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Abstract

The Bayes rule is the optimal classification rule if the underlying distribution of
the data is known. In practice we do not know the underlying distribution, and need
to “learn” classification rules from the data. One way to derive classification rules in
practice is to implement the Bayes rule approximately by estimating an appropriate
classification function. Traditional statistical methods use estimated log odds ratio
as the classification function. Support vector machines (SVMs) are one type of large
margin classifier, and the relationship between SVMs and the Bayes rule was not
clear. In this paper, it is shown that SVMs implement the Bayes rule approximately
by targeting at some interesting classification functions. This helps understand the
success of SVMs in many classification studies, and makes it easier to compare SVMs
and traditional statistical methods.

1 Introduction

Support vector machines (SVMs) have proved highly successful in a number of classification
studies. In the classification problems, we are given a training data set of n subjects, and
for each subject ¢, « = 1,2,...,n in the training data set, we observe an explanatory vector
x; € RY, and a label y; indicating one of several given classes to which the subject belongs.
The observations in the training set are assumed to be iid from an unknown probability
distribution P(z, y), or equivalently, they are independent random realizations of the random
pair (X,Y) that has cumulative probability distribution P(x,y). The task of classification
is to derive from the training set a good classification rule, so that once we are given the
x value of a new subject, we can assign a class label to the subject. One possible criterion
for judging the quality of a classification rule is the expected misclassification rate, but in
practice it is also possible that some other loss function is more appropriate. If we knew the
underlying probability distribution P(z,y), we could derive the optimal classification rule
with respect to any given loss function. This optimal rule is usually called the Bayes rule
for classification.



In the following we will concentrate on the case where we have only two classes, and
where the expected misclassification rate is used as the criterion. This is the case in which
SVMs are best developed. In this situation the label y is either 1 or -1. A classification rule
is a mapping from R? to {—1,1}. It is easy to see that the expected misclassification rate R
of any classification rule 7 can be written as

k= E[Y —n(X)|/2] = E[1 = Yn(X)];/2. (1)

Here (-), is a function such that 7, is 7, if 7 > 0; and is 0, otherwise. For a general real
function f: RY — R, we call E[1 — Y f(X)], the generalized comparative Kullback Leibler
(GCKL) measure. See Wahba, Lin, and Zhang (1999).
Let
plz) = Pr{Y =1|X = z}

Then the (Bayes) rule that minimizes the expected misclassification rate is n*(z) = sign[p(z)—
1/2], or equivalently, sign[g(z)], where g(x) is the log odds ratio log[p(z)/(1 — p(x))]-.

Since we do not know P(z,y) in practice, but are only given a sample from it, we can not
obtain this Bayes rule exactly. So the question is often how to find a classification rule whose
performance is close to that of the Bayes rule, or how to apply the Bayes rule approximately.
Traditional statistical methods try to estimate [p(z) — 1/2] (or the log odds ratio g(x)) from
the training data, and then approximate the Bayes rule with sign[p(z)—1/2] (or sign[g(x)]).
Here p(z) (g(x)) is the estimate of p(z) (g(x)). Friedman (1996) discussed how the bias and
variance components of the estimation error affects classification error when the estimate is
used in a classification rule.

SVMs are motivated by the geometric interpretation of maximizing the margin, and are
characterized by the use of reproducing kernel (called kernel in SVM literature. Not to
be confused with the kernel estimators used in nonparametric statistics). For a tutorial on
SVMs for classification, see Burges (1998). It has been shown that SVM methodology can be
cast as a variational/regularization problem in a reproducing kernel Hilbert space (RKHS).
See Wahba (1990), Girosi (1998), Poggio and Girosi (1998). A reproducing kernel over R? is
a positive definite function on R¢ @ R?. Let Hy be a RKHS with reproducing kernel K (s, 1),
s,t € RY. The SVM using reproducing kernel K first minimizes

n

LS = gaf) 1t + Al o)

