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Generalized Approximate Cross Validation for Support Vector Machines, or,Another Way to Look at Margin-Like Quantities 2Grace Wahba, Yi Lin and Hao Zhangwahba,yilin,hzhang@stat.wisc.eduhttp://stat.wisc.edu/~wahba, ~yilin, ~hzhangApril 6, 19991 IntroductionIt is now common knowledge that the support vector machine (SVM) paradigm, which has provedhighly successful in a number of classi�cation studies, can be cast as a variational/regularizationproblem in a reproducing kernel Hilbert space (RKHS), see Kimeldorf & Wahba (1971), Wahba(1990), Girosi (1997), Poggio & Girosi (1998), the papers and references in Schoelkopf, Burges &Smola (1999), and elsewhere. In this note, which is a sequel to Wahba (1999), we look at the SVMparadigm from the point of view of a regularization problem, which allows a comparison with penal-ized likelihood methods, as well as the application of model selection and tuning approaches whichhave been used with those and other regularization-type algorithms to choose tuning parametersin nonparametric statistical models.We �rst review the steps connecting the SVM paradigm in RKHS and its connection to the(dual) mathematical programming problem traditional in SVM classi�cation problems. We then re-view the Generalized Comparative Kullback-Leibler Distance (GCKL) for the usual SVM paradigm,and observe that it is trivially a simple upper bound on the expected misclassi�cation rate. Nextwe revisit the GACV as a proxy for the GCKL proposed in Wahba (1999) and the argument thatit is a reasonable estimate of the GCKL. We found that it is not necessary to do the randomizationof the GACV in Wahba (1999), because it can be replaced by an equally justi�able approximationwhich is readily computed exactly, along with the SVM solution to the dual mathematical pro-gramming problem. This estimate turns out interestingly, but not surprisingly to be simply relatedto what several authors have identi�ed as the (observed) VC dimension of the estimated SVM.Some preliminary simulations are suggestive of the fact that the minimizer of the GACV is in facta reasonable estimate of the minimizer of the GCKL, although further simulation and theoreticalstudies are warranted. It is hoped that this preliminary work will lead to better understanding of`tuning' issues in the optimization of SVM's and related classi�ers.2 The SVM variational problemLet T be an index set, t 2 T . Usually T = Ed, Euclidean d-space, but not necessarily. LetK(s; t); s; t 2 T , be a positive de�nite function on T 
T , and letHK be the RKHS with reproducingkernelK. See Wahba (1990), Wahba (1999), Lin, Wahba, Xiang, Gao, Klein & Klein (1998) for moreon RKHS. RK's which are tensor sums and products of RK's are discussed there and elsewhere.K may contain one or more tuning parameters, to be chosen. A variety of RK's with successin practical applications have been proposed by various authors, see e. g. the Publications list at2Corresponding author address: Prof. Grace Wahba, Department of Statistics, University of Wisconsin, 1210 W.Dayton St., Madison WI 53706. Research supported in part by NIH Grant EY09946 and NSF Grant DMS9704758.1



http://svm.first.gmd.de/. Recently Poggio & Girosi (1998) interestingly observed how di�erentscales may be accomodated using RKHS methods.We are given a training set fyi; tig, where the attribute vector ti 2 T , and yi = �1 according asan example with attribute vector ti is in category A or B. The classical SVM paradigm is equivalentto: �nd f� of the form const+ h, where h 2 HK to minimize1n nXi=1(1� yifi)+ + �khk2HK ; (1)here fi = f(ti), and (�)+ = �; � > 0;= 0 otherwise. Once the minimizer, call it f� is found, thenthe decision rule for a new example with attribute vector t is: A if f�(t) > 0, B if f�(t) < 0.We will assume for simplicity that K is strictly positive de�nite on T 
 T , although thisis not necessary. The minimizer of (1) is known to be in the span fK(�; ti); i = 1; � � � ng, ofrepresenters of evaluation in HK . The function K(�; ti) is K(s; ti) considered as a function ofs with ti �xed. The famous `reproducing' property gives the inner product in HK of two rep-resenters as < K(�; ti);K(�; tj) >HK= K(ti; tj). Thus, if h(�) = Pni=1 ciK(�; ti), then khk2HK =Pni;j=1 cicjK(ti; tj). Letting e = (1; � � � ; 1)0; c = (c1; � � � ; cn)0; (f(t1); � � � f(tn))0 = (f1; � � � ; fn)0, andwith some abuse of notation, letting f = (f1; � � � ; fn)0 and K now be the n � n matrix with ijthentry K(ti; tj), and noting that f(t) = d+Pni=1 ciK(t; ti) for some c; d, we havef = Kc+ ed (2)and the variational problem (1) becomes: �nd (c; d) to minimize1n nXi=1(1� yifi)+ + �c0Kc: (3)3 The Dual ProblemThe primal problem (3) is equivalent to the following quadratic programming problem by intro-ducing a new vector z = (z1; � � � ; zn)0minz;c;de0z + n�c0Kc; subject to( 0 � ze� Y Kc� Y ed � zwhere Y is the n�n diagonal matrix with yi in the iith position. The original problem is sometimesmore ill-conditioned than the dual problem. The dual problem is the one typically solved in theSVM literature, and our arguments involve the dual form. We now obtain the dual form of ourproblem. Introducing two new vectors � = (�1; � � � ; �n)0 and r = (r1; � � � ; rn)0, we havemaxc;d;z;�;rL(c; d; z; �; r) = e0z + n�c0Kc� nXi=1 rizi + nXi=1 �i(1� yifi � zi)
subject to 8>>>>>>><>>>>>>>:

