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1 Introduction

It is now common knowledge that the support vector machine (SVM) paradigm, which has proved
highly successful in a number of classification studies, can be cast as a variational/regularization
problem in a reproducing kernel Hilbert space (RKHS), see Kimeldorf & Wahba (1971), Wahba
(1990), Girosi (1997), Poggio & Girosi (1998), the papers and references in Schoelkopf, Burges &
Smola (1999), and elsewhere. In this note, which is a sequel to Wahba (1999), we look at the SVM
paradigm from the point of view of a regularization problem, which allows a comparison with penal-
ized likelihood methods, as well as the application of model selection and tuning approaches which
have been used with those and other regularization-type algorithms to choose tuning parameters
in nonparametric statistical models.

We first review the steps connecting the SVM paradigm in RKHS and its connection to the
(dual) mathematical programming problem traditional in SVM classification problems. We then re-
view the Generalized Comparative Kullback-Leibler Distance (GCKL) for the usual SVM paradigm,
and observe that it is trivially a simple upper bound on the expected misclassification rate. Next
we revisit the GACV as a proxy for the GCKL proposed in Wahba (1999) and the argument that
it is a reasonable estimate of the GCKL. We found that it is not necessary to do the randomization
of the GACV in Wahba (1999), because it can be replaced by an equally justifiable approximation
which is readily computed exactly, along with the SVM solution to the dual mathematical pro-
gramming problem. This estimate turns out interestingly, but not surprisingly to be simply related
to what several authors have identified as the (observed) VC dimension of the estimated SVM.
Some preliminary simulations are suggestive of the fact that the minimizer of the GACV is in fact
a reasonable estimate of the minimizer of the GCKL, although further simulation and theoretical
studies are warranted. It is hoped that this preliminary work will lead to better understanding of
‘tuning’ issues in the optimization of SVM'’s and related classifiers.

2 The SVM variational problem

Let 7 be an index set, t € 7. Usually 7 = E? BEuclidean d-space, but not necessarily. Let
K(s,t),s,t € T, be a positive definite function on 7T®7T, and let H ;¢ be the RKHS with reproducing
kernel K. See Wahba (1990), Wahba (1999), Lin, Wahba, Xiang, Gao, Klein & Klein (1998) for more
on RKHS. RK’s which are tensor sums and products of RK’s are discussed there and elsewhere.
K may contain one or more tuning parameters, to be chosen. A variety of RK’s with success
in practical applications have been proposed by various authors, see e. g. the Publications list at

2Corresponding author address: Prof. Grace Wahba, Department of Statistics, University of Wisconsin, 1210 W.
Dayton St., Madison WI 53706. Research supported in part by NIH Grant EY(09946 and NSF Grant DMS9704758.



http://svm.first.gmd.de/. Recently Poggio & Girosi (1998) interestingly observed how different
scales may be accomodated using RKHS methods.

We are given a training set {y;, ¢; }, where the attribute vector ¢; € T, and y; = +1 according as
an example with attribute vector #; is in category A or B. The classical SVM paradigm is equivalent
to: find fy of the form const 4+ h, where h € Hg to minimize

n
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here f; = f(t;), and (7); = 7,7 > 0; = 0 otherwise. Once the minimizer, call it f) is found, then

the decision rule for a new example with attribute vector ¢ is: A if fy(¢) > 0, B if f)(¢) < 0.

We will assume for simplicity that K is strictly positive definite on 7 ® T, although this
is not necessary. The minimizer of (1) is known to be in the span {K(-,t;),i = 1,---n}, of
representers of evaluation in Hx. The function K(-,¢;) is K(s,t;) considered as a function of
s with ¢; fixed. The famous ‘reproducing’ property gives the inner product in Hx of two rep-

resenters as < K(-,t;), K(-,t;) >y, = K(t;,t;). Thus, if h(-) = >/ ¢;K(-,t;), then Hh||§_lK =
Zijl CiCjK(ti’ tj)' Letting € = (1a B l)lv c = (Cla e ,Cn)l, (f(tl)a e f(tn))l = (fla e 7fn)lv and
with some abuse of notation, letting f = (f1, -+, fn) and K now be the n x n matrix with ijth

entry K (t;,t;), and noting that f(t) =d+ Y1 ¢;K(t,1;) for some ¢, d, we have
f=Kc+ed (2)

and the variational problem (1) becomes: find (¢, d) to minimize

n
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3 The Dual Problem

The primal problem (3) is equivalent to the following quadratic programming problem by intro-
ducing a new vector z = (21, -+, 2,)’