=1

over all the functions of the form f(z) = h(z) + const, and h € Hg. Here ¢ is a positive
integer, and f; = f(x;). Once the minimizer f is found, then the SVM classification rule is
sign[f(z)]. A variety of reproducing kernels have been used successfully in practical appli-
cations, including polynomial kernels, Gaussian kernels, and Sobolev Hilbert space kernels.
The RKHS’ for the latter two types of reproducing kernels are of infinite dimension. For a
review on the Sobolev Hilbert space kernels, see Wahba (1990). The theory of RKHS ensures
that the minimizer of (2) lies in a finite dimensional space, even when the minimization is
carried out in an infinite dimensional RKHS. See Wahba (1990). Hence for any positive
integer ¢, the minimization problem (2) becomes a convex programming problem in a finite
dimensional space. See Wahba, Lin and Zhang (1999). For ¢ = 1 and ¢ = 2 it is also a
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quadratic programming problem. For ¢ = 1, the Wolfe dual problem of the minimization is
of a particularly simple form, and this is why most SVMs choose to use ¢ = 1.

Remark 1.1 If {1} C Hg, the regularization problem (2) is equivalent to minimizing

n

1
— > [ = gifi) 41"+ M P F Il

i=1
over Hy, where Pf is the projection of f into the orthogonal complement of {1} in H.

Several authors have studied the generalization performance of SVMs, See Vapnik (1995),
and Shawe-Taylor and Cristianini (1998). These authors established bounds on generaliza-
tion error based on VC dimension, fat shattering dimension, and the margin achieved on
the training set by the classifier. However, SVMs often have very large, even infinite, VC
dimension or fat shattering dimension. Hence the bounds established are often very loose,
and do not provide a satisfactory explanation as to why SVMs often have good generalization
performance. In this paper, we show that SVMs approximately implement the Bayes rule.
This helps explain why SVMs have been successful in practical applications, and facilitates
the comparison of SVMs with other traditional statistical methods for classification.

We will also consider the regularization problem of minimizing

1 n
=3 lyi = £l + ARl (3)
=1

over all the functions of the form f(z) = h(z) + const, and h € Hg. With ¢ = 2, this is
the penalized least square estimation in statistics literature; with ¢ = 1 this the penalized
least absolute value estimation. As we will see later, this problem is closely related to the
problem of minimizing (2).

Before we proceed further, let us introduce a simple fact:

Lemma 1.1 For any a € [-1,1], and y € {—1,1}, we have [(1 — ya),]? = |y — al?.
Proof: For any a € [—1,1], and y € {—1,1}, we have
ly —al = ly(1 —ya)|” = 1 = ya|’ = [(1 = ya),]*

In the following we first study the cases in which ¢ > 1, especially the case when ¢ = 2;
then we consider the case ¢ = 1.

2 SVMs with ¢ > 1

Regularization problems similar to (2) and (3) have long been studied in statistics literature,
see Wahba (1990) and the reference therein. Cox and O’Sullivan (1990) provided a general
framework for studying regularization methods. As in (2) and (3), the method of regular-
ization has two components: a data fit functional component and a regularization penalty
component. The data fit component usually approaches a limiting functional as n — oo. For
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example, in the SVM situation, this limiting functional is easily seen to be E[(1-Y f(X))]9.
The corresponding limiting functional for (3) is E|Y — f(X)|%. In general the limiting func-
tional can be used to identify the target function. Under the assumption that the target
function is in the RKHS under consideration and certain other general regularity conditions,
the solution of the regularization problem approaches the target function as n — oo. The
following lemma identifies the target function for SVM and (3) with ¢ > 1 (From now on all
proofs are given in the appendix):

Lemma 2.1 For any q > 1, the minimizers of E[(1 =Y f(X))+]? and E|Y — f(X)|? are the
same function given by

fo@) = [(p(@) ™ — (1 — p(a))™)/[(p(2)) 7T + (1 — p(x))7]

Also, sign|f,(z)] = sign|p(x) — 1/2] for all ¢ > 1, and the classification rule sign[f,(x)] is
equivalent to the Bayes rule.

