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Abstract

In this review paper we consider the statistical aspects of support vector machines
(SVMs) in the classification context, and describe an approach to adaptively tuning
the smoothing parameter(s) in the SVMs. The relation between the Bayes rule of
classification and the SVMs is discussed, shedding light on why the SVMs work well.
This relation also reveals that the misclassification rate of the SVMs is closely related
to the generalized comparative Kullback-Leibler distance (GC' K L) proposed in Wahba
(1999). The adaptive tuning is based on the generalized approximate cross validation
(GACYV), which is an easily computable proxy of the GCK L. The results are general-
ized to the unbalanced case where the fraction of members of the classes in the training
set is different than those in the general population, and the costs of misclassification
for the two kinds of errors are different. The main results in this paper have been
obtained in several places elsewhere. Here we take the opportunity to organize them
in one place and note how they fit together and reinforce one another.

1 The binary classification problem and the Bayes rule

Consider a training set of n subjects from a certain probability distribution (the sampling
distribution). For each subject i, i = 1,2,...,n, in the training data set, we observe an
explanatory vector z; € X', where X is an arbitrary index set, and a label y; indicating one
of the two given classes (A or B) to which the subject belongs. The observations (x;,y;)
are assumed to be ii.d. from an (unknown) sampling distribution P(z,y). The task of
classification is to derive from the training set a good classification rule, so that once we are
given the = value of a new subject from a target population, we can assign a class label to
the subject. The distribution of this target population may or may not be the same as the
sampling distribution. Most studies in the literature assume that the two distributions are
identical, and the cost of misclassifying subject in class A to class B is the same as that of
misclassifying subject in class B to class A. We will refer to this case as the standard case.
We will consider the standard case first, and then extend the results to the nonstandard
case as commonly arises in practice, where the fraction of members of the classes in the
sampling distribution may be different than those in the target population, and the costs of
misclassification for the two kinds of errors may be different.

If we knew the underlying sampling distribution and the distribution of the target popu-
lation, we could derive the optimal classification rule with respect to any given loss function.
This is the classification rule that minimizes the expected cost, and is usually called the
Bayes rule. In practice, however, we do not know the underlying distributions, and need to
get the necessary information from the training samples to approximate the Bayes rule.



From now on until the last section, we will concentrate on the standard case. In such
situation the expected cost is equivalent to the expected misclassification rate. Let

po(z) = Pr{Y = A|X =z},

where (X,Y) is a generic pair of random variables with distribution P(x,y). It is well known
that the Bayes rule for minimizing the expected misclassification rate is

A if po(z) > 1/2,
B otherwise.

(o= ()

We can see the conditional probability function pg(x) completely determines the Bayes
rule. It is for this reason many statistical methods try to estimate po(x), or equivalently, the

log odds ratio defined as
o) = 1o | 2.

1 — po(x)

One example of this is the penalized log likelihood estimation method, of which we will
give a brief description for purpose of illustration. This method estimates fy by minimizing
the penalized negative log likelihood. Coding the label of class A as 1 and the label of class
B as 0, the probability distribution for Y|p is

Yy - -y __ p lfy:17
p'(1-p) _{1—p ify=0,

or equivalently, —yf + log(1 + e/). Therefore the negative log likelihood is

[—yif(xz‘) + log(1 + €f(xi)>]

S|

ln(f) =
i=1
In the penalized log likelihood estimation method, we try to find f(z) = b+ h(x) with
h € Hy to minimize
[ (f) + AllAlf3y, (2)

where Hy is the reproducing kernel Hilbert space (RK HS) with reproducing kernel K (s, t),
s,t € X, || - |l is the norm on the RKHS, and X is the smoothing parameter to be chosen.

