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Abstract

The majority of classification algorithms are developed for the standard situation

in which it is assumed that the examples in the training set come from the same

distribution as that of the target population, and that the cost of misclassification into

different classes are the same. However, these assumptions are often violated in real

world settings. For some classification methods, this can often be taken care of simply

with a change of threshold; for others, additional effort is required. In this paper, we

explain why the standard support vector machine is not suitable for the nonstandard

situation, and introduce a simple procedure for adapting the support vector machine

methodology to the nonstandard situation. Theoretical justification for the procedure

is provided. Simulation study illustrates that the modified support vector machine

significantly improves upon the standard support vector machine in the nonstandard

situation. The computational load of the proposed procedure is the same as that of

the standard support vector machine. The procedure reduces to the standard support

vector machine in the standard situation.
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1 Introduction

In supervised learning, we are given a training data set of n examples, and for each example i,

i = 1, 2, ..., n, in the training set, we observe an input vector xi ∈ Rd, and a label yi indicating

one of several given classes to which the example belongs. We wish to learn a classification

rule from the training set, so that we can assign a class label to any new subjects we encounter

in the future. In this paper we confine ourselves to the binary classification problem: there

are only two classes. This is a special but most common classification problem. Without

loss of generality, we assume the two class labels are −1 and 1, and the associated classes

are called negative class and positive class, respectively.

It is often the case that the class label is not uniquely determinable for a particular point

xi ∈ Rd: Different subjects with the same input vector may belong to different classes. A

probability model is needed for this situation, and most learning methods developed so far

are designed under the following “standard” probability model:

The target population to which the classification rule will be applied in the future has an

(unknown) probability distribution P (x, y). The examples in the training set are assumed

to be an independently and identically distributed sample from the distribution P (x, y), or

equivalently, they are independent random realizations of the random pair (X,Y ) that has

cumulative probability distribution P (x, y). The performance of any classification rule is

measured by its expected misclassification rate on the target population, which means we

assume the cost of different types of misclassification are the same.

Many real world situations, however, are nonstandard, in that the above model is not

valid for those situations. The most common violations of the standard assumptions are:

1. Different types of misclassification may have different costs. One type of misclassifi-

cation is often more serious than another. This should be taken into account when

constructing the classification rules. In particular, the expected cost of future misclas-

sification, rather than the expected misclassification rate, should be used to measure

the performance of the classifier.

2. The target population may not have the same distribution as the one from which the
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training examples were (randomly) selected. One possible reason for this is the so

called “population drift”: the population evolves over time. It is impossible to give a

general solution to deal with population drift, since the cause of the drift varies from

problem to problem and there is no general way of modeling it. Another possible

reason is the sampling bias. For example, in some situations, the examples in the

training set are sampled from in a way that is not completely random, but that makes

sure the training set contains roughly the same number of examples from each class.

For example, sometimes the smaller class is over-sampled and the bigger class down-

sized in an attempt to have a more “balanced” sample. In this situation, a certain

proportion of the examples are randomly selected from the positive class, and the rest

of the examples are randomly selected from the negative class. These proportions

do not reflect the actual proportions of positive and negative subjects in the target

population.

Hand (1997) gives a nice explanation for these issues. Brown, Grundy, Lin, Cristianini,

Sugnet, Furey, Ares, and Haussler (2000) considered a nonstandard situation. However, they

dealt with the problem in a different way than what is in this paper.

In this paper we will consider the nonstandard situation by taking the above two aspects

into account. Let the cost of false positive (a subject from the negative class assigned the

positive label 1) be c+, and the cost of false negative be c−. The costs may or may not be

equal. Later on we will see we do not require exact numbers for c+ and c−, what matters is

the ratio of the two.

Again let the probability distribution of the target population be P (x, y). Let g+(x) be

the probability density of X for the positive population, i.e., the conditional density of X

given Y = 1. Let g−(x) be similarly defined. The unconditional (“prior”) probabilities of

the positive class and negative class in the target population are denoted by π+ and π−

respectively.

Let p(x) = Pr(Y = 1|X = x) be the conditional probability of a randomly chosen subject

from the target population belonging to the positive class given X = x. We obviously have
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p(x) = 1 − Pr(Y = −1|X = x). By Bayes formula, we have

p(x) =
π+g+(x)

π+g+(x) + π−g−(x)
(1)

A classification rule is a mapping from Rd to {−1, 1}. That is, it assigns any input

vector x a class label. When the costs for false positive and false negative are c+ and c−, the

inaccuracy of any classification rule φ when applied to the target population is characterized

by the expected (or average) cost

E{c+[1 − p(X)]1(φ(X) = 1) + c−p(X)1(φ(X) = −1)} (2)

Here 1(·) is the indicator function: it assumes the value 1 if its argument is true, and 0 if

otherwise.

