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Abstract

We rederive a form of Joachims’ ξα method for tuning Support
Vector Machines by the same approach as was used to derive the
GACV, and show how the two methods are related. We generalize
the ξα method to the nonstandard case of nonrepresentative train-
ing set and unequal misclassification costs and compare the result
to the GACV estimate for the standard and nonstandard cases.

1 Introduction

Support Vector Machines (SVM’s) are an important and increasingly popular tool
for classification, and in their nonlinear forms can handle a wide variety of classifi-
cation problems. The Generalized Approximate Cross Validation (GACV) method
for choosing the tuning parameter(s) in Support Vector Machines (SVM’s) was pro-
posed in [7]. The ξα (XA) method for choosing the tuning parameter(s) in SVM’s
was proposed in [1] and it is included in recent versions of the code SV M light,
http://ais.gmd.de/~thorsten/svm light/. We have found an interesting rela-
tionship between the XA and the GACV, which can be computed at essentially no
cost alongside the XA. It is the first purpose of this report to note the aforemen-
tioned relationship, and to provide an alternative derivation of (one form of) the
XA, which reaches the particular form studied as an approximation to a leaving
out one misclassification rate estimate, rather than an upper bound as given by
Joachims. We compare the two estimates in a context quite different than the text
classification problems considered in detail in [1]. A modest simulation example
shown here shows that the GACV may tune (very marginally) closer to the min-
imizer of the misclassification rate, but the estimates are very close and both do
very well. These and Joachims’ results, along with the rapidly growing body of
other numerical results referenced, e. g. in http://www.kernel-machines.org, as
well as the theoretical results of [2] which show that tuned SVM’s are implement-
ing the Bayes rule, serve to further buttress the claim that tuned SVM’s are the
method of choice for a truly vast array of classification problems. Background on



SVM’s may be found in the ‘Tutorial’ section of the kernel-machines.org website.
[3], [4] proposed the non-standard SVM for classification problems where the rel-
ative proportion of the two classes in the training set is not equal to that in the
general population, and where the costs of the two kinds of misclassification are not
equal. The non-standard SVM proposed there is shown to implement the Bayes
rule (minimize Bayes Risk (BR)) in the nonstandard situation when tuned, and the
GACV estimate for tuning it was proposed. The second purpose of this paper is
to use the alternative derivation of the XA noted above to obtain a generalization
of the XA estimate to the non-standard SVM, (to be called BRXA for the Bayes
Risk ξα). Again a modest example suggests that both the (nonstandard) GACV
and the BRXA provide tuning parameters which can be used to optimize for Bayes
risk in the nonstandard case. The alternative derivation argument here is believed
to shed light on more general tuning processes, where the tuning is with respect to
a different target than that embodied in the variational problem being solved.

2 The Support Vector Machine

The training set for an SVM consists of pairs (yi, xi) from one of two classes, A, or
B. yi = 1 if the ith sample is from A, and yi = −1 if the ith sample is from B. xi is
the attribute vector for the ith sample, where xi is in some index set X . The SVM
with reproducing kernel K(·, ·) finds the minimizer of

1

n

n
∑

i=1

(1 − yif(xi))+ + λ‖h‖2
HK

(1)

over all functions of the form f(x) = h(x) + b, and h ∈ HK , where HK is the
Reproducing Kernel Hilbert Space with Reproducing Kernel K. Here (τ )+ = τ if
τ > 0 and 0 otherwise. Once the minimizer fλ is found, the SVM classification rule
is fλ(x) > 0 −→ A, fλ(x) < 0 −→ B. fλ will depend on λ and may depend as well
on tuning parameters in K, with some abuse of notation we will let λ stand for the
collective set of tuning parameters. The minimizer of (1) has the form

f(·) =
n

∑

i=1

ciK(·, xi) + b. (2)