The penalized log likelihood estimation method is only one example of a class of estima-
tion methods called regularization methods or smoothing spline methods. The regularization
methods have been studied extensively in the statistics literature. See Wahba (1990) and
the reference therein. Other examples include penalized least square regression, penalized
density estimation, and regularization procedures used in more general nonlinear inverse
problems. Cox and O’Sullivan (1990) provided a general framework for studying regular-
ization methods. As in (2), the method of regularization always has two components: a
data fit functional component and a regularization penalty component. The data fit func-
tional component ensures that the estimate should fit the training data well, whereas the
regularization penalty component is used to guard against overfitting. The data fit com-
ponent usually approaches a limiting functional as n — oo. The target function that the
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regularization method is supposed to estimate is the minimizer of this limiting functional.
Under certain general conditions, the estimate from the regularization method approaches
the target function as n — oo.

For example, for the penalized log likelihood estimation, the limiting functional of the
data fit component is

I(f) = E =Y f(X) +log(1+ /)], (3)

and with some simple calculations it is easy to check that fy is the minimizer of (3).

2 Support vector machines with reproducing kernel

Support vector machines have proved highly successful in a number of classification studies.
The linear SVMs are motivated by the geometric interpretation of maximizing the margin,
and the nonlinear SVMs are characterized by the use of reproducing kernels. (The reproduc-
ing kernel is sometimes called kernel in SVM literature, not to be confused with the kernel
estimators used in nonparametric statistics). For a tutorial on SVMs for classification, see
Burges (1998).

Now code the label of class A as 1 and the label of class B as —1. It has been shown
that the SVM with reproducing kernel K is equivalent to a regularization problem in the
RKHS Hg. See Wahba, Lin and Zhang (1999). The SVM with reproducing kernel K finds

the minimizer of

S - yiglea))s + MBI, (4)

§|H

i=1
over all functions of the form g(x) = h(x) + b, and h € Hg. Here

(7) _{7’ if >0,
+_ .

0 otherwise.

From this we can see that the SVM methodology is another regularization method. Once
the minimizer g is found, the SVM classification rule is

glx)>0— A
g(x) <0 — B

3 Support vector machines and the Bayes rule

In this section we review the relation between the SVM classification rule and the Bayes rule.
These ideas have been developed in some detail in Lin (1999). Theoretical details and further
numerical results may be found there. The connection between the SVM classification rule
and the Bayes rule is of special interest to us, since it will give us insight on how SVMs
work, and why SVMs work well. To establish this connection we need to know what SVMs
are doing by minimizing (4). The following observation is the key to this question.

Lemma 3.1 [Lin (1999)] The minimizer of E[(1 — Y g(X))4] is go(x) = sign[po(z) — 1/2],
or equivalently, sign[fo(z)].



Proof: Notice E[1-Y g(X)]+ = E{E{[1-Yg(X)]+|X}}. We can minimize F[1-Y g(X)]+
by minimizing E{[1 — Y g(X)]+|X = 2} for every fixed z.
For any fixed x, we have

E{[1 = Yg(X)]4|X = 2} = po(2)[1 — g()]+ + [1 = po(@)][1 + g()] (5)

We can see the minimizing g(x) has to be in [—1, 1], since it is easy to check that for any
g(x) outside [—1, 1], the right hand side of (5) will achieve a smaller value with sign[g(x)]
than with g(x). So we can restrict our search of the minimizing ¢g(z) in [-1,1]. For g(z)
in [—1,1], (5) becomes po(x)[1 — g(z)] + [1 — po(x)][1 + g(x)] = 1 + g(z)[1 — 2po(x)], and is
obviously minimized by 1 if 1 — 2pg(z) < 0 and —1 otherwise. That is, the minimizing g(x)
is sign[po(x) — 1/2]. A.

As a regularization method, the data fit component of the SVM is = 3> | [1 — y;g(z;)] 4,
which has a limiting functional E[(1 — Y¢(X))4+]. Lemma 3.1 gives the minimizer of this
limiting functional, thus identifies the target function of the SVM as sign[po(z) — 1/2], or
equivalently, sign[fy(z)]. Notice this is exactly the Bayes rule. Thus the SVM with kernel
tries to implement the Bayes rule by approximating the function sign|[fo(x)] directly. When
the smoothing parameter is chosen appropriately, and the RK H'S is big enough to be able to
approximate sign[po(z)—1/2], the solution to the SVM problem (4) approaches the function
sign[po(z) — 1/2] as n — oc.