0<z

minzyc,de'z +nAd Ke, subject to { e YKc—Yed<z

where Y is the n x n diagonal matrix with y; in the 4:th position. The original problem is sometimes
more ill-conditioned than the dual problem. The dual problem is the one typically solved in the
SVM literature, and our arguments involve the dual form. We now obtain the dual form of our
problem. Introducing two new vectors a = (ay, -, ay) and 7 = (r1,---,7,)", we have

n n
Magedzarl(c,d z,or) =z +n A Ke— Y rizi+ Y oi(1—yifi — )
i=1 i=1

SSSHS
o O <||D

subject to

IA A
3 Q



Letting y = (y1,- -+, yn)’, we get the matrix form of L as follows:
L=é¢z+n\Kc—r'z+ea—-dY(Kc+ed) —dz

By differentiation, we have the following equations:

oL
§:2nAK07KYa:0, (4)
which gives
1 1
= —K 'KYa=—Y
“T o o “ (5)
OL
Fr i —'Ya =0, (6)
and oL
E:efafrzo, (7)

Finally, letting H = 7Y K'Y, we have

1
maxl = —ia'Hoz + e (8)

0<a<l1

subject to { ¢V =1ya=0

this being the usual form in which the SVM is computed.

MINOS or other optimization routine can be used to find a, and then (5) gives c¢. The support
vectors are those K (-,t;) for which «; # 0. d can be found from any of the support vectors for
which 0 < a; < 1. As we know, the Kuhn-Tucker conditions are satisfied by the solutions:

(1 - O(i)ZZ' =0 (9)

(1 —yifi —2) =0 (10)

where f(t;)) = fi = 3 ]-1¢jK(ti,tj) +d. Thus z; = 0 from (9) as long as 0 < «; < 1 for

some i. By (10) 1 — y;if; = 0 implies that d = [1 — y;(3°7_; ¢; K (ti,;))]/y; which implies that
d=1/yi — >j—1 ;K (ti t;)-

For future reference we review the relation between the (hard) margin () of the support vector

machine classifier and Zyif/\i<1 a);- In the situation where we can separate the training set points
perfectly, v is given by

-1
’yQ = 2n\ ( Z a,\i) .

yifai<l
See Cortes & Vapnik (1995), Bartlett & Shawe-Taylor (1999). (Notice the notation is a bit different
from ours in these papers.) By definition the margin of the (hard margin) support vector machine
classifier is 7 = m = (¢ K¢)~'/2. This equality can be seen from the following: In the perfectly
K

separable case, where all members of the training set are classified correctly, a,; is the solution of
the problem below:

1
mazl = —ia'Hoz +da



subject to a; > 0 and y'a = 0.
Introducing the Lagrangian multipliers £ = (&,---,&,)" and 8 for the constraints, the La-
grangian for this problem is

1
Lp = —ia'Ha +éda—pBya—Eta

and «); satisfies the Kuhn-Tucker conditions:

0
—Lp=—-Ha+e—-0Py—¢ = 0
I9Je"
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From these and the relation that ¢ = Y, /(2n)), it is easy to get

dKe = o\ Hay

= e — By — ¢

Since aiy; = 0 if y; f; > 1, we finally get

v = (dKe)™' =2n) [ Z oz)\z-] .

yifai<l

4 The Generalized Comparative Kullback-Liebler Distance

Suppose unobserved y;’s will be generated according to an (unknown) probability model with
p(t) = pue(t) being the probability that an instance with attribute vector ¢ is in class A. Let
y; be an (unobserved) value of y associated with ;. Given fy, define the generalized comparative
Kullback-Liebler distance (GCKL distance) with respect to g as

: 1<
GCKL(ptrueu f)\) - GCKL(A) = Etrueg Zg(yjf)\j)- (11)
7=1

Here f) is considered fixed and the expectation is taken over future, unobserved y;. If g(7) =
In(1 + e 7), then GCKL(A) reduces to the usual CKL for Bernoulli data 3 averaged over the

3The usual CKL (comparative Kullback-Liebler distance) is the Kullback-Liebler distance plus a term which
depends only on pp¢pyel.



attribute vectors of the training set. More details may be found in Wahba (1999). If g(7) = [—7].,
then

Etrue[_yjf)\j]* = p[true}j[_f)\j]* + (1 _p[true}j)[f)\j]* (12)
Pltrue)j» f)\j <0 (13)
= (1 7p[true}j)a f/\j >0, (14)

where piyuej = Plirue(ts), s0 that the GOKL(A) is the expected misclassification rate for fy on
unobserved instances if they have the same distribution of ¢; as the training set. Similarly, if
g(r) = (1 =)y, then

Etrue(l - yjf)\j)+ = p[true}j(l - f)\j)a f)\j <-1 (15)
= 1+ (1 - 2p[true}j)f/\ja -1< f)\j <1 (16)
= (1 7p[true}j)(1 + f/\j)a f)\j > 1. (17)

Note that [—y;fil« < (1 — y;fi)+, so that the GCKL for (1 — y;fi)+ is an upper bound for the

expected misclassification rate - see Figure 1.
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Figure 1: g(7) = (1 — 7)4 and g(7) = [—7], compared.