Thus under certain conditions, the minimizer of (2) fq approaches f, as n — oo, and

SVM classifier sign[f,(z)] approximates the Bayes rule sign[f,(z)]. To be specific, let us
now specialize to the case ¢ = 2. In this case f, simplifies to 2p — 1. We will consider a

special yet very general RKHS, and illustrate how fast fq approaches f,.
For a nonnegative integer m, the Sobolev Hilbert space with order m of univariate func-
tions on domain [0, 1], denoted by H™([0,1]), is defined by

H™([0,1]) = {f|f(”)abs. cont.,v =0,1,...m—1; f™ ¢ Lo}

with a norm equivalent to

1

m— 1
1m0y = 22 (Mo f)? +/0 (£ (u))?du

v=0

where M,f = fol f(”)(u)du, v =0,1,....,m — 1. It is typical to impose the mth order
smoothness condition on a univariate function by assuming it is in H™([0,1]). For any
positive integer m, the Sobolev Hilbert space H™([0,1]) is a RKHS, and the reproducing
kernel of this space is derived in Wahba (1990), chapter 10. For example, when m = 2, the
reproducing kernel is

r(s,t) =14 ki(s)k1(t) + ka(s)ko(t) — ka(|s — t]),

where k() = - — 0.5, ky = (k§ — 1/12)/2, and ky = (k} — k}/2 + 7/240)/24.
Let @% H™ be the tensor product space of d H™([0, 1]) spaces. Then @ H™ is a Hilbert
space of functions on [0,1]¢, and it can be identified with the Hilbert space of functions

. llellr £ ()
: Pza
where @ = (a1, ag, ..., q), @; > 0,05 = integer, and ||af; = T, ai, [|a] = max{an, s, ..., ag}.
See Lin (1998a). The space ®4 H™ is also a RKHS, and the reproducing kernel of this space

is

Q= € Ly([0,1]%), Ya such that ||o]|s < m}

d

R(s,t) = [] r(s;,1;)

j=1
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where s = (S1, ..., 84), £t = (t1, ..., tq).

Recall that p(z) = Pr{Y = 1|X = z}. Let the marginal density of X be denoted by fx.
Without loss of generality, assume that X takes values only in the unit cube [0,1]¢. Also
assume that the marginal density of X is bounded away from 0 and oo in the unit cube, i.e.,
0 < C) < fx(z) < Cy < oo for some constants Cy and Cs.

Now consider the regularization problems (2) and (3) with Hx = @ H™ and ¢ = 2. We
denote the solution to (2) by f., and the solution to (3) by f*.

Theorem 2.1 Assume that p(z) is in @*H™, then if X — 0, and n~IA=GRt) — for
some € > 0. Then

/[Uyl]d[f* —2p-1D]PF=00\)+ Op[nl)\ﬁ(log%)dl].

sup | = (2p = 1) = O3 57) + Opln 22~ ) (log 1)
z€0,1)¢ A

Theorem 2.2 Assume that p(z) is in @ H™, and 0 < p(z) < 1, Vz € [0,1]%. Then if
A — 0, and n - ]A=(@xt9 = 0 for some € > 0. Then
2 _ —1y— 7 Lo
J e 2p = 0P = Oy A 5 (log )" )

11 e 1. (1 e 1.,
sup |f, = (2p = 1)| = OpP\* 77 7F 4 n 73N ) (log )]
z€l0,1]4

Remark 2.1 In the two theorems above, the smoothing parameter A changes with n. It is
actually a sequence A(n). How to choose the smoothing parameter is an important practical
problem, and several methods have been proposed in the literature. For example, Wahba, Lin
and Zhang (1999) considered choosing A to minimize the estimated generalized comparative
Kullback Leibler measure.

Remark 2.2 The condition 0 < p(z) < 1 in Theorem 2.2 is technical, and we believe the
result should still be valid without this condition.

Remark 2.3 We believe the results stated for the sup norm is not the best possible. There
should be room for deriving sharper bounds.

Remark 2.4 Under the ||.||g~(o,1)) norm, we have
H™([0,1]) = Hg"([0,1]) © {1}

where {1} is the space of scalars. H'([0,1]) is the subspace (orthogonal to {1}) consisting
of all the functions in H™([0,1]) satisfying [y f(u)du = 0. Therefore we have

d d

@ H™ = Q[Hy" ([0, 1)) & {1}]
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Identifying the tensor product space of {1} with any Hilbert space with that Hilbert space
itself, then @ H™ is the direct sum of all the subspaces of the form H(x;,) ® Hi' () ®
.. ® H*(xj,), and the subspaces in this decomposition are all orthogonal to each other.
Accordingly, any function in @ H™ can be uniquely decomposed as