@L@c = 0@L@d = 0@L@z = 00 � �0 � r2



Letting y = (y1; � � � ; yn)0, we get the matrix form of L as follows:L = e0z + n�c0Kc� r0z + e0�� �0Y (Kc+ ed) � �0zBy di�erentiation, we have the following equations:@L@c = 2n�Kc�KY � = 0; (4)which gives c = 12n�K�1KY � = 12n�Y � (5)@L@d = �e0Y � = 0; (6)and @L@z = e� �� r = 0; (7)Finally, letting H = 12n�Y KY , we havemaxL = �12�0H�+ e0� (8)subject to ( 0 � � � 1e0Y � = y0� = 0this being the usual form in which the SVM is computed.MINOS or other optimization routine can be used to �nd �, and then (5) gives c. The supportvectors are those K(�; ti) for which �i 6= 0. d can be found from any of the support vectors forwhich 0 < �i < 1. As we know, the Kuhn-Tucker conditions are satis�ed by the solutions:(1� �i)zi = 0 (9)�i(1� yifi � zi) = 0 (10)where f(ti) � fi = Pnj=1 cjK(ti; tj) + d. Thus zi = 0 from (9) as long as 0 < �i < 1 forsome i. By (10) 1 � yifi = 0 implies that d = [1 � yi(Pnj=1 cjK(ti; tj))]=yi which implies thatd = 1=yi �Pnj=1 cjK(ti; tj):For future reference we review the relation between the (hard) margin (
) of the support vectormachine classi�er and Pyif�i�1 ��i. In the situation where we can separate the training set pointsperfectly, 
 is given by 
2 = 2n�0@ Xyif�i�1��i1A�1 :See Cortes & Vapnik (1995), Bartlett & Shawe-Taylor (1999). (Notice the notation is a bit di�erentfrom ours in these papers.) By de�nition the margin of the (hard margin) support vector machineclassi�er is 
 = 1khkHK = (c0Kc)�1=2. This equality can be seen from the following: In the perfectlyseparable case, where all members of the training set are classi�ed correctly, ��i is the solution ofthe problem below: maxL = �12�0H�+ e0�3



subject to �i � 0 and y0� = 0.Introducing the Lagrangian multipliers � = (�1; � � � ; �n)0 and � for the constraints, the La-grangian for this problem is LP = �12�0H�+ e0�� �y0�� �0�and ��i satis�es the Kuhn-Tucker conditions:@@�LP = �H�+ e� �y � � = 0�i � 0; i = 1; 2; :::; ny0� = 0�i � 0; i = 1; 2; :::; n�i�i = 0; i = 1; 2; :::; nFrom these and the relation that c = Y ��=(2n�), it is easy to getc0Kc = 12n��0�H��= 12n� ��0�e� ��0�y � �0���= 12n� ��0�e�Since ��i = 0 if yifi > 1, we �nally get
2 = (c0Kc)�1 = 2n�24 Xyif�i�1��i35�1 :4 The Generalized Comparative Kullback-Liebler DistanceSuppose unobserved yi's will be generated according to an (unknown) probability model withp(t) = ptrue(t) being the probability that an instance with attribute vector t is in class A. Letyj be an (unobserved) value of y associated with tj . Given f�, de�ne the generalized comparativeKullback-Liebler distance (GCKL distance) with respect to g asGCKL(ptrue; f�) := GCKL(�) = Etrue 1n nXj=1 g(yjf�j): (11)Here f� is considered �xed and the expectation is taken over future, unobserved yj. If g(�) =ln(1 + e�� ), then GCKL(�) reduces to the usual CKL for Bernoulli data 3 averaged over the3The usual CKL (comparative Kullback-Liebler distance) is the Kullback-Liebler distance plus a term whichdepends only on p[true]. 4