A variety of reproducing kernels have been used successfully in practical applications,
including polynomial kernels, Gaussian kernels, and Sobolev Hilbert space kernels (spline
kernels). The RKHS’ for the latter two types of reproducing kernels are of infinite dimension.
For a review on the spline kernels, see Wahba (1990). Roughly speaking, the RK H S induced
by the spline kernel of order m contains all the functions that have mth order derivatives. The
requirement that the RKHS is big enough to approximate the sign functions is important
for our result. Therefore our result only applies to rich RK HS’s such as those induced by
spline kernels, Gaussian kernels and high order polynomial kernels.

Lemma 3.1 also has important implication on the tuning of the smoothing parameter.
For a general function g(z), consider the classification rule

g(x) >0 — 1,
g(xr) <0 — —1.

The expected misclassification rate of this classifier can be expressed as E[Y ¢(X)]., where

(), = 1 if7 >0,
=1 0 otherwise.

Following Wahba, Lin, and Zhang (1999), we will call the quantity F[(1 — Y g(X))4] the
generalized comparative Kullback-Leibler distance (GCKL). It is easy to check that GC KL
is an upper bound of the expected misclassification rate E[Y g(X)]. for any function g. For
functions that only take values in {—1,1}, we can see the GCKL is exactly 2 times the
expected misclassification rate. We will consider choosing the smoothing parameter with
the GCKL. This can be motivated by the following consideration. In SVMs, when the
smoothing parameter A is in the neighborhood of the optimal level, the solution g(x) to (4)
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is close to go(z) = sign[fo(z)] which only takes value in {—1,1}, therefore the GCKL of
g(x) is approximately 2 times the expected misclassification rate. Thus in the neighborhood,
choosing A in the SVM to minimize the GCK L is approximately the same as choosing A\ to
minimize the expected misclassification rate. Since the function (), is discontinuous and not
convex, whereas (-); is continuous and convex, it is advantageous to choose A with GCKL
rather than with the expected misclassification rate.

Notice the GCK L depends on the unknown underlying probability distribution of the
population. In practice, we need to find a proxy of the GCK L based on the training data.
We will postpone the discussion of this proxy to the next section. Here we review the
computation of the SVM solution, and use a simulation study to illustrate the results in this
section.

For a chosen reproducing kernel K, by the theory of RKHS [see Wahba (1990)], the
minimizer of (4) must have the form

g(-) = iclf((-,xi) + 0.

Letting e = (1,...,1)", vy = (y1,%2,---,Yn)’, ¢ = (c1,Ca,...,¢,)", and with some abuse of
notation, letting g = (g(z1), g(x2), ..., 9(z,))" and K now be the n x n matrix with ijth entry
K(z;,x;), we have

g= Kc+ eb, (6)

and the regularization problem (4) becomes: find (¢, b) to minimize

S|

Z[l —yig(z;)]+ + A\ Ke,
i=1
or equivalently, find (¢, b) to minimize

1 > &+ MK,

=1

subject to constraints:

vig(x;) > 1 —&,Vi;

This is exactly the standard setup of the SVM with reproducing kernel. A standard way

of solving this problem is to consider its dual problem. Let Y be the n x n diagonal matrix
with y; in the 22th position, and let H = ﬁYK Y. The dual problem has the form

1
max L = —§a’Hoz +€a (7)

subject to
0<a; <1,Vi=1,2,....n, and 9'a=0. (8)
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Here o = (aq, ag, ..., ;). Once we get the a’s, we get ¢’s by

1
- Y
c=5Ya, (9)

and b can be computed robustly by
b=[e'A(l — A)(y — Ko)]/[o/(e — a)]. (10)

as long as there exists an ¢ for which 0 < a; < 1. Here A is the n x n diagonal matrix with
«; in the iith position.