d
[ (x1,29,...,2q4) = constant + Z filz:) + Z fij(@i, ;) + ...+ fioa(xr, 22, ..., Tq)
i—1 i<j

with each component in the decomposition in a different subspace. This is the functional
ANOVA decomposition, and we usually call the univariate functions in the decomposition the
main effects and high dimensional functions the interactions. In practice we can truncate
the series by throwing away the higher order interactions to enhance interpretability. Then
the RKHS we consider would be a particular subspace of @ H™. If we do that, let v be the
highest order of interaction in the model, then similar results to those stated in the theorems
above hold with d replaced by v, even though we are still considering space of functions
on [0,1]%. For more on the functional ANOVA decomposition, see Wahba (1990) and Lin
(1998b).

Remark 2.5 In some situations we may want to use some RKHS other than the one consid-
ered above. For example, we may want to use the Gaussian kernel. Results similar to those
stated in the theorems above should also be obtainable, given that p(x) is in the assumed
RKHS. The bounds would usually be different, though. The order of the bounds typically
depends on the rate of decay of the eigenvalues of the reproducing kernel. See Cox and
O’Sullivan (1990).

Remark 2.6 For q > 2, similar results can be obtained on how fast the minimizers of (2)
and (8) approach f, by using the framework provided in Cox and O’Sullivan (1990).

The theorems above show that SVM with ¢ = 2 solves a regularization problem to get
f«, which approaches 2p — 1, then uses sign[f.(z)] to approximately implement the Bayes
rule sign[p(z) — 1/2]. Similarly, we can also consider solving (3) to approximate 2p — 1.

Compared with the traditional statistical method of estimating the log odds ratio and
using the sign of the estimate to approximate the Bayes rule, SVM enjoys two advantages.
First, the computation load of SVM is not so heavy as that of the methods of estimating log
odds ratio. See Kaufman (1999). Second, when p(z) is (or is close to) 0 or 1, the log odds
ratio is (or is close to) —oo or 0o, and the method of estimating log odds ratio is ineffective
and computationally unstable. SVM is more suitable for this situation.

The method of minimizing (3) with ¢ = 2 can be motivated by the fact that E(Y|X =
z) = 2p(xz) — 1, and we recognize (3) with ¢ = 2 as the penalized least square regression
method for estimating F(Y|X = z). Intuitively, this method would not be efficient since
they do not take into account the fact that Var(Y|X = x) = 4p(z)[1 —p(z)] is not a constant
and is smaller at places where p(x) is close to 0 or 1. By proceeding as if the variance is a
constant, we are wasting some precision at regions where p(z) is close to 0 or 1. However,
for the purpose of classification, what concerns us most is the region where p(z) is not too
far away from 1/2, and the efficiency lost there for estimation is small.
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One of the conditions of the theorems is that the RKHS used in the regularization problem
contains p(z). It conforms to the notion that we should choose reproducing kernel so that
p(z) is in the corresponding RKHS. This condition can be relaxed a little, [see Cox and
O’Sullivan (1990),] but p(z) should at least be close to the RKHS. The space spanned by the
linear functions of £ may not satisfy this. This explains why linear SVM may not perform
well in some cases. This is also quite intuitive: linear SVM only linearly divides the whole
space into two half spaces, hence in the situations where sign[p(z)] divides the space into
more than two parts, or if the boundary is highly nonlinear, linear SVM can not perform
well.

3 SVMs with ¢ =1

This is the most commonly used SVM. In this situation, the limiting functional of the data
fit component in (2) is E[(1 — Y f(X))4]. The corresponding limiting functional for (3) is
ElY — f(X)|. The following lemma identifies the target function for SVM and (3) with
qg=1.

Lemma 3.1 The minimizer of E[(1 =Y f(X))y] and E|Y — f(X)| are both sign(p —1/2).