attribute vectors of the training set. More details may be found in Wahba (1999). If g(�) = [�� ]�,then Etrue[�yjf�j]� = p[true]j[�f�j]� + (1� p[true]j)[f�j ]� (12)= p[true]j; f�j < 0 (13)= (1� p[true]j); f�j > 0; (14)where p[true]j = p[true](tj), so that the GCKL(�) is the expected misclassi�cation rate for f� onunobserved instances if they have the same distribution of tj as the training set. Similarly, ifg(�) = (1� �)+, thenEtrue(1� yjf�j)+ = p[true]j(1� f�j); f�j < �1 (15)= 1 + (1� 2p[true]j)f�j; � 1 � f�j � 1 (16)= (1� p[true]j)(1 + f�j); f�j > 1: (17)Note that [�yifi]� � (1 � yifi)+, so that the GCKL for (1 � yifi)+ is an upper bound for theexpected misclassi�cation rate - see Figure 1.
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Figure 1: g(�) = (1� �)+ and g(�) = [�� ]� compared.5 Leaving out one and the GACVRecently there has been much interest in choosing � (or its equivalent, referred to in the literature as12nC ), as well as other parameters inside K. See for example Burges (1998), Cristianini, Campbell5



& Shawe-Taylor (1998), Kearns, Ng, Mansour & Ron (to appear), surely not a complete list.Important references in the statistics literature that are related include Efron & Tibshirani (1997),Ye & Wong (1997). X. Lin et al. (1998) consider in detail the case g(�) = ln(1 + e�� ). We nowobtain the GACV estimate for � and other tuning parameters.Let f [�i]� be the solution to the variational problem: �nd f of the form f = const + h withh 2 HK to minimize 1n nXj=1j 6=i g(yjfj) + �khk2HK (18)Then the leaving-out-one function V0(�) is de�ned asV0(�) = 1n nXi=1 g(yif [�i]�i ): (19)Since f [�i]�i does not depend on yi but is (presumably) on average close to f�i, we may considerV0(�) a proxy for GCKL(�), albeit one that is not generally feasible to compute in large data sets.Now let V0(�) = OBS(�) +D(�); (20)where OBS(�) is the observed match of f� to the data,OBS(�) = 1n nXi=1 g(yif�i) (21)and D(�) = 1n nXi=1[g(yif [�i]�i )� g(yif�i)]: (22)Using a �rst order Taylor series expansion givesD(�) � � 1n nXi=1 @g@f�i (f�i � f [�i]�i ): (23)Next we let �(f) be a `prediction' of y given f . Here we let�i = �(fi) = Xy2f+1;�1g @@fi g(yifi): (24)When g(�) = ln(1 + e�� ) then �(f) = 2p � 1 = Efyjpg. For g(�) = (1 � �)+; �(f) = �1; f <�1;�(f) = 0;�1 � f � 1 and �(f) = 1 for f > 1.Letting ��i = �(f�i) and �[�i]�i = �(f [�i]�i ), we may write (ignoring, for the moment, the possi-bility of dividing by 0), D(�) � � 1n nXi=1 @g@f�i (f�i � f [�i]�i )(yi � �[�i]�i ) (yi � �[�i]�i ) (25)This is equation (1.40) in Wahba (1999). We now provide somewhat di�erent arguments than inWahba (1999) to obtain a similar result, which, however is easily computed as soon as the dualvariational problem is solved. 6



Let f�[i; x] be the solution of the variational problem 1 4 given the data fy1; � � � ; yi�1; x; yi+1; � � � ; yng.Note that the variational problem does not require that x = �1. Thus f�[i; yi](ti) � f�i. To sim-plify the notation, let f�[i; x](ti) = f�i[i; x] = f�i[x]. In Wahba (1999) it is shown, via a generalizedleaving-out-one lemma, that �(f) as we have de�ned it has the property that f [�i]�i = f�[i; �[�i]�i ](ti).Letting �[�i]�i = x, this justi�es the aproximationf�i � f [�i]�iyi � �[�i]�i � f�i[yi]� f�i[x]yi � x � @f�i@yi : (26)Furthermore, �[�i]�i � �(f [�i]�i ) = �(f�i) whenever f [�i]�i and f�i are both in the interval (�1;�1),or [�1; 1], or (1;1), which can be expected to happen with few exceptions. Thus, we make thefurther approximation (yi � �[�i]�i ) � (yi � ��i), and we replace (25) byD(�) � � 1n nXi=1 @g@f�i @f�i@yi (yi � ��i): (27)Now, for g(�) = (1� �)+ @g@f�i (yi � ��i) = �2; yif�i < �1= �1; yif�i 2 [�1; 1]= 0; yif�i > 1;giving �nally D(�) � 1n Xyif�i<�1 2@f�i@yi + 1n Xyif�i2[�1;1] @f�i@yi : (28)It is not hard to see how @f�i@yi should be interpreted. Fixing � and solving the variational problemfor f� we obtain � = ��, c = c� = 12n�Y �� and for the moment letting f� be the column vectorwith ith component f�i, we have f� = Kc� + ed = 12n�KY �� + ed. From this we may write@f�i@yi = K(ti; ti) ��i2n� � kK(�; ti)k2HK ��i2n�: (29)The resulting GACV (�), which is believed to be a reasonable proxy for GCKL(�), is, �nallyGACV (�) = 1n nXi=1(1� yif�i)+ + D̂(�); (30)where D̂(�) = 1n 242 Xyif�i<�1 ��i2n� � kK(�; ti)k2HK + Xyif�i2[�1;1] ��i2n� � kK(�; ti)k2HK35 : (31)If K = K�, where � are some parameters inside K to which the result is sensitive, then we may letGACV (�) = GACV (�; �). Note the relationship between D̂ and Pyif�i�1 ��i and the margin 
. IfK(�; �) is a radial basis function then kK(�; ti)k2HK = K(0; 0). Furthermore kK(�; ti)�K(�; tj)k2HK isbounded above by 2K(0; 0). If all members of the training set are classi�ed correctly then yifi > 0and the sum following the 2 in (31) does not appear and D̂(�) = K(0; 0)=n
2.We note that Opper & Winther (1999) have obtained a di�erent approximation for f�i� f [�i]�i .4d is not always uniquely determined, this however does not appear to be a problem in practice, and we shallignore it. 7