For easy visualization, we conducted the simulation in one dimension. The simulation
has been reported in Lin (1999), and more numerical results can be found there. We took
n equidistant points on the interval [0,1]. That is, x; = i/(n — 1), i = 0,1,...,n — 1. Let
po(z) = Pr(Y = 1|X = z) = 1 — |1 — 2|, and randomly generate y; to be 1 or -1 with
probability po(x;) and 1 —pg(z;). It is easy to see that sign[po(xz)—1/2] =1, x € (0.25,0.75);
—1, otherwise. We concentrate on the SVM with spline kernels here. The spline kernel of
order 2 on [0, 1] that we used was

K(s,t) =1+ ki(s)k1(t) + ka(s)ka(t) — ka(|s — 2]),

where ki(-) = - — 0.5, ke = (k¥ — 1/12)/2, and ky = (k{ — k}/2 + 7/240)/24.

We choose the smoothing parameter with GCK L. In our simulation here, we can cal-
culate GCK L directly for any g, since we know what pg(x) is. In reality, we do not know
po(x), hence we can not calculate the GC'K L directly, but we can estimate the GCK L with
a tuning data set, or develop a proxy of the GCK L based on the training data.

[Figure 1 here.|

We ran the simulation for n = 33,65,129,257. In each case the smoothing parameters
were chosen so that the GCK L for g, was minimized. The result is shown in Figure 1. To
illustrate how the smoothing parameter influences the solution, we give the solutions to (4)
in the case n = 257 with smoothing parameters A such that n\ =277, j = 1,2,...,25. The
results are shown in Figure 2 and 3. Figure 2 shows how the SVM solutions change with
the smoothing parameter, and that for a range of choices of A, the solutions are close to
sign[p(xz) —1/2]. We can see in Figure 3 that the minimizer of GCKL coincides with a local
minimum point of the expected misclassification rate. It is our experience that this local
minimum of the expected misclassification rate may or may not be the global minimum, but
the value of the local minimum is close to the value of the global minimum.

[Figure 2 - 3 here.]

4 Adaptive tuning of the smoothing parameter(s)
The choice of the smoothing parameter(s) is a problem of great practical importance. We
develop a proxy of the unobservable GC'K L by using the leaving-out-one cross-validation.

The ideas originally come from Wahba, Lin, and Zhang (1999) and more details can be found
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there. Let g/\ "I e the minimizer of
1 & 9
~ 2 [L=wg(@)]y + Mhl, (11)
1=1
i #k
over all the functions of the form g(x) = h(xz) + b, and h € Hg. Then the leaving-out-one
function V4 () is defined as

1 n
- Z 1 — gy ()]s

3

In theory this quantity can be computed from the training data, but it is impractical to
compute this quantity directly, since it requires n implementations of the SVM algorithm

for each A. Therefore, we need to make some approximation that is easier to compute.

Define 1
OBS(A —

3

Z (1 — yrga(ws)]

then OBS(\) is easily computable. Let D(X) = V(X)) — OBS(A). It can be shown [see
Wahba, Lin, and Zhang (1999)] that

1 Ogx(z; Igx(z;
DO ~ = { ) g§< . g(;(‘ )] . (12)
wae)<t Y yg@ae-1y 9V
Here y; is treated as a continuous variable.
We need a further approximation for 8g§( i) Equations (6) and (9) motivate the use of

(873

2nA

K(x;,x;) as a quick interpretation of this quantity.
To summarize, we will approximate D(A) with the easily computable quantity

n
yiga (z:)<1 vigx(zi)€[-1,1]

Define the generalized approximate cross validation as
GACV(X\) = OBS(\) + D()),

then GAC'V is a proxy for the GCK L.
We give two simple examples to illustrate the property of GACV. We use a Gaussian
kernel in both examples. The Gaussian kernel is

K(s,t) = exp l—(s_t)j ,

202

where o is a smoothing parameter that needs to be chosen jointly with A. See also Wahba,
Lin, and Zhang (1999).