If we knew the function p(x), we would be able to identify the optimal classification rule

that minimizes (2). This optimal rule is called the Bayes rule and is given by

φB(x) =











+1 if p(x)
1−p(x)

> c+

c−

−1 otherwise
(3)

Since in general we do not know p(x), we have to learn from the training set a classification

rule. As explained earlier, it is sometimes the case that the training examples are not a

random sample from the target population: the examples are chosen in such way so that

a pre-specified proportion of positive examples and negative examples are included in the

sample, whereas within each class the examples are randomly chosen. Denote these pre-

specified proportions for the training sample by π+
s and π−

s . These may not match the

population proportions π+ and π−. Let (Xs, Ys) be a random pair whose distribution is

the same as the distribution where the sample examples come from. Then, the conditional

probability of a subject in the sample belonging to the positive class given Xs = x is

ps(x) =
π+

s g+(x)

π+
s g+(x) + π−

s g−(x)
(4)

A common method of deriving classification rules is to approximate the Bayes rule by

estimating the relevant quantities in (3) from the training sample. Since it is the quantities
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related to the training sample that can be directly estimated, it is helpful to re-express the

Bayes rule in terms of ps(x) instead of p(x). By (1), (3), (4), we get

φB(x) =











+1 if ps(x)
1−ps(x)

> c+

c−
π+

s

π−s

π−

π+

−1 otherwise
(5)

For notational purpose, define a function L on the two element set {−1, 1}:

L(−1) = c+π+
s π− and L(1) = c−π−

s π+. (6)

Then the Bayes rule can be expressed as

φB(x) = sign

[

ps(x) −
L(−1)

L(−1) + L(1)

]

. (7)

Logistic regression and some other statistical methods estimate ps(x) from the training

sample. To get an estimated Bayes rule in the standard situation of equal misclassification

costs and no sampling bias, we just need to compare the estimated ps(x) with 1/2. In

the nonstandard situation, we need to compare the estimated ps(x) with L(−1)/(L(−1) +

L(1)). Notice in this case the estimation procedure is the same, all that is needed is a

change of threshold after the estimate is obtained. This is not the case for other methods

such as the (nonlinear) support vector machines. The standard support vector machine

estimates sign[ps(x)− 1/2], the Bayes rule in the standard situation. See Lin (1999). In the

nonstandard situation, we can not estimate the Bayes rule (7) from the estimated sign[ps(x)−

1/2]. Therefore in the nonstandard case, we need to modify the estimation procedure of

support vector machines to get an estimated Bayes rule.

2 The standard support vector machines

The support vector machine methodology has its root in Vapnik (1979), and is receiving in-

creasing attention in recent years. For a tutorial on support vector machines for classification,

see Burges (1998). Here we give a brief summary of the standard support vector machines

for classification, starting from the simple linear support vector machines and moving on to

the nonlinear support vector machines.
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When the two classes of points in the training set can be separated by a linear hyperplane,

it is natural to use the hyperplane that separates the two groups of points in the training

set by the largest margin. This amounts to the hard margin linear support vector machine:

Find w ∈ Rd, b ∈ R, to minimize ‖w‖2, subject to

xi · w + b ≥ +1 for yi = +1; (8)

xi · w + b ≤ −1 for yi = −1; (9)

Once such w and b are found, our classification rule is sign(w · x + b).

When the points in the training data set are not linearly separable, constraints (8) and

(9) can not be satisfied simultaneously. We can introduce nonnegative slack variables ξ’s to

overcome this difficulty, and this results in the soft margin linear support vector machine:

Find w ∈ Rd, b ∈ R, and ξi, i = 1, 2, ..., n, to minimize (1/n)(
∑

i ξi)
q + λ‖w‖2, under the

constraints

xi · w + b ≥ +1 − ξi for yi = +1; (10)

xi · w + b ≤ −1 + ξi for yi = −1; (11)

ξi ≥ 0, ∀i.

Here λ is a parameter to be chosen by the user, and q is a positive integer. In the following

we will concentrate on the case q = 1, since this is the most common situation. Notice (10)

and (11) can be combined as

ξi ≥ 1 − yi(xi · w + b).