6 Numerical ResultsWe give two rather simple examples. For the �rst example, attribute vectors t were generatedaccording to a uniform distribution on T , the square depicted in Figure 2. The points outside thelarger circle were randomly assigned +1 (" + ") with probability p[true] = :95 and �1 ("o") withprobability :05. The points between the outer and inner circles were assigned +1 with probabilityp[true] = :50, and the points inside the inner circle were assigned +1 with probability p[true] = :05.In this and the next example, K(s; t) = e� 12�2 ks�tk2 , where � is a tunable parameter to be chosen.Figure 3 gives a plot of log(GACV ) of (30) and log(GCKL) of (11) as a function of log�, forlog� = �1. Figure 4 gives the corresponding plot as a function of log� for log� = �2:5, whichwas the minimizer of log10(GACV ) in Figure 3. Figure 5 shows the level curves for f� = 0 forlog� = �2:5 and log� = �1:0, which was the minimizer of log(GACV ) over the two plots. This canbe compared to the theoretically optimal classi�er, which according to the Neyman-Pearson Lemmawould be any curve between the inner and outer circles, where the theoretical log-odds ratio is 0.For the second example, Figure 6 corresponds to Figure 2, with p[true] = :95; :5 and :05 respectivelyin the three regions, starting from the top. Figure 7 gives a plot of log(GACV ) and log(GCKL) asa function of log� for log� = �1:25: and Figure 8 gives log(GACV ) and log(GCKL) as a functionof log� for log� = �2:5, which was the minimizer of Figure 7. Figure 9 gives the level curves for f�at 0 for log� = �2:5, log� = �1:25, which was the minimizer of log(GACV ) over Figures 7 and 8.This can also be compared to the theoretically optimal classi�er, which would be any curve fallingbetween the two sine waves of Figure 7.It can be seen that log10GACV tracks log10GCKL very well in Figures 3, 4, 7and 8, moreprecisely, the minimizer of log10GACV is a good estimate of the minimizer of log10GCKL.A number of cross-sectional curves �rst in log� for a trial value of log� and then in log� for theminimizing value of log� (in the GACV curve), and so forth, to get to the plots shown. A moreserious e�ort to obtain the global minimizers over of log(GACV ) over log� and log� is hard to dosince both the GACV and the GCKL curves are quite rough. The curves have been obtained byevaluating the functions at increments on a log scale of :25 and joining the points by straight linesegments. However, these curves (or surfaces) are not actually continuous, since they may have ajump (or tear) whenever the active constraint set changes. This is apparently a characteristic ofgeneralized cross validation functions for constrained optimization problems when the solution isnot a continuously di�erentiable function of the observations, see, for example Figure 7 of Wahba(1982). In practice, something reasonably close to the minimizer can be expected to be adequate.Work is continuing on examining the GACV and the GCKL in more complex situations.7 AcknowledgmentsThe authors thank Fangyu Gao and David Callan for important suggestions in this project. Thiswork was partly supported by NSF under Grant DMS-9704758 and NIH under Grant R01 EY09946.ReferencesBartlett, P. & Shawe-Taylor, J. (1999), Generalization performance of support vector machinesand other pattern classi�ers, in B. Schoelkopf, C. Burges & A. Smola, eds, `Advances in KernelMethods-Support Vector Learning', MIT Press, pp. 43{54.8
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