Thus instead of targeting at (p—1/2), and then using the sign of the estimate to approx-
imate the Bayes rule, SVM with ¢ = 1 takes aim directly at sign(p — 1/2). However, this
target function typically does not lie in the commonly used RKHS, (it is easy to see that
sign(p—1/2) is not a smooth function unless p(x) is always larger than 1/2 or always smaller
than 1/2.) though it can be approximated arbitrarily closely in the Ly norm by the func-
tions in the RHKS’ such as the tensor product Sobolev Hilbert space and the one induced
by the Gaussian kernel. Since we are solving the regularization problem in the assumed
RKHS, we encounter the Gibbs phenomenon. That is, the solution may behave erratically
at the discontinuous point. This in general is not a serious problem for classification, since
we are mainly concerned with the location of the classification boundary [consisting of the
discontinuous points of sign(p — 1/2)].

We can recognize (3) with ¢ = 1 as the least absolute value method used in robust
regression. In least absolute value regression, the target function is the median med(Y|X =
x), and we can see in our case med(Y|X = z) = sign[p(z) — 1/2].

SVM with ¢ = 1 is easier to compute than SVM with ¢ > 1. It remains effective when
p(z) is close or equal to 0 or 1. One special property of SVM with ¢ = 1 is that it magnifies
the contrast between the two sides of the classification boundary: on one side, the value of
the classification function is close to 1; on the other side, it is close to -1. This is different
from the SVM with ¢ = 2, for which the value of f, is very close on the two sides of the
boundary.

It is much harder to derive theoretic results similar to Theorem 2.1 and 2.2 for SVMs
with ¢ = 1. One reason is that (1 — yf), is not differentiable. The other reason is that
the target function sign(p — 1/2) is not in the assumed RKHS. Here we will use a simple
simulation to illustrate how, with appropriately chosen tuning parameter A, SVM with ¢ = 1
approaches the target function sign(p — 1/2).
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For easy visualization, we will conduct the simulation in one dimension. We take n
equidistant points on the interval [0,1]. That is, x; = i/(n — 1), i = 0,1,...,n — 1. Let
p(x) = Pr(Y = 1|X = z) = 1 — |1 — 2|, and randomly generate y; to be 1 or -1 with
probability p(z;) and 1 — p(x;). The picture of p(x) is given in Figure 1. All figures are given
at the end of the paper. It is easy to see that sign[p(x) —1/2] = 1, z € (0.25,0.75); —1,
otherwise.

We will first consider the RKHS H™([0,1]). The minimizer of (2) with ¢ = 1 is known
to have the form

i=1
where K is the reproducing kernel of HJ*([0,1]):
K (5,1) = b (8)a (1) + Ba(s)ka(t) — a5 — ),

where k(1) =+ — 0.5, ko = (k% —1/12)/2, and ky = (ki — k2/2 + 7/240)/24.

Letting e = (1,...,1), y = (y1,¥2, -, Yn)'s ¢ = (c1,Ca,...,¢,)", and with some abuse of
notation, letting f = (f(z1), f(x2), ..., f(x,)) and K now be the n X n matrix with ijth
entry K (x;,x;), we have

f=Kc+eb

and the regularization problem (2) becomes: find (c¢,b) to minimize

n

1
” > (I—wifi)s + A Ke.

=1

We solve the above problem by considering its dual problem. Let Y be the n xn diagonal
matrix with y; in the 7ith position, and let H = ﬁYKY. The dual problem has the form

1
max [ = —Eo/Hoz—l— ea

subject to 0 < a; < 1,1 =1
the a’s, we get ¢’s by ¢ =

,2,..,n, and y'a = 0. Here o = (ay, g, ..., a5,)". Once we get
ﬁYa, and b can be computed robustly by

b=['A(I = A)(y — Kc)]/[o/(e — a)].

as long as there exists an 7 for which 0 < a; < 1. Here A is the n x n diagonal matrix with
«; in the 2ith position.

The choice of the smoothing parameter A is important. Wahba, Lin and Zhang (1999)
proposed finding that value of A so that the solution f, of (2) minimizes GCKL E[(1 —
Y fi(X))4]. By Lemma 3.1, using the A that minimizes GCKL of f in a sense reassures
that the chosen fy is close to sign(p — 1/2). Also, heuristically, for such A that fy is close
to sign(p — 1/2), we can see from (1) that GCKL of fy is close to two times the expected
misclassification rate of f), therefore the A that minimizes the GCKL of f, should be close
to a local minimum point of the expected misclassification rate, though this local minimum
may not be the global minimum.