5 Leaving out one and the GACV

Recently there has been much interest in choosing A (or its equivalent, referred to in the literature as
%), as well as other parameters inside K. See for example Burges (1998), Cristianini, Campbell



& Shawe-Taylor (1998), Kearns, Ng, Mansour & Ron (to appear), surely not a complete list.
Important references in the statistics literature that are related include Efron & Tibshirani (1997),
Ye & Wong (1997). X. Lin et al. (1998) consider in detail the case g(7) = In(1 + e 7). We now
obtain the GACV estimate for A and other tuning parameters.

Let f{ﬂ be the solution to the variational problem: find f of the form f = const + h with
h € Hg to minimize

Z (y;f3) + Al (18)
P

Jj#i

Then the leaving-out-one function Vy(A) is defined as
1 & i
Vo) = = 3 gty ). (19)
i=1

Since fM does not depend on y; but is (presumably) on average close to fy;, we may consider
Vo(A) a proxy for GCK L()\), albeit one that is not generally feasible to compute in large data sets.
Now let

Vo(A) = OBS(X) + D(N), (20)

where OBS()) is the observed match of f) to the data,

OBS(X =%Z (yifi) (21)
and
1”
EZ ysz — g(yifai)]- (22)

Using a first order Taylor series expansion gives

1 & —i]
DA~ —— — . 2
Next we let p(f) be a ‘prediction’ of y given f. Here we let
0
pi=pnf) =Y, 8—f9(yz'fi)- (24)
(3

ye{"'l:*l}

When g(r) = in(1 +e7) then u(f) = 2p — 1 = E{ylp}. For g(r) = (1 — 7). u(f) = 1, f <
—1;u(f) =0, —1<f<1andu(f)—1forf>1.

Letting py; = pu(fx) and ,uM = (fM ), we may write (ignoring, for the moment, the possi-
bility of dividing by 0),

1 99 (fi= £
n =1 8'f)\i ( :u‘[)\zz})

7

D(\) ~ — (i — b, (25)

This is equation (1.40) in Wahba (1999). We now provide somewhat different arguments than in
Wahba (1999) to obtain a similar result, which, however is easily computed as soon as the dual
variational problem is solved.



Let fy[i, ] be the solution of the variational problem 1 4 given the data {y1,---, v 1,2, Yit1, ", Yn}-
Note that the variational problem does not require that © = +1. Thus f)[7, y;](¢;) = fxi- To sim-
plify the notation, let fy[7, z](¢;) = fai[i, 2] = fxi[z]. In Wahba (1999) it is shown, via a generalized

leaving-out-one lemma, that p(f) as we have defined it has the property that f)[\;ﬂ = fil4, ,u[);ﬂ](tl)
(1]

Letting py, " = x, this justifies the aproximation
Pi— 1" _ Pilyi] = Filz] _ 9Fxi (26)
,u[)\z 1 Yi — dy;

Furthermore, u[)\;i} = ,u(f)[\;ﬂ) = u(fx;) whenever f)[;l} and f); are both in the interval (—oo, —1),
r [—1,1], or (1,00), which can be expected to happen with few exceptions. Thus, we make the

further approximation (y; — ,u[)\;ﬂ) ~ (y; — pxi), and we replace (25) by

= 89 8f/\z
——Z I 8yz — [xi)- (27)

%(yi — i) = =2 yifa < —
= —1, yifni € [-1,1]
0, yifai > 1,
giving finally
D(N) ~ > 2% 4L > Ofxi. (28)

yifrai<—1 " yifai€[—1,1] Oyi

S|~

It is not hard to see how %Ly“ should be interpreted. Fixing A and solving the variational problem

for f) we obtain a = ay, ¢ = ¢\ = ﬁYa)\ and for the moment letting f) be the column vector
with ith component f);, we have fy = Kc) +ed = ﬁKYoz,\ + ed. From this we may write