Letting e = (1, ..., 1)′, y = (y1, y2, ..., yn)′, c = (c1, c2, ..., cn)′, and with some abuse
of notation, letting f = (f(x1), f(x2), ..., f(xn))′ = (f1, f2, · · · , fn)′ and K now be
the n × n matrix with ijth entry K(xi, xj), we have f = Kc + eb, and the regu-
larization problem (1) becomes: find (c, b) to minimize 1

n

∑n
i=1(1− yifi)+ + λc′Kc,

or equivalently, find (c, b) to minimize 1
n

∑n
i=1 ξi + λc′Kc, subject to constraints:

yifi ≥ 1− ξi, ∀i, ξi ≥ 0, ∀i. A standard way of solving this problem is to consider its
dual problem. Let Y be the n×n diagonal matrix with yi in the iith position, and
let H = 1

2nλ
Y KY . The dual problem has the form max W = − 1

2α′Hα+e′α subject
to 0 ≤ αi ≤ 1, i = 1, 2, ..., n and y′α = 0. Here α = (α1, α2, ..., αn)′. Once we get
the α’s, we get c’s by c = 1

2nλ
Y α. The issue at hand is the problem of estimating

a good value of λ, and, possibly, other parameters in K, from the training set.

3 GCKL, MISCLASS, GACV, and XA

The GCKL (Generalized Kullback-Liebler Distance, see [5]) for SVM’s is defined as

GCKL(λ) = Etrue

1

n

n
∑

i=1

(1−yifλi)+ ≡
1

n

n
∑

i=1

{pi(1−fλi)+ +(1−pi)(1+fλi)+} (3)



where fλ is the minimizer of (1), fλi = fλ(xi), pi = p(xi) is the conditional proba-
bility that yi = 1 given xi, and where the expectation is taken over new yi’s at the
observed xi’s. GCKL is an upper bound for the misclassification rate (MISCLASS)
(over a new set of observations with the same attribute vectors). The GACV is a
computable proxy for the GCKL, that is, choosing λ (and any other tunable param-
eters) to minimize the GACV is supposed to come close to minimizing the GCKL.
The GACV is defined as

GACV (λ) =
1

n





n
∑

i=1

ξi + 2
∑

yifλi<−1

αi

2nλ
Kii +

∑

yifλi∈[−1,1]

αi

2nλ
Kii



 . (4)

where ξi = (1− yifλi)+, and Kij = K(xi, xj). It was derived and studied in [7], see
also [3], [4]. A more direct target is the misclassification rate, defined (conditional
on the observed set of attribute variables) as

MISCLASS(λ) = Etrue

1

n

n
∑

i=1

[−yifλi]∗ ≡
1

n

n
∑

i=1

{pi[−fλi]∗ + (1 − pi)[fλi]∗} (5)

where [τ ]∗ = 1 if τ ≥ 0, = 0 otherwise, and Etrue has the same meaning. Joachims
[1], Equation (7) proposed the ξα (to be called XAJ here) proxy for MISCLASS as:
XAJ(λ) = 1

n

∑n
i=1

[

ξi + ρ αi

2nλ
K − 1

]

∗
where ρ = 2 and here (with some abuse of

notation) K is an upper bound on Kii −Kij . Letting θi = ρ αi

2nλ
K, it can be shown

that the sum in XAJ(λ) counts all of the samples for which yifλi ≤ θi. Note that
yifλi > 1 ⇒ αi = 0, so that XAJ may also be written

XAJ(λ) =
1

n





n
∑

i=1

[−yifλi]∗ +
∑

yifλi≤1

I[
ραi
2nλ

K](yifλi)



 , (6)

where I[θ](τ ) = 1 if τ ∈ (0, θ] and 0 otherwise. Equivalently the sum in XAJ

counts the misclassified cases in the training set plus all of the cases where yifλi ∈
(0, ρ αi

2nλ
K] (adopting the convention that if fλi is exactly 0 then the example is

considered misclassified). In some of his experiments Joachims (empirically) set
ρ = 1 because it achieved a better estimate of the misclassification rate than did
the XA with ρ = 2.