Example 1: The explanatory variable z is two dimensional, and is generated uniformly in
the square [—1,1] x [—1, 1] as depicted in Figure 4. The points outside the larger circle were
randomly assigned to be +1 with probability 0.95, and —1 with probability 0.05. The points
between the outer and inner circles were assigned +1 with probability 0.5, and the points
inside the inner circle were assigned +1 with probability 0.05. Figure 5 plots log,,(GACV)
and log,((GCKL) as a function of log,y(\), with log, (o) fixed as —1. Figure 6 gives the
corresponding plots as a function of log, (o) with log,,(A) fixed at —2.5, which was the
minimizer of log,o(GACV) in Figure 5. Figure 7 shows the level curve g = 0 for log,,(c) =
—1 and log;y(A) = —2.5, which was the minimizer of log;,(GACV') over the two plots.
This can be compared to the theoretically optimal classifier boundary, which is any curve in
between the two circles.

[Figures 4 - 7 here.]

Example 2: Figure 8 corresponds to Figure 4, with py = 0.95, 0.5, and 0.05 respectively in
the three regions, starting from the top. Figure 11 shows the level curve for log,,(c) = —1.25
and log;y(\) = —2.5, which was the minimizer of log,,(GACV'). This can again be compared
to the theoretically optimal classifier, which would be any curve falling between the two sine
waves of Figure 8.

It can be seen in these two examples that the minimizer of log,,(GACV) is a good
estimate of the minimizer of log,,(GCKL).

[Figure 8 - 11 here.|

5 Extension to nonstandard case

Nonstandard situations arise in practice frequently, and are receiving more and more atten-
tion. Again code class A as 1 and class B as —1. The most common nonstandard situations
are:

1. Different types of misclassification may have different costs. One type of misclassifica-
tion is often more serious than another. For example misclassifying a subject from class
A to class B (false negative) might be more costly than misclassifying a class A subject
to class B (false positive). This should be taken into account when constructing the
classification rules. In particular, the expected cost of future misclassification, rather
than the expected misclassification rate, should be used to measure the performance
of the classifier.

2. The target population may not have the same distribution as the sampling distribution
because of the so called “sampling bias”. For example, in some situations, the smaller
class in the target population is over-sampled and the bigger class down-sized in an
attempt to have a more “balanced” sample. In this situation, a certain proportion
of the examples are randomly selected from class A, and the rest of the examples are
randomly selected from class B. These proportions do not reflect the actual proportions
of class A and class B subjects in the target population.

Hand (1997) gives a nice explanation for these issues. Brown, Grundy, Lin, Cristianini,
Sugnet, Furey, Ares, and Haussler (2000) considered a nonstandard situation. However, they
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dealt with the problem in a different way than ours.

The results in the earlier sections can be extended to the nonstandard situation by
incorporating the two possibilities. The ideas originally come from Lin, Lee, and Wahba
(2000), and more details can be found there. Let the cost of false positive be ¢, and the
cost of false negative be ¢~. The costs may or may not be equal. It is clear that we do not
need exact numbers for ¢t and ¢, what matters is the ratio of the two.

Let the probability distribution of the target population be P'(x,y). Let (X, Y;) be a
generic random pair from the distribution P*(z,y). Let d*(z) be the probability density of
X, for the positive population (class A), i.e., the conditional density of X; given Y; = 1. Let
d~(x) be similarly defined. The unconditional (“prior”) probabilities of the positive class
and negative class in the target population are denoted by m;” and 7; respectively.

