880W°+2,577,960W>-159,810 W*—848W>+84W?—-40W + 105)/840
(A(61,261,200 W°\129,729,600W*+90,810,720 W7’ —23,284,800 W°+ 1,587,600 W?)
+30,630,600 W€ + C(—30,630,600 W2 +54,654,600 W 7% 29,909,880 W*
9
a1 +5,104,440 —131,072W*)—49,549,500W7 +23,183,160 W*°
—2,903,670Wx¢ 17,640 W* —420W>+ 72 W2 —45W N\ 40)/1,260
(A(232,792,560W'°-551,350,8 W9+4S4,053,600‘WB—151,351,200\Q—‘:7,463.600W6
—317,520W5)+ 116,396,280 W + C(—116,396,280 W° + 236,876,640
q[10] — 158,414,256 W’ +38,507,040 WK° — 2,462,680 W>) —217,477,260 W*

+127,987,860W7 —24,954,930 W°®+930,006 W’ + 2,940 W*
—180W?3+45W?—-35W +126)/1,260
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Of course the remarks following Theorem 1 concerning general continuous linear

functionals and computing procedures apply here also.

4. Acknowledgments. We would like to thank P. Bjornstad for writing the

computer program which generated Table 1, G. Golub for his hospitality at the
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ERRATUM: SPLINE INTERPOLATION AND SMOOTHING
ON THE SPHERE*

GRACE WAHBA~™

Table 1 contains several misprints in lines g [6], ¢ [7] and g [8]. The correct
1able appears below.
TABLE 1

1
q.,.(z)=L (1—k)™(1—2hz+h%"V2 dh, m=0,1,---,10.

Key: qlml=4m(z), A=1nt1+y0W). C=2/W, W=(1-2)/2

qL035 a
ql133
2 AUB-C+1
ql21;
2
A(IZ U -4 U)-6C U+ 46U+ 1
2
qf31;
3 2 2 2
A (40U -356U) + 30U +C(BU-30U) -3 U+
3
qlf41;
4 3 2 3 2 3 2
A(B40 U - 720 4 + 72 U ) + 420 U + C (220U —~- 420 4 ) -~ 130 U ~- 4 U + 3
12
q[31;
S 4 3 4

(A (7560 U - B400 W ¢ 1800 W ) + 3780 W

4 3 2 3 2
+ C (- 3780 8 + 2940 M - 256 W ) - 2310 U + &0 W -3 W + 6)/730

qlé1;
3 4 3 5
(A (27720 U - 37800 U + 12500 U4 - 4600 U ) + 13840 U

S 4 3 4 3 2
+C (- 13860 U + 14280 W - 2772 W ) - 119700 + 1470 4 + 15 4 - 3 ¥ + 3)

/30

* This Journal, 2 (1981), pp. 5-16.
t Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706.
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qL71;
rd é S 4 é
(A (3460340 W - SB2120 W + 264400 U - 29400 U ) + 180180 W

é S 4 3 3 4
# C (- 1801B0 W + 231000 W - 71316 U + J072 W ) - 200970 W + 44830 U

3 2
-S25 U + 21 U4 -7 W + 15)/105

qf81l;
8 7 é 3 4
(A (10810800 U - 20180140 W + 115642400 U - 2114B00 U + 58800 U )

rd 7 & 3 4
5405400 U + C (- S405400 U + 8288280 U - 3538920 W + 343816 W >

+*

é 3 4 3 2
7387380 U + 25779460 W - 159810 U - 840 U + B4 U - 40 U + 105)/840

ql?1;
9 8 2 & 3
(A (61261200 W - 129729600 U + 90810720 U - 23284800 W + 1587400 U )

8 8 rd é 3
* 30630600 W + C (- 30430600 W + J4454500 W — 29909880 W + 5104440 U

4 7 é S 4 3
= 131072 U ) - 49549300 U + 23183140 W - 2903470 U + 17640 U - 420 U

2
+ 72 U - 45 U + 140)/1260

ql101;
10 ? 8 7
(A (232792540 U - 9513350800 W + 4354053400 W - 1351351200 W

é 3 9
174463600 U - 317520 W » + 114394280 U

*

9 8 7 é 5
€C (- 11463946280 U + 2348764640 U - 158414256 U + 38507040 U - 24424680 U )

L

8 7 é 3 4 3
2174772560 B + 127987840 U - 249354930 U + 930006 U + 2940 W - 180 W

2
43 U - 35 U + 124)/12460

*