4 A Parallel Derivation for XA

The relations between XAJ and GACV that are apparent in (4) and (6) are not a
coincidence. We will carry out the same argument that resulted in GACV, whose
target is Etrue(1 − yifλi)+ to obtain the XA (with ρ = 1 and K replaced by Kii),
whose target is Etrue[−yifλi]∗. The purpose of this argument is to provide insight
as to how estimates of the difference between a target and its leaving out one version
may be used to construct estimates when the ‘fit’ is not the same as the target -
here the ‘fit’ is (1 − yifλi)+, while the ‘target’ is [−yifλi]∗. We believe that this
may prove to be useful in other ‘tuning’ problems where the target is different than
the fit. We will also use the argument in a straightforward way to generalize the
XA to the nonstandard case in the same way that the GACV is generalized to its
nonstandard version.

Let f
[−i]
λ be the minimizer of (1) with the ith data point left out, and let

f
[−i]
λi = f

[−i]
λ (xi). Suppose we have the approximation yifλi ≈ yif

[−i]
λi + θi,

with θi ≥ 0. A leaving out one estimate of the misclassification rate is given

by V0 = 1
n

∑n
i=1[−yif

[−i]
λi ]∗. Now V0 = 1

n

∑n
i=1[−yifλi]∗ + D(λ) where D(λ) =



1
n

∑n
i=1{[−yif

[−i]
λi ]∗ − [−yifλi]∗}. Now, the ith term in D(λ) = 0 unless yif

[−i]
λi

and yifλi have different signs. For θi > 0 this can only happen if yifλi ∈ (0, θi].
Returning to the derivation of the GACV in [7], Section 16.5 (this paper is also
available on the website of the first author, see Equations (26) and (29)), the ap-

proximation
fλi−f

[−i]

λi

yi−µ
[−i]

λ
(fλi)

≈ θi ≡ αi

2nλ
Kii, where µ

[−i]
λ (fλi) is a function which is 0

for fλi ∈ [−1, 1]. This is the only case we are interested in, since if yifλi is negative

and θi is positive yifλi and yif
[−i]
λi cannot have different signs, and if yifλi > 1,

then the basis function corresponding to xi is not a support vector and so leaving
it out has no effect (that is, αi = 0). The conclusion is, that, to the extent that

these approximations are valid, for yifλi ∈ (0, 1], yifλi ≈ yif
[−i]
λi + αi

2nλ
Kii. This

tells us that 1
n

∑

yifλi≤1 I[
αi
2nλ

Kii]
(yifλi), can be taken as an approximation to D(λ),

resulting in (our version of the)

XA(λ) =
1

n





n
∑

i=1

[−yifλi]∗ +
∑

yifλi≤1

I[
αi
2nλ

Kii]
(yifλi)



 , (7)

providing an alternate derivation as well as an alternative interpretation of XA with
ρ = 1, K replaced by Kii. It can be interpreted as an approximation to a leaving
out one estimate, whereas the original XAJ was derived by Joachims as an upper
bound to a leaving out one estimate.

5 The Nonstandard SVM and the Nonstandard GACV

We now review the nonstandard case, from [4]. Let π+
s and π−

s be the relative
frequencies of the + and - classes in the training (sample) set, and let π+ and π−

be the relative frequencies of the two classes in the target population. Let C+ and
C− be the costs of a false positive and a false negative respectively. Let g+(x) and
g−(x) be the densities of x in the + and − classes respectively. Then the probability
that a subject from the target population with attribute x belongs to the + class is

p(x) = π+g+(x)
π+g+(x)+π−g−(x) , and the probability that a subject with attribute x chosen

with from a population with the same distribution as the training set, belongs to the

+ class, is ps(x) =
π+

s g+(x)