An approximant of the GCKL for f, is
L Pl = A+ (1= pa)(1+ ()] (1

In our simulation here, we can calculate GCKL or (4) directly for any f\, since we know what
p(x) is. In reality, we do not know the true p(z), hence we can not calculate (4) directly, but
we can always estimate (4) with a test data set.

We run the simulation for n = 33, 65,129,257, In each case the smoothing parameter A
is chosen so that GCKL for f) is minimized. The result is shown in Figure 2.

To illustrate how the smoothing parameter influences the solution, we give the solutions
to (2) in the case n = 257 with smoothing parameters A such that nA\ =277, j = 1,2, ..., 25.
The results are shown in Figure 3 - 4. We can see in Figure 3 that the minimizer of GCKL
coincides with a local minimum point of the expected misclassification rate. This local
minimum of the expected misclassification rate is not the global minimum, but the value
of the local minimum is close to the value of the global minimum. It is often the case in
our simulations that the expected misclassification rate fluctuates much more than GCKL.
This is easy to understand since the expected misclassification rate depends only on the the
points where the estimate crosses the z-axis, which is usually just a few points, whereas
GCKL depends on almost the whole function estimate. We see in Figure 4 the solution
to the SVM regularization problem with ¢ = 1 is close to sign[p(z) — 1/2] when GCKL in
Figure 3 is close to the minimum.

The same simulation is run with Gaussian kernel:

(s —1)?
202 I

For Gaussian kernel, there is an additional tuning parameter . We use GCKL to find a
good choice of A and o jointly. The minimum of GCKL is searched on a mesh of (log,(n), o).
The relevant results are shown in Figure 5 - 8. Figure 5 shows, in the cases when the sample
size is n = 33,65,129, 257, the solutions to the regularization problem when (log,(n\), o)
are chosen to minimize GCKL. Figure 6 - 8 are for the case n = 257. For this sample the
minimum of GCKL is found at log,(nA) = —9 and o = 0.09. Again we see the solution to
the SVM regularization problem is close to sign[p(z) — 1/2] when (log,(n)), o) are close to
the minimizer of GCKL.

K(s,t) = exp[—

Appendix

Proof of Lemma 2.1: Notice

Bl(1 =Y f(X))]* = E{E{[(1 - Y (X)), ]"|X}}

] ZVe can minimize E[(1 —-Y f(X))4]? by minimizing E{[(1 —Y f(X)).]?|X = z} for every
For any fised z, we have E{[(1-Y f(X)),J|X = 2} = p@)[(1- /(2)),]'+ (1 -p@)[(1+
f(2))+]9. Let us search for w that minimizes A(w) = p(z)[(1 —w)4]9+ (1 —p(z))[(1 4+ w)]7.
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First notice that the minimizer of A(w) must be in [—1, 1]. For any w outside [—1, 1], let
w' = sign(w), then w’ is in [—1, 1] and it is easy to check A(w') < A(w). So we can restrict
our search in [—1,1].

For w € [-1,1], A(w) = p(z)(1 — w)? + [1 — p(2)](1 + w)?. By taking derivative with

respect to w, we get w = [(p(x) = ( (g))q*l]/[(p(g))q+1 + (1 - p(g))ﬁ] Therefore

)T
the minimizer of E[(1 — Yf(X)) 191
fol@) = [(p(2)) 77 — (1 —p@)ﬁ]/[(p@))ﬁ + (1 - p())77]

The same line of argument shows that f,(x) is also the minimizer of E|Y — f(X)|%.
The proof of the rest of Lemma 2.1 is straight forward.

Proof of Lemma 3.1: Follow the same line of proof as that of Lemma 2.1.

Proof of Theorem 2.1: Consider the problem of estimating fo with iid sample from the model
E(Y]X) = fo(X), Var(Y|X) = o>

Lin (1998b) studied the properties of the estimator obtained by minimizing (3) with ¢ = 2.
In our present model we have

E(Y|X) = 2(X) ~ 1, Var(Y]X) = 4p(X)(1 - p(X)) < L.