Let pi(x) = Pr(Y; = 1|X; = z) be the conditional probability of a randomly chosen
subject from the target population belonging to the positive class given X; = . We obviously
have py(x) =1 — Pr(Y; = —1|X; = x). By Bayes formula, we have

i dt(x)
i dt(x) + 7 d ()

pe(x) = (13)

For a classification rule ¢ that assigns a class label to any subject based on the input
vector x € X, (that is, a mapping from X to {—1,1}), the inaccuracy of ¢ when applied to
the target population is characterized by the expected (or average) cost

E{c™[1 = p(X)]L(S(X) = 1) + ¢ pu(X)1($(X) = —1)} (14)

Here 1(+) is the indicator function: it assumes the value 1 if its argument is true, and 0 if
otherwise. The Bayes rule that minimizes (14) is given by
+1 if 2E s

1—p¢(x) c 15
—1 otherwise (15)

on(o) = {

Notice (15) reduces to (1) when we have the standard case.

Since in general we do not know p;(z), we have to learn from the training set a classi-
fication rule. As explained earlier, it is sometimes the case that a pre-specified proportion
of positive examples and negative examples are included in the sample, whereas within each
class the examples are randomly chosen. Denote these pre-specified proportions for the
training sample by 77 and 7~. These may not match the population proportions ;" and
7y . Again let (X,Y) be a generic random pair from the sampling distribution P(z,y). The
conditional probability of a subject in the sample belonging to the positive class given X = x

is
7rdt(z)
po(x) = —— . (16)
7tdt(z) + 7=d=(x)
Since the training sample only gives information about the sampling distribution where
the training sample comes from, it is advantageous for us to express the Bayes rule (15) in

terms of py(z) instead of py(x). By (13), (15), (16), we get

; po(x) ctrt
¢B(x> — +1 Zf 1—po(z) > c- T 7riJr (]_7)
—1 otherwise




For notational purpose, define a function L on the two element set {—1,1}:
L(=1)=ctntm, and L) =c 7 n}. (18)

Then the Bayes rule can be expressed as

: _ L=
ou(z) = | L pole) = re > 0 (19)
—1 otherwise

Notice % reduces to 1/2 in the standard case. For any procedure that implements
the Bayes rule by giving an estimate of the conditional probability po(x), the adjustment
from standard case to nonstandard case is fairly simple: The estimation of pg(x) remains
the same, but in the nonstandard case we should compare the estimate with %
instead of 1/2. This is not the case for other methods such as the support vector machines
with reproducing kernels. As we have shown, the standard support vector machine with
kernel does not yield an estimate of the conditional probability po(z), but instead estimates
sign[po(xz) — 1/2], the Bayes rule in the standard situation. Since the Bayes rule in the
nonstandard case can be quite different from sign|pg(z) — 1/2], the standard SVM can not
perform optimally in the nonstandard situation. Also, it is impossible to estimate the Bayes
rule (19) in the nonstandard case from the estimate of sign[po(z) — 1/2], which is given by
the standard SVM. Therefore in the nonstandard case, we need to modify the estimation
procedure of support vector machines to get a correctly estimated Bayes rule.

In the nonstandard situation, sign(py — 1/2) is actually the classification rule that mini-
mizes the expected misclassification rate in the sampling distribution, and we will call it the
“naive” Bayes rule later on.

In order to extend the support vector machine methodology to the nonstandard situation,
we modify the support vector machine with reproducing kernel K (4) to minimizing

n

S L~ oL+ A, (20)

=1

over all the functions of the form g(z) = h(z) + b, and h € Hy. Again when the minimizer
g is found, the SVM classification rule is

gx)>0— A
g(x) <0 — B
We remark that we do not need the exact values for L(1) and L(—1). What we really
need is the ratio of the two.

For the regularization problem (20), the limiting functional of the data fit component is
EL(Y)[1 —Yg(X)]+. Thus the following lemma identifies the target function of (20).

Lemma 5.1 The minimizer of EL(Y)[1 — Yg(X)]y is sign {po - %}

A proof of this lemma is given in Lin, Lee, and Wahba (2000).
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Therefore the classifier induced by the general SVM (20) approximates the Bayes rule in
the nonstandard case. It is easy to see that the general SVM reduces to the standard SVM
in the standard case.