π
+
s g+(x)+π

−

s g−(x)
. Letting φ(x) be the decision rule, that is, a map

from x ∈ X to {−1, 1}, the expected cost, using φ(x) is Extrue
{C−p(x)[−φ(x)]∗ +

C+(1 − p(x))[φ(x)]∗}, where the expectation is taken over the distribution of x
in the target population. The Bayes rule, which minimizes the expected cost is

φ(x) = +1 if p(x)
1−p(x) > C+

C−
and −1 otherwise. Since we don’t observe a sample from

the true distribution but only from the sampling distribution, we need to express
the Bayes rule in terms of the sampling distribution ps. It is shown in [4] that

the Bayes rule can be written in terms of ps as φ(x) = +1 if ps(x)
1−ps(x) > C+

C−

π+
s

π
−

s

π−

π+

and −1 otherwise. Let L(−1) = C+π−/π−
s and L(1) = C−π+/π+

s . Then the

Bayes rule can be expressed as φ(x) = sign
[

ps(x) − L(−1)
L(−1)+L(1)

]

. [4] proposed the

nonstandard SVM to handle this nonstandard case as:

min
1

n

n
∑

i=1

L(yi)[(1 − yif(xi))+] + λ‖h‖2
HK

(8)

over all the functions of the form f(x) = h(x) + b, with h ∈ HK . This definition
is justified there by showing that, if the RKHS is rich enough and λ is chosen



suitably, the minimizer of (8) tends to f(x) = sign
[

ps(x) − L(−1)
L(−1)+L(1)

]

. The

minimizer of (8) has same form as in (2). [3] show that the dual problem becomes
max W = − 1

2α′Hα+e′α subject to 0 ≤ αi ≤ L(yi), i = 1, 2, ..., n, and y′α = 0,

where, once the α’s are obtained, the c’s are found by c = 1
2nλ

Y α. The GACV for
nonstandard problems was proposed there, in an argument generalizing the usual
case, as:

GACV (λ) =
1

n





n
∑

i=1

L(yi)ξi + 2
∑

yifλi<−1

L(yi)
αi

2nλ
Kii +

∑

yifλi∈[−1,1]

L(yi)
αi

2nλ
Kii



 .

(9)
It was shown to be a proxy for the GCKL given by

GCKL(λ) =
1

n

n
∑

i=1

{L(1)ps(xi)(1 − fλi)+ + L(−1)(1 − ps(xi))(1 + fλi)+}. (10)

where the expectation is with respect to new observations obtained according to
the sampling distribution and the observed xi. We now propose a generalization,
BRXA, of the XA as a computable proxy for the Bayes risk in the nonstandard
case. Putting together the arguments which resulted in the the GACV of (4), the
XA in the form that it appears in (7) and the nonstandard GACV of (9), we obtain
the BRXA:

BRXA(λ) =
1

n

n
∑

i=1



L(yi)[−yifλi]∗ +
∑

yifλi≤1

L(yi)I[
αi
2nλ

Kii]
(yifλi),



 . (11)

The BRXA is a proxy for BRMISCLASS, given by

BRMISCLASS(λ) =
1

n

n
∑

i=1

{L(1)ps(xi)[−fλi]∗ + L(−1)(1 − ps(xi))[fλi]∗}. (12)
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Figure 1: Observations, and true, GACV, XA and MISCLASS Decision Curves for
the Standard Case (Left) and true, GACV, BRXA and BRMISCLASS Decision
Curves for the Nonstandard Case (Right).