The nonlinear support vector machine maps the input variable into a high dimensional

(often infinite dimensional) feature space, and applies the linear support vector machine in

the feature space. Computationally, this can be achieved by the application of a (repro-

ducing) kernel. For an introduction to reproducing kernels and reproducing kernel Hilbert

spaces, see Wahba (1990). Also see Evgeniou, Pontil, and Poggio (1999) for an overview of

the relation between support vector machines and the regularization problem. The nonlin-

ear support vector machine with kernel K is equivalent to a regularization problem in the
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reproducing kernel Hilbert space (RKHS) HK : Find f(x) = h(x) + b with h ∈ HK , b ∈ R,

and ξi, i = 1, 2, ..., n, to minimize

1

n
(
∑

i

ξi) + λ‖h‖2
HK

, (12)

under the constraints

ξi ≥ 1 − yif(xi), (13)

ξi ≥ 0, ∀i. (14)

Once the solution f̂ is found, we classify any new subject according to the sign of f̂ .

It is shown in Lin (1999) that, if the reproducing kernel Hilbert space is rich enough,

(for example, when we use the Gaussian kernel or the spline kernel), the solution of the

nonlinear support vector machine f̂ approaches sign(ps − 1/2) as n → ∞. This provides

a reason why the nonlinear support vector machine works well in the standard situation,

since sign(ps − 1/2) coincides with the Bayes rule of classification in the standard situation.

In the more general nonstandard situation, however, the Bayes rule of classification for

minimizing the expected cost in the target population is sign
[

ps −
L(−1)

L(−1)+L(1)

]

, which is in

general different from sign(ps − 1/2). Hence the support vector machine introduced above

will not perform optimally in the nonstandard situation. This is not clear in the current

literature. In the nonstandard situation, sign(ps − 1/2) is actually the classification rule

that minimizes the expected misclassification rate in the sampling population, and we will

call it the “naive” Bayes rule.

3 Support vector machines for the nonstandard situa-

tion

In order to extend the support vector machine methodology to the nonstandard situation,

we modify the (nonlinear) support vector machine (12) to minimizing

1

n
(
∑

i

L(yi)ξi) + λ‖h‖2
HK

, (15)
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under the constraints (13) and (14), where L(y) is given by (6). That is, the slack variables

are penalized according to different weights in the objective function. We remark that we do

not need the exact values for L(1) and L(−1). What we really need is the ratio of the two.

Note the whole problem can be shown to be equivalent to the regularization problem of

minimizing

1

n

n
∑

i=1

L(yi)[(1 − yif(xi))+] + λ‖h‖2
HK

(16)

over all the functions of the form f(x) = h(x)+b , with h ∈ HK . Here (·)+ is a function such

that τ+ is τ , if τ > 0; and is 0, otherwise. Regularization problems similar to this have long

been studied in statistics literature. Examples include penalized least square regression,

penalized logistic regression, penalized density estimation, and regularization procedures

used in more general nonlinear inverse problems. Cox and O’Sullivan (1990) provided a

general framework for studying regularization methods. The method of regularization has

two components: a data fit functional component and a regularization penalty component.

The data fit functional component dictates that the estimate should follow the pattern in

the data, whereas the regularization penalty component imposes smoothness conditions.

The data fit component usually approaches a limiting functional as n → ∞. In general

the limiting functional can be used to identify the target function: the target function is

the minimizer of the limiting functional. Under the assumption that the target function

can be approximated by the elements in the RKHS under consideration and certain other

general regularity conditions, the solution of the regularization problem approaches the target

function as n → ∞. For more discussion on this, see Lin (1999).

In our situation the limiting functional of the data fit component is E [L(Ys)(1 − Ysf(Xs))+].

The following lemma suggests that the solution of problem (16) approaches sign
[

ps −
L(−1)

L(−1)+L(1)

]

,

the Bayes rule of classification in the nonstandard situation.

Lemma 3.1 The minimizer of E [L(Ys)(1 − Ysf(Xs))+] is sign
[

ps −
L(−1)

L(−1)+L(1)

]

.

Proof: Notice

E [L(Ys)(1 − Ysf(Xs))+] = E {E {[L(Ys)(1 − Ysf(Xs))+] |Xs}}
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We can minimize E [L(Ys)(1 − Ysf(Xs))+] by minimizing

E {[L(Ys)(1 − Ysf(Xs))+] |Xs = x}

for every fixed x.

For any fixed x, we have E {[L(Ys)(1 − Ysf(Xs))+] |Xs = x} = ps(x)L(1)[(1 − f(x))+] +

(1 − ps(x))L(−1)[(1 + f(x))+]. Let us search for z̄ that minimizes A(z) = ps(x)L(1)[(1 −

z)+] + (1 − ps(x))L(−1)[(1 + z)+].