The calculation of the solution to (20) can be carried out in the same way as that of
the standard SVM. In fact, it is easy to check that the dual formulation of (20) is almost
identical to (6), (7), (8), (9), and (10), with the only changes being that (8) is replaced by

0<a; <L(y),Vi=1,2,...n, and y'a=0, (21)
and (10) is replaced by

iy ai(L(yi) — i) (yi — X7y ¢ K (w3, 25))
iy ai(L(y:) — o)

Note the whole computation procedure is very similar to that of the standard support
vector machine: in that case L(y;) is replaced by 1. As a result, any algorithm for imple-
menting the standard support vector machine can be easily modified to carry out this general
procedure.

A simple simulation [shown in Lin, Lee, Wahba (2000)] was carried out to illustrate the
effectiveness of the modified support vector machine in a nonstandard situation. Consider
a target population consisting of two classes A and B. Class A has a bivariate normal
distribution with mean (0,0)" and covariance matrix diag(1l,1); Class B has a bivariate
normal distribution with mean (2,2)" with covariance diag(2,1). The target population
is highly unbalanced: Class A and B account for 10% and 90% of the total population,
respectively. Assume the cost of false negative is twice the cost of false positive.

Suppose we have 400 examples available, 40% of which are randomly chosen from class
A, and 60% of which are randomly chosen from class B. We use the standard and modified
support vector machine to derive classification rules based on the sample. We use a Gaussian
kernel in this simulation.

In order to be able to choose the smoothing parameters A and o, we randomly split the
examples into a training set and a tuning set, each with 200 examples.

We first apply the standard support vector machine to derive a classification rule. The
estimation is done with the training set and the smoothing parameters A and o are chosen
by minimizing the misclassification rate in the tuning set. This is typical for the standard
support vector machine.

We then apply the modified support vector machine. In this case L(—1) = 0.36, and
L(1) = 0.12. We tune the smoothing parameters by minimizing

b:

(22)

200

L 0 )
200 Z yz yzg)\ ) < 0]

where (2}, y.), 1 = 1,2,...,200, are the examples in the tuning set, and §,, is the solution
to (20) with smoothing parameters A and ¢. Since the tuning set comes from the same
population as the training set, the above is the empirical estimate based on the tuning set
of

EL(Y)1[Y gr,(X) <0]. (23)
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Recall that (X,Y) is a random vector from the sampling distribution. It can be shown by
direct calculation that minimizing (23) is equivalent to minimizing the expected cost in the
target population given by

E{c™[1 = po(X)I1[gr0(Xe) > 0] + ¢ pi(Xi)1[ga0 (X0) < O}, (24)

where (X;,Y}) is a random vector from the target population.

[Figure 12 here.]

We ran the simulation a number of times. The results are similar to the plots in Figure 12.
We can see in Figure 12 the decision surface of our modified support vector machine is close
to that of the Bayes rule minimizing the expected cost in the target population, whereas the
decision surface of the standard support vector machine follows closely that of the “naive”
Bayes rule minimizing the expected misclassification rate in the sampling population. The
points in Figure 12 are the examples in the training set.

In order to be able to choose the smoothing parameters without a tuning set, we extend
the concepts of GCK L and GACYV to the nonstandard case. In the nonstandard situation,
we can define

GCKL(A, 0) = E{c"[1 = py(X)I(L + gao(Xe))+ + ¢ pe(Xe) (1 = Ga0 (X))}

It is easy to see the GC' K L is an upper bound of the expected cost in the target population
given by (24). But, to the extent that gy, tends to sign [po — %} the GCK L tends
%
GCKL is similar to minimizing the expected cost (24). In general, the global minimum of
GCK L is easier to identify than the global minimum of (24), since the dependence of GCK L
on gy, is continuous and convex, while the dependence of (24) on g, is discontinuous and
not convex. Our experience is that the GC'K L usually has a unique minimum, whereas (24)
can have several local minima.