6 Simulation Results and Conclusions

Both panels of Figure 1 show the same simulated training set. The sample pro-
portions of the + and o (-) classes are .4 and .6 respectively. The conditional
distribution of x given that the sample is from the + class is bivariate Normal
with mean (0,0) and covariance matrix diag (1,1). The distribution for x from the
negative class is bivariate Normal with mean (2,2) and covariance diag (2,1). The
left panel in Figure 1 is for the standard case, assuming that misclassification costs
are the same for both kinds of misclassification, and the target population has the
same proportions of the + and o as the sample. For the right panel, we assume
that the costs of the two types of errors are different, and that the target popu-
lation has different relative frequencies than the training set. We took C+ = 1
C− = 2, π+ = 0.1, π− = 0.9. As before, π+

s = 0.4, and π−
s = 0.6, yielding

L(−1) = C+π−/π−
s = 1.5, and L(1) = C−π+/π+

s = 0.5. Since the distributions
generating the data and the distributions of the target populations are known and
involve Gaussians, the theoretical best decision rules (for an infinite future popu-
lation) are known, and are given by the curves marked ‘true’ in both panels. The
Gaussian kernel K(x, x′) = exp{−‖x−x′‖2/2σ2} was used, where x = (x1, x2), and
σ is to be tuned along with λ. The curves selected by the GACV of (4) and the
XA of (7) in the standard case are shown in the left panel, along with MISCLASS
of (5), which is only known in a simulation experiment. The right panel gives the
curves chosen by the nonstandard GACV of (9), the BRXA of (11) and the BR-
MISCLASS of (12). The optimal (λ, σ) pair in each case for the tuned curves was
chosen by a global search. It can be seen from both panels in Figure 1 that the
MISCLASS curve, which is based on the (finite) observed sample is quite close to
the theoretical true curve (based on an infinite future population), we make this
observation because it will be easier to compare the GACV and the XA against
MISCLASS than against the true, similarly for the BRMISCLASS curve. In both
panels it can be seen that the decision curves determined by the GACV and the
XA(BRXA) are very close. We have computed the inefficiency of these estimates
with respect to MISCLASS(BRMISCLASS), by inefficiency is meant the ratio of
MISCLASS(BRMISCLASS) at the estimated (λ, σ) pair to its minimum value, a
value of 1 means that the estimated pair is as accurate as possible, with respect
to the (uncomputable) minimizer of MISCLASS(BRMISCLASS). The results for
the standard case were: GACV : 1.0064, XA : 1.0062 − 1.0094 (due to multiple
neighboring minima in the grid search, the 1.0062 case is in Figure 1); and for the
nonstandard case: GACV : 1.151, BRXA : 1.166. Figure 2 gives contour plots for
GCKL, GACV, BRMISCLASS and BRXA as a function of λ and σ in the non-
standard case. It can be seen that the GACV and BRXA curves have nearly the
same minima. The GCKL and BRMISCLASS curves both have long, shallow, tilted
cigar-shaped minima, and the GACV and BRXA minima are near the lower right
end. For the standard case (not shown) the minima are somewhat more pronounced
and the GACV and XA minima are closer to the MISCLASS minimum, and this
is reflected in inefficiencies nearer to 1. (BR)MISCLASS curves in other simulation
studies we have done show this same behavior. We have observed (as did Joachims)
that the value of XA in the standard case is a good estimate of the value of MIS-
CLASS at its minimizer, only slightly pessimistic, one-half value of GACV (which
should be divided by 2) is somewhat more pessimistic. We note that once one ob-
tains the solution to the problem the computation of both GACV and (BR)XA are
equally trivial. The GACV in (quadratically) penalized likelihood cases generally
hits the minimizer of its target (analogous to GCKL)(see [6]) but here, both the
GACV and the BRXA (along with the standard case) appear to be biased towards
larger λ. The (BR)MISCLASS surfaces are so flat in λ in our examples this does
not seem to be a serious problem (less so in the standard case). In the absence
of a possible second order correction to these estimates, we believe that these two
estimates will prove to be extremely useful as internal tuning methods.
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Figure 2: GCKL, GACV, BRMISCLASS, BRXA as functions of λ and σ2, for the
nonstandard example. Note different logarithmic scales in λ and σ.
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