First notice that the minimizer of A(z) must be in [−1, 1]. For any z outside [−1, 1], let

z′ = sign(z), then z′ is in [−1, 1] and it is easy to check A(z′) < A(z). So we can restrict

our search in [−1, 1].

For z ∈ [−1, 1], A(z) = ps(x)L(1)(1− z)+ [1− ps(x)]L(−1)(1+ z) = {[1− ps(x)]L(−1)−

ps(x)L(1)}z + ps(x)L(1) + [1 − ps(x)]L(−1). Therefore A(z) is minimized at z = 1 when

[1 − ps(x)]L(−1) − ps(x)L(1) < 0 and at z = −1 otherwise. That is, the minimizer is 1 if

ps(x) > L(−1)/[L(−1) + L(1)], and −1, otherwise. Thus the lemma is proved.

The theory of reproducing kernel Hilbert space guarantees that the solution of (16) has

the form h(·) =
∑n

i=1 ciK(xi, ·). Letting e = (1, ..., 1)′, y = (y1, y2, ..., yn)′, c = (c1, c2, ..., cn)′,

and with some abuse of notation, letting f = (f(x1), f(x2), ..., f(xn))′ and K now be the

n × n matrix with ijth entry K(xi, xj), we have

f = Kc + eb

We plug this into (15) and convert to the dual problem by introducing multipliers αi and

βi for the constraints (13) and (14). Let Y be the n × n diagonal matrix with yi in the iith

position, let H = 1
2nλ

Y KY , and let L(y) = (L(y1), L(y2), ..., L(yn))′. The Wolfe dual of (15)

is equivalent to minimizing
1

2
α′Hα − e′α (17)

subject to

0 ≤ α ≤ L(y), and α′y = 0.

Once (17) is solved, we obtain c from the relation c = 1
2nλ

Y α. Also, b can be found from any

of the support vectors for which 0 < αi < L(yi). In fact, we can derive from the Karush-

Kuhn-Tucker condition that b = yi −
∑n

j=1 cjK(xi, xj) for any i satisfying 0 < αi < L(yi).
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The equation given below is a robust alternative to get a solution of b.

b =

∑n
i=1 αi(L(yi) − αi)(yi −

∑n
j=1 cjK(xi, xj))

∑n
i=1 αi(L(yi) − αi)

Note the whole computation procedure is very similar to that of the standard support

vector machine: in that case L(y) is replaced by e. As a result, any algorithm for imple-

menting the standard support vector machine can be easily modified to carry out this new

procedure.

4 Simulation

We use a simple simulation to illustrate the effectiveness of the modified support vector

machine in nonstandard situation. Consider a population consisting of two subpopulations.

The positive subpopulation follows a bivariate normal distribution with mean (0, 0)′ and

covariance matrix diag(1, 1), whereas the negative subpopulation follows a bivariate normal

with mean (2, 2)′ with covariance diag(2, 1). The population is unbalanced: The positive

and negative subpopulations account for 10% and 90% of the total population, respectively.

Assume the cost of false negative is twice the cost of false positive. Notice in this simulation

the Bayes rule that minimizes the expected cost in the target population is sign[16− 8x2 −

(x1 + 2)2 + 2 log 8
81

].

Suppose the distributions of the subpopulations are unknown to us, and suppose we have

400 examples available, 40% of which are randomly chosen from the positive subpopulation,

and 60% of which are randomly chosen from the negative subpopulation. We apply the

standard and modified support vector machine to derive classification rules based on the

sample. We use Gaussian kernel K(s, t) = exp(−‖s−t‖2

2σ2 ) in our simulation.

In order to be able to choose the smoothing parameters λ and σ, we randomly split the

examples into a training set and a tuning set, each with 200 examples.

We first apply the standard support vector machine to derive a classification rule. The

estimation is done with the training set and the smoothing parameters λ and σ are chosen by

minimizing the misclassification rate in the tuning set. This is typical for standard support

vector machine.
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We then apply the modified support vector machine. In this case L(−1) = 0.36, and

L(1) = 0.12. We tune the smoothing parameters by minimizing

1

200

200
∑

i=1

L(y′
i)1(y′

ifλ,σ(x′
i) < 0),

where (x′
i, y

′
i), i = 1, 2, ..., 200, are the examples in the tuning set, and fλ,σ is the solution

of (15) with smoothing parameters λ and σ. Since the tuning set comes from the same

population as the training set, the above is the empirical estimate based on the tuning set

of

E[L(Ys)1(Ysfλ,σ(Xs) < 0)], (18)

where (Xs, Ys) is a random vector from the sampling distribution (the distribution of the

population where the examples are drawn, which, as explained earlier, is different from the

target population). It can be shown by direct calculation that minimizing (18) is equivalent

to minimizing the expected cost in the target population given by

E{c+[1 − p(X)]1(fλ,σ(X) > 0) + c−p(X)1(fλ,σ(X) < 0)}, (19)

where (X,Y ) is a random vector from the target population.