Using the same argument as that employed in the proof of Theorem 4.1 in Lin (1998b)
with I (f) = E[Y — f(X)]?, which is E[(f(X) — (2p(X) —1))* + 4p(X)(1 — p(X))] in our
situation instead of E[(f(X) — (fo(X)))?] + o? as in Lin (1998b), everything goes through
exactly as in the proof of Theorem 4.1 in Lin (1998b) with f. in place of f, 2p — 1 in place
of fy, and fx in place of p in Lin (1998b). So we get that Theorem 4.1 in Lin (1998b) is still
valid in our situation. The norm ||.||, is the norm in the space @ H™([0,1]). (If ma is not
an integer, then H™*([0,1]) is a fractional order Sobolev space.)

Now set b = 3= + & in Theorem 4.1 of Lin (1998b). Setting a = 0 we get the first
expression in our theorem. Setting a = b, using Theorem 4.1 and Lemma 2.1 in Lin (1998b),
we get the second expression in our theorem.

Proof of Theorem 2.2: Since 0 < p(z) < 1, Vz € [0,1]%, and p(z) is continuous, we have that
SUPepp1j¢ |2P — 1| < 1. Also, by Theorem 2.1, under our condition, we have sup,e(o 1ja [ f* —
(2p — 1)] = 0,(1). Hence we can take n large enough so that the event sup,cq [f*| <1
occurs with probability arbitrarily close to one. For the remainder of the proof we restrict
attention to this event.

Consider the set Q = {f € @ H™ :  sup,cr e |f(z)| < 1}. By Lemma 2.1 of Lin
(1998b), we see that

sup 1£(@)] < Cllf gt e

z€[0,1]4
for any f € ®% H™. Here C is a constant independent of f. Hence it is easy to check that
Q) is an open set in @? H™. We have f* € . Since f* is the minimizer of (3), by Lemma
1.1, we have that f* is also the minimizer of (2) over Q2. Hence f* is a local minimum point
of (2). Since (2) is a convex functional of f, f* is also a global minimum point of (2). Hence
f« = f*, and the results now follows from Theorem 2.1.
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Figure 1: The underlying conditional probability function p(z) = P{Y = 1|X = z} in our
simulation. The function sign[p(xz) —1/2] is 1, for 0.25 < z < 0.75; -1, otherwise.
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Figure 2: The solutions to the SVM regularization problems with ¢ = 1 and the Sobolev
Hilbert space kernel for samples of size 33, 65, 129, 257. The tuning parameter \ is chosen
to minimize GCKL in each case.
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Figure 3: GCKL (solid line) and two times misclassification rate (dashed line) of f, with
varying A for a fixed sample with n = 257, where f, is the solution to the SVM
regularization problem with ¢ = 1 and the Sobolev Hilbert space kernel. Notice the z-axis
is —log,(nA). (Larger values of A correspond to the points on the left.)
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Figure 4: For the same sample as in Figure 3, the solutions to the SVM regularization
problem with ¢ = 1 and the Sobolev Hilbert space kernel for n\ = 271,272, ..., 2725 We see
the solution is close to sign[p(xz) — 1/2] when GCKL in Figure 3 is close to the minimum.
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Figure 5: The solutions to the SVM regularization problems with ¢ = 1 and the Gaussian
kernel for samples of size 33, 65, 129, 257. The tuning parameter A and o are chosen to

minimize GCKL in each case.
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Figure 6: GCKL of f, ) with varying o and X for a fixed sample with n = 257, where f, ) is
the solution to the SVM regularization problem with ¢ =1 and the Gaussian kernel
exp[—%]. Upper left: GCKL of f,\ with o fixed to be 0.09. Notice the z-axis is

20
—log,(nA). Lower right: GCKL of f,, with n) fixed to be 27°.
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Figure 7: For the same sample as in Figure 6, with ¢ fixed at 0.09, the solutions to the
SVM regularization problem with ¢ = 1 and Gaussian kernel for n\ = 25,24, ..., 27 We
see the solution is close to sign[p(xz) — 1/2] when GCKL in Figure 6 (upper left picture) is
close to the minimum.
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Figure 8: For the same sample as in Figure 6, with n\ fixed at 27%, the solutions to the
SVM regularization problem with ¢ = 1 and Gaussian kernel for ¢ = 0.03, 0.06, ..., 0.27. We
see the solution is close to sign[p(x) — 1/2] when GCKL in Figure 6 (lower right picture) is

close to the minimum.