Ofxi Qi
= K(t;, 1 ot . 29
D = Kt t) 55 = 1K) B (29)
The resulting GACV (\), which is believed to be a reasonable proxy for GCK L(}), is, finally
1 “ -
GACV(A) = — Z (L —yifri)+ + D(A), (30)
n :
where
A 1 Q) Q)
HO =+ B> e IS D DI K] o
[ yifrai<—1 Yifai€[—1,1] J

If K = Ky, where 0 are some parameters inside K to which the result is sensitive, then we may let
GACV()\) = GACV (A, 6). Note the relationship between D and >y fri<1 @ai and the margin . If
K(-,-) is a radial basis function then ||K (-, #;)||3,,. = K(0,0). Furthermore 1K (- ) — K (- )13, is
bounded above by 2K (0,0). If all members of the training set are classified correctly then y; f; > 0
and the sum following the 2 in (31) does not appear and D(\) = K(0,0)/ny2.

We note that Opper & Winther (1999) have obtained a different approximation for fy; — f)[\;i}

*d is not always uniquely determined, this however does not appear to be a problem in practice, and we shall
ignore it.



6 Numerical Results

We give two rather simple examples. For the first example, attribute vectors ¢ were generated
according to a uniform distribution on 7, the square depicted in Figure 2. The points outside the
larger circle were randomly assigned +1 (” + ") with probability pjy,e = .95 and —1 ("0”) with
probability .05. The points between the outer and inner circles were assigned +1 with probability
Pltrue] = -50, and the points inside the inner circle were assigned +1 with probability pis.e) = .05.

In this and the next example, K (s,t) = 6720%“57“‘2, where o is a tunable parameter to be chosen.
Figure 3 gives a plot of log(GACV) of (30) and log(GCKL) of (11) as a function of logA, for
logo = —1. Figure 4 gives the corresponding plot as a function of logo for logh = —2.5, which
was the minimizer of logl0(GACYV) in Figure 3. Figure 5 shows the level curves for fy = 0 for
logh = —2.5 and logo = —1.0, which was the minimizer of log(GACV') over the two plots. This can
be compared to the theoretically optimal classifier, which according to the Neyman-Pearson Lemma
would be any curve between the inner and outer circles, where the theoretical log-odds ratio is 0.
For the second example, Figure 6 corresponds to Figure 2, with py;.,¢ = .95,.5 and .05 respectively
in the three regions, starting from the top. Figure 7 gives a plot of log(GACV') and log(GCKL) as
a function of log\ for logo = —1.25. and Figure 8 gives log(GACV) and log(GCK L) as a function
of logo for logh = —2.5, which was the minimizer of Figure 7. Figure 9 gives the level curves for f)
at 0 for logh = —2.5, logo = —1.25, which was the minimizer of log(GACV') over Figures 7 and 8.
This can also be compared to the theoretically optimal classifier, which would be any curve falling
between the two sine waves of Figure 7.

It can be seen that logi1cGACYV tracks logioGCKL very well in Figures 3, 4, 7and 8, more
precisely, the minimizer of log1oGACYV is a good estimate of the minimizer of log10GCK L.

A number of cross-sectional curves first in logA for a trial value of logo and then in logo for the
minimizing value of log\ (in the GACV curve), and so forth, to get to the plots shown. A more
serious effort to obtain the global minimizers over of log(GACV') over logA and logo is hard to do
since both the GACV and the GCK L curves are quite rough. The curves have been obtained by
evaluating the functions at increments on a log scale of .25 and joining the points by straight line
segments. However, these curves (or surfaces) are not actually continuous, since they may have a
jump (or tear) whenever the active constraint set changes. This is apparently a characteristic of
generalized cross validation functions for constrained optimization problems when the solution is
not a continuously differentiable function of the observations, see, for example Figure 7 of Wahba
(1982). In practice, something reasonably close to the minimizer can be expected to be adequate.

Work is continuing on examining the GACV and the GCK L in more complex situations.
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Example 1: n = 200, log10(lambda) = -2.5
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Figure 4: Plot of logi1gGACYV and log1gGCK L as a function of logigo for logigh = —2.5.
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Example 1: log10(lambda) = -2.5, log10(sigma) = -1.0

Figure 5: Level curve for f) = 0.
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Example 2: n = 200

I \OO @ Q
0.7 0.8 0.9 1

Figure 6: Data for Example 2, and Regions of Constant (Generating) Probability.
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Example 2: n = 200, log10(sigma) = -1.25
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Figure 7: Plot of log1gGACV and log1oGCK L as a function of logigA for logigo = —1.25.
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Figure 8: Plot of loginGACYV and logioGCK L as a function of logigo for logiph = —2.5.
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Figure 9: Level curve for f = 0.