We ran the simulation a number of times. The results are similar to the plots in Figure 1.

We can see in Figure 1 the decision surface of our modified support vector machine is close

to that of the Bayes rule minimizing the expected cost in the target population, whereas the

decision surface of the standard support vector machine follows closely that of the “naive”

Bayes rule minimizing the expected misclassification rate in the sampling population. The

points in Figure 1 are the examples in the training set.

In many situation it is desirable to be able to choose the smoothing parameters without

a tuning set. Automated choice of the smoothing parameters in the standard support vector

machine case has been considered by several authors, see, for example, Cristianini, Campbell,

and Shawe-Taylor (1998), and Wahba, Lin, and Zhang (1999). Wahba, Lin, and Zhang

(1999) considered the standard support vector machine and proposed choosing the smoothing

parameters by minimizing the generalized approximate cross validation (GACV ), which is a

calculable proxy of the generalized comparative Kullback Leibler distance (GCKL). These
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quantities can be easily extended. In the nonstandard situation, we can define

GCKL(λ, σ) = E{c+[1 − p(X)](1 + fλ,σ(X))+ + c−p(X)(1 − fλ,σ(X))+},

where (X,Y ) is a random pair from the target population.

It is easy to see the GCKL is an upper bound of the expected cost in the target population

given by (19). But, to the extent that fλ,σ tends to sign
[

ps −
L(−1)

L(−1)+L(1)

]

, the GCKL tends

to two times (19). Thus, when fλ,σ is close to sign
[

ps −
L(−1)

L(−1)+L(1)

]

, minimizing the GCKL

is similar to minimizing the expected cost (19). In general, the global minimum of GCKL

is easier to identify than the global minimum of (19), since the dependence of GCKL on

fλ,σ is continuous and convex, while the dependence of (19) on fλ,σ is discontinuous and not

convex. Our experience is that the GCKL usually has unique minimum, whereas (19) can

have several local minima.

Direct calculation shows the GCKL has an equivalent form: Let (Xs, Ys) be a random

vector from the sampling distribution, then

GCKL(λ, σ) =
1

π+
s π−

s

E[L(Ys)(1 − Ysfλ,σ(Xs))+]

When we choose the smoothing parameter with the GCKL, all we care about is the

minimizer of the GCKL. Hence we can also take the GCKL as E[L(Ys)(1 − Ysfλ,σ(Xs))+].

A computable proxy of the GCKL is the generalized approximate cross validation (GACV ),

given by

GACV (λ, σ) =
1

n

n
∑

i=1

L(yi)(1 − yifλ,σ(xi))+ + D̂(λ, σ)

where

D̂(λ, σ) =
1

n
[2

∑

yifλ,σ(xi)<−1

L(yi)
αi

2nλ
K(xi, xi) +

∑

yifλ,σ(xi)∈[−1,1]

L(yi)
αi

2nλ
K(xi, xi)],

where αi’s are defined as in (17). The dependence of αi’s on the smoothing parameters are

suppressed here to ease notation. For Gaussian kernel, we have K(s, s) = 1 for any s, and

the expression of GACV can be simplified a bit. The derivation of the GACV as a proxy of

the GCKL is parallel to that in Wahba, Lin, and Zhang (1999).

We use GACV to choose λ and σ jointly. For the training set in Figure 1, the decision

surface obtained by using GACV is also plotted in Figure 1. We can see in this example
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the GACV does a decent job. Note we only need the training set for the whole estimation.

Figure 2 and 3 show how GACV and GCKL vary with the λ and σ around the minimizing

λ and σ. The λ and σ chosen by the GACV in this example are 0.0025 and 1 respectively.

Limited experience with the GACV shows that it is a promising technique for picking out

good choices of smoothing parameters. However, it seems to be quite variable and further

investigation for possible improvement is in order.
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Figure 1: Decision surfaces given by the modified and standard support vector machines, the

Bayes rule, and the “naive” Bayes rule. The modified support vector machine is implemented

both with a tuning set and with the GACV.
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Figure 2: GCKL and GACV plot as a function of λ when σ is fixed at 1. We can see the

minimizer of GACV is a decent estimate of the minimizer of GCKL.
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Figure 3: GCKL and GACV plot as a function of σ when λ is fixed at 0.0025. We can see

the minimizer of GACV is a decent estimate of the minimizer of GCKL.
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