Direct calculation shows the GCKL has an equivalent form: Let (X,Y) be a random

vector from the sampling distribution, then

to two times (24). Thus, when g, ,(x) is close to sign {po(x) }, minimizing the

1

Tt

GCKL(A 0) = E[LY)(1 =Y gro(X))4]
When we choose the smoothing parameter with the GCK L, all we care about is the
minimizer of the GCK L. Hence we can also take the GCKL as E[L(Y )(1 — Y gy ,(X))4].

Similar to the standard case, we can derive a formula for GACV as a computable proxy
of the GCK L. [see Lin, Lee, and Wahba (2000).]

12 .
GACV (A, 0) EZL —Yidro(Ti))+ + D(A, 0)
=1
where
D\o) =112 L) oK (@na)+ Y L) K (s ,)
70- - n . . y’L 2”)\ x“xl - : y’L 2”)\ xhxl 9
yzgk,a(ml)<_1 yzgz\,o(ml)e[_l’l}
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where «;’s are defined as in (7). The dependence of «;’s on the smoothing parameters are
suppressed here to ease notation. For the Gaussian kernel, we have K(s,s) = 1 for any s,
and the expression of GACV can be simplified a bit.

[Figure 13 - 14 here.]

We use GAC'V to choose A and ¢ jointly. For the training set in Figure 12, the decision
surface obtained by using GACYV is also plotted in Figure 12. We can see in this example
the GAC'V does a decent job. Note we only need the training set for the whole estimation.
Figure 13 and 14 show how GAC'V and GCK L vary with the A and ¢ around the minimizing
A and 0. The A and o chosen by the GACV in this example are 0.0025 and 1 respectively.
Limited experience with the GACV shows that it is a promising technique for picking out
good choices of smoothing parameters. However, it seems to be quite variable and further
investigation for possible improvement is in order.
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Figure 1: The solutions to the SVM with the spline kernel for samples of size 33, 65, 129,
257. The tuning parameter A is chosen to minimize GC'K L in each case.
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Figure 2: For a fixed sample with n = 257, the solutions to the SVM with the spline kernel
for n\ =271,272 ... 275,
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GCKL and 2 times misclassification rate
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Figure 3: GCKL (solid line) and two times misclassification rate (dashed line) of gy with
varying A for the same sample as in Figure 2, where g, is the solution to the SVM with
spline kernel. Notice the z-axis is —log,(n)). (Larger values of A correspond to the points
on the left.)
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Example 1: n =200
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Figure 4: Data for Example 1, With Regions of Constant (Generating) Probability.
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Example 1: n= 200, log10(sigma) = -1.0
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Figure 5: Plot of log10GACYV and log,oGCK L as a function of logigA for logigo = —1.0.

Example 1: n = 200, log10(lambda) = -2.5
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Figure 6: Plot of log1oGACV and log1GCK L as a function of logigo for logigh = —2.5.
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Figure 7: Level curve for f) = 0.
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Example 2: n = 200
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Figure 8: Data for Example 2, and Regions of Constant (Generating) Probability.

Example 2: n = 200, log10(sigma) = -1.25
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Figure 9: Plot of log1gGACV and log1GCK L as a function of logigA for logigo = —1.25.
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Example 2: n = 200, log10(lambda) = -2.5
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Figure 10: Plot of logioGACYV and log,oGCK L as a function of logigo for logip\ = —2.5.

Example 2: log10(lambda) = -2.5, log10(sigma) = -1.25
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Figure 11: Level curve for f, = 0.
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Figure 12: Decision surfaces given by the modified and standard support vector machines, the
Bayes rule, and the “naive” Bayes rule. The modified support vector machine is implemented
both with a tuning set and with the GACV.
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Figure 13: GCKL and GACV plot as a function of A when o is fixed at 1. We can see the
minimizer of GACYV is a decent estimate of the minimizer of GCK L.
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Figure 14: GCKL and GACYV plot as a function of ¢ when X is fixed at 0.0025. We can see
the minimizer of GACYV is a decent estimate of the minimizer of GCK L